生产矿物棉的方法和以该法生产的矿物棉的制作方法

文档序号:1817868阅读:315来源:国知局
专利名称:生产矿物棉的方法和以该法生产的矿物棉的制作方法
技术领域
本发明涉及一种生产矿物棉的方法,这种矿物棉是由具高熔点或高液相线温度的热塑性矿物材料组成。更精确地说,该方法是利用一种通常称为内离心法对熔融矿物材料使之纤维化。而热塑性材料更确切说是玄武岩材料,天然的或改性的玄武岩,或是钢铁工业中的副产物,尤其是高炉炉渣(熔渣)。一般说来,本发明适用于矿物棉,即通常所说的石绒的产生,它们有广泛的使用范围,特别是在热绝缘和声绝缘领域中。选用这些材料一是由于它们的低成本,另外是由于它们的性能特别是良好的耐高温性能,然而,在它们的生产中却有一些问题,这些问题特别来自于这些材料可加工的条件。
材料高的熔化温度本身就产生了一个困难,熔化温度是指原材料受热到保证熔融所必需升至的温度,并且在生产条件下,为了流过纤维装置该原材料必须保持在这温度以上。
特别是将这些材料与生产玻璃棉中用得最多的一些玻璃辨别开来的另一个特征是,在很接近其液相线温度时通常具有高的流动性。
也是由于需要高温与这些要被纤维化的材料接触的设备受到非常强烈的腐蚀,这些设备即使与普通的玻璃接触,其使用寿命也存在问题。对具有高液相线温度的材料,这问题就更严重。
在过去,上述困难表明,对所述材料只有某一些纤维化技术才能够应用,主要有两种技术一种是利用离心即旋转抛出熔融矿物材料的方法,另一种是将材料通过一个固定的喷嘴,再利用常加速到超音速的气流使之变细成纤维(鼓风拉丝法)。
对于应用固定喷嘴的技术,就需要使用能耐熔融矿物材料侵蚀的喷嘴,传统也是用铂喷嘴,它能承受甚至在此高温下的侵蚀。然而每一只喷嘴的生产能力是有限的。还有,使用的这种拉细气流,能量费用就相当高。
应用离心即旋转抛出的技术,每套设备则有较大的产量。为了表明熔融矿物材料是保持在离心器的外面,这些技术可用通用术语“外离心法”来概括。熔融矿物材料可加于一个圆盘的前表面,也可加于一个圆柱形的转子的周边表面,或者好几个上述装置的表面。这些技术的一个优点是,与熔融矿物材料接触的设备的部件简单。就这种相对简单而言,上述部件特别是离心轮比较便宜,因而就可承受在相对较短的时间内予以调换。这些材料的成本在总生产成本中占有较低的比例。因而这些设备部件与熔融矿物材料接触时遭到强列蚀耗,并不会构成一种障碍。
利用外离心法生产矿物棉的主要缺点是,它的最终产品的性能低于用“内离心法”生产的玻璃棉的性能。
在外离心法中,材料流入一些离心轮中,然后以许许多多的微滴被抛出离心轮。液滴一旦被抛出,就被拉伸,明显地形成纤维。显然,根据这种纤维形成机理,离心抛出的材料中有相当大部分仍为未纤维化颗粒的形状,大小超过100μm的颗粒,其重量比例可高到喂入该过程材料的40%。虽然有几种方法可用来分离这些未纤维化的颗粒,但是矿物棉成品决不会完全不含这种颗粒,这些颗粒在矿物棉的具体使用中至少是没有用处的,而对一些特定用途却颇不利。
应该指出,液滴的生成不仅是外离心法的必然结果,而且也和所用材料的流变性质有关。根据本发明加工的材料只要稍高于液相线温度时通常就具有相当低的粘度。流动性相当好的熔融矿物材料难以纤维化,因为丝有容易断裂形成液滴或小珠的倾向。外离心法在某程度上就依靠这种倾向,然而并没有消除它的缺点。
本发明的一个主要目的是提供一种以具有高的液相线温度和低粘度(例如在液相线温度时粘度低于5000泊,而多数是低于3000泊,甚至低于100泊)的材料生产矿物棉的过程,而过程的条件使得可以获得含纤维化颗粒很少的矿物棉。
同时为符合经济要求,本发明的技术必须保证所用的设备有足够长的使用寿命,因而可以取代迄今使用的方法。
通过本发明业已表明,用液相线温度高特别是高于1200℃的材料生产矿物棉是可能的。其方法是当熔融矿物材料中所有晶核已被破坏以后,令熔融矿物材料流进离心器(它们周边壁上具有许多小孔径的喷丝孔),利用旋转时离心力将熔融矿物材料抛出。运转期间离心器的温度保持在这样的温度范围,其下限为材料在过冷状态结晶的温度所限定,上限为熔融矿物材料的粘度是100泊的温度所限定。
上面的叙述中,“运转期间”这一词应指不包括过渡的开始的或停止的阶段,或者更一般地说不包括熔融矿物材料的流量不恒定的任何阶段。离心器的温度是与纤维化时的熔融矿物材料处于任何接触位置的温度,具体是指沿离心器周边壁的整个高度,以及增强壁的某些部分,或增强壁和上增强壁的温度。至于离心器的底壁即形状象一只篮子或杯子的分配装置(除了另外的目的外,也用作底壁),在那里仅须考虑下限,因为如果在材料到达离心器高度以前对材料进行冷却作为弥补,则很低的粘度是可以接受的。不言自明的是,可以认为在离心器内材料的温度,更具体的说是从喷丝孔喷射出的那个点的温度就是离心器温度。因此特别正是这个温度与阻塞喷丝孔的问题有关,尤其是如果材料会析晶的话。上面的叙述中也还提到两个决定熔融矿物材料特征的温度一个是液相线温度,另一个是在过冷状态的结晶温度。液相线温度是热平衡的一个值,它对应于处在平衡时结晶检测不的最低温度。为了确定这种温度,将一份经粉碎的材料试样加热到测量温度,保持一段时间足以产生平衡状态(例如,实际上是16小时)。然后从炉中取出试样,淬冷至环境温度,研磨成细屑,在显微镜下检测。液态温度就对应于在没有发出结晶的较高温度范围和可以观察出结晶的较低温度范围之间的界限温度。“液态温度”这个词本身是指可观察到最初一些结晶物质出现的最高温度。更加具体些说,对每种结晶物质的出现能测量其对应的液相线温度,或者至少对在高温时与本发明范围有关的主要的结晶物质测量其液相线温度。
而在过冷状态的结晶温度则不对应于真正的热平衡,而是定义了一个参数,它是在相当接近于纤维化时所遇到的条件下测量的,正由于这个缘故,就特别有意义。
在过冷状态的结晶温度表征着在冷却阶段之初就消除了所有晶核的材料熔体当冷却下来所发生的情况。在这样的条件下,对大多数情况在液相线温度以下的某一温度可以观察到结晶形成。
为了提到完全除去所有晶核的这样的材料,需要将熔融材料升至一高温度维持足够长的时间。最短的处理时间取决于进行这种处理所选用的温度。在实际条件下,这个时间必须要长到所有晶体在处理温度时能重新溶解那些在较低温度时已经迅速形成的晶体所需的时间。处理的温度愈高,处理所需的时间愈短。如果纤维化过程是在熔融以后立即进行,此熔融温度可能高得足以消除所有的晶核,因为所用的岩石材料是颜色相当深的,它具有一种与黑体基本相同的性质,而黑体为了熔化是需要过热的。另外,特别当纤维化过程用的是玻璃碎料,或者是熔融进行得非常迅速,例如用感应加热法时,就可能需要额外的处理。这种情况下,可以将材料加热到TSD温度(上析晶温度)至少30分钟处理之,该温度对应于30分钟内完全熔化掉先前生成的晶体。
在过冷状态的结晶温度并不是指得以生成的初始晶核为一种都可消除的那种程度的一个热平衡值。在较短的处理时间情况下,在过冷状态的结晶温度逐渐增加,使在该温度时材料的处理时间被延长。当用较长的处理时间,典型地是若长过2小时,过冷温度就稳定了,就与处理时间无关,这已为16小时和65小时的测量所证实。正如液相线温度的情况,在过冷状态的结晶温度也可随结晶出来的物质而不一样,“过冷温度”这一词是指按那一种物质最高的“稳定化”的过冷温度。
在过冷状态的结晶温度与液相线温度的值可能有非常大的差别,此液相线温度明显地低。对某些材料相差可达100℃。然而这一点首先对下述情况是特别有意义的,即在液相线温度和过冷状态的结晶温度之间进行操作时,熔融矿物材料在离心器中不会固化,即在长时期工业生产条件下离心器喷丝孔也不会发生阻塞。
对传统的玻璃质组合物,类似的观察本已有报导,这些组合物以含高含量二氧化硅和碱金属为特征,而且其结晶速度是可很好测量的。但对本发明的材料,出现这一现象是颇为意外的,因为已知这里所涉及的材料结晶极端迅速,因此实际上不可能测量其结晶速度。这在利用内离心法进行纤维化的过程中是更为严重的问题,因为此时必须考虑到,即使熔融矿物材料在离心器内的平均逗留时间是非常的短,但不排除在离心器的某些地方停留时间却是长的,在工业生产条件下尤其如此。
回到本发明更一般的要旨,将过冷状态的结晶温度作为温度下限的第一个后果就是可在低于液相线温度情况下进行操作。我们已指出,本发明范围内所用的熔融矿物材料的液相线温度通常在1200℃以上。然而,对传统地用于绝缘玻璃纤维工业的合金材料,在离心器持久操作时其温度极限范围在1000-1100℃,对通常称为ODS(“氧化物弥散增强”的缩写)的弥散增强合金金属或陶瓷材料,温度极限范围在1200℃-1400℃。因此液相线温度的值是接近于这些操作极限温度的,同时不难看出可以在较低温度条件下操作,特别是从离心器使用寿命的观点以及有可能为离心器不那么耐热但具有更佳机械性能的合金材料所带来的好处。
再者,上面已经指出,对一给定材料利用内离心法纤维化的可能性不完全是由于该离心器的特性所决定,而首先是由材料的流变特性所决定的。为了使材料纤维化,非常必需的是材料在离心器内不会结晶,同时它应有一个适于被拉细成纤维的粘度。一般知道在80000泊以上粘滞性对拉细纤维就成为一种实际上难以逾越的障碍,至少在工业生产条件下是如此。但对于在其液相线温度时粘度低于5000泊,甚至低于1000/2000泊的本发明范围所考虑的材料,实际上在80000泊已不能采用,因为这时材料从一个低得多的粘度突然转变到无限大的数值。在这种情况下,粘度的上限乃是材料的粘度μ仍然遵守所谓Vogel-Fulcher-Tammann方程式的最低温度所对应的温度,该方程式为lgμ=A+ (B)/(T-C)T是以℃表示的温度,A,B,和C是与涉及材料有关的常数,从这些材料的μ和T的三对测量值显然可以算出这三个常数。在大多数情况下,须考虑的这个上限实际是在3500泊或3000泊的范围内(即lgμ的值在3.47和3.54之间;因此下面将给出相应于lgμ=3.5的温度)。此外,粘度超过3000/3500泊就使材料通过纺絲器喷丝孔不好办了。
另外,在拉细成纤维的时刻,材料的流动性不可过大。在100泊(lgμ=2)以下,有时甚至实验上发现在200-300/350泊(lgμ=2.3至lgμ=2.5)以下,熔融矿物材料将形成微滴,最好以小玻璃球形式存在于产品内。本发明的实验中,对粘度在约100泊时观察到小珠的比例低于10%(重量),粘度超过300/350泊,小珠的比例低于5%(重量)。必须指出,对于本发明100泊这个下限是比较高的,它是表征着本发明的用外离心法,材料是在粘度低到几十泊情况下成形的,上面已提到,此时生成了大量的小珠。许多岩石类型的材料在它们的液相线温度时,粘度在极限值100/320(350)之下;要是人们如通常一样将液相线温度作为纤维化的最低温度,那么这些材料就无法成为纤维了。而本发明则可以在低得多的温度操作,因而在合适的粘度范围操作。
材料分开成液滴的上述问题和由此要求的100/300(350)泊的极限,不仅应用于材料通过离心器喷丝孔的瞬间,而且也用于发生在离心器外拉细成纤维的整个期间。还必须注意到离心器不应在一个非常热的氛围中,因为若如此,材料的粘度将会过多的降低。
本发明的内容之一是适合于利用内离心法进行纤维化的一些组合物。符合本发明标准的组合物应具有高于1200℃的液相线温度,且在该温度时粘度在5000泊或甚至3000泊和2000泊以下,其对应于粘度100泊的温度和过冷状态的结晶温度之差至少要为50℃。至少差50℃这个安全限度可以补偿离心器的平衡温度不可避免的变化。符合粘度约为320泊的温度和过冷状态的结晶化之间至少差50℃的那些组合物是特别适用的。而且,如上所要求的温度范围是处于较低值(例如低于1350℃,最好甚至低于1300℃)的组合物也是适用的,这是由于离心器材料耐高温的问题。符合上述要求的组合物是典型的所谓岩石组合物,它来自一种或可能来自几种天然矿物,并且不含或者至少实际上不含有添加物,特别是不含碱质添加物。
为了保持离心器温度在这些极限值之间,必须对离心器加热,即使熔融矿物材料已有很可观的热量,为此目的采用了各种结合使用的加热装置。在离心器外部,加热装置具体地就是一个环状的外燃烧器,最好还有内燃烧的作用并在离心器周边壁的上部产生一个高温度的环状气流。最好热气流的方向是使它不仅沿着离心器的周边壁,而且使得它能完全覆盖住连接区即“喇叭”的一部分,该喇叭是将周边与凸缘连接的,凸缘是用来将离心器固定在其支撑轴上(在无底离心器情况下),或者用来将离心器与上增强套环相连(在其底壁传动离心器的情况下)。为使热气流覆盖这些部件是为了也加热这些部件。
为此目的,也可以使用一些其火焰指向连接区即“喇叭”的增补燃烧器。另一个解决办法是在距离心器周边壁的上部较大距离处安装外燃烧器,以使气流在接近离心器和到达“喇叭”的有关部位以前已有一些扩张。但上述距离要保持较小,以维持冲击气流的精确性。按本发明的又一种变通方法,可以使用一个环状外燃烧器,它的通道内壁的直径比离心器外径要小。在这种情况下,例如可以准备这样一种燃烧器,它具有几个加长的倾斜排放唇,用来为喇叭形的热气流定界。并且在离心器外面,装有一个带环状磁体的感应加热器,通以高频最好是中高频的电流。如本身就知道的那样,这环状磁铁可以直接安装在离心器的下方,并与离心器同心。联合使用这两种加热装置主要可有助于离心器达到热平衡。
必须注意,这些加热装置装得距离心器越近,其效率就越高,外燃烧器主要加热离心器的上部,而环状磁铁则加热离心器的底部。因为已以发现只加热离心器周边壁的上部而不加热所有其它邻近的特别是被热气流所包围的金属部件是非常困难的。所述的这种双重加热系统就可以避免技术上的一些问题。
这些加热装置又一个主要的差别是它们对离心器附近气体温度的影响不同。感应加热器在这方面没有实际上的影响,除了辐射少量的热以外,不会使氛围的温度升高。而环状的外燃烧器还是对氖围有很大的加热作用,虽然由于离心器的旋转运动和环状气流的高速度所吸入的二次空气反过来抑制了热量由环状外燃烧器进入氛围中。为了获得最佳的纤维质量特别是在其机械强度方面,熔体从离心器喷出后立即暴露于过热的氛围中是不利的。因此,最好要限制从环状外燃烧器排出气体的温度。
从操作温度要高这一观点看,外加热装置可能不足以维持离心器的热平衡,在离心器内部附加加热装置可以弥补这一缺陷。获得这种热量补充最好是与离心器支撑轴同心地安装一个发散型内燃烧器,它的火焰指向周边器壁的内侧。最好是将燃烧/空气之比调节到使火焰的底部靠近内壁。在“喇叭”的内壁上装有一定数目的作为火焰阻留装置的突起物,这是更有益的。在连续生产中,这个发散型内燃烧器最好是供给热量输入的3和15%,至于这个热量它不是从熔融矿物材料本身得到的。这个热量输入所占的份额似乎不甚显著,但是在其所输入的部位方面是非常精确的,因而是非常有效的。
在纤维成形期间应用这个发散型内燃烧器,对二个现有技术领域中已知的中央内燃烧器起着有益的补充作用。可是在现有技术中,只是在操作的开始阶段才使用它,并且原则上是主要用来加热离心器的底壁-或用作底壁的分配装置(通常称为“杯子”),或者更通常是加热离心器的中心区域。在加入熔融矿物材料之前,中央内燃烧器予热此杯子或底壁。而根据本发明,这个中央燃烧器最好是选用一种发出会聚火焰的环状燃烧器,安装在离心器支撑轴和发散型中央内燃烧器之间。
在操作的起始阶段,很明白的是使用外加热装置,如果需要,甚至火焰喷枪或类似的装置都可用作辅助加热器。在关键性的起始阶段,此时熔融矿物材料的热量尚不存在,当然也使用发散型内燃烧器。
因为在某种情况下所处理的材料比通常用内离心法处理的玻璃的粘度低,就需要相应地选择各个喷丝孔的尺寸以调节每一离心器喷丝孔的生产能力。对粘度在1000泊左右的玻璃,为了保持每个喷丝孔每天约1kg的生产量,喷丝孔直径通常在0.7mm和1.2mm之间。对本发明的材料,最好是采用喷丝孔直径在0.15mm和0.7mm之间的离心器,特别好是在0.15mm和0.4mm之间。
按本发明进行处理所用的离心器最好用以耐热合金或陶瓷材料为基础的。可用的材料是整体的陶瓷材料,特别是RBSN类型的氮化硅(利用硅粉末在氮氯氛中藉反应性烧结得到的反应烧结氮化硅),可以是Si3N4或SIALON型,例如,下面以重量百分数表示的化学组成-Si49.4%(重量)-Al4.2%(重量)-Y7.25%(重量)-O4.0%(重量)-N35.0%(重量)-Fe<2000ppm-Ca+Mg<1000ppm其他的氮化硅也能应用。例如利用烧结可以得到部件。这种制造过程还可以得到形状较复杂的部件,并能制造喷丝孔。制造喷丝孔时,从一开始就利用棒作为模芯,而棒是在喷丝孔部件形成以后浸出去除之。喷丝孔的口径最终再用金刚钻工具加工。最好使用的无孔隙陶瓷材料,其实际密度应尽可能接近它们的理论最大密度,这样部件就不容易被腐蚀。这种材料在温度达1300℃左右都能应用。
本发明范围内另一类型的陶瓷材料也可应用,它是陶瓷基体和增强纤维的复合材料,与整体的陶瓷材料相比它具有好得多的韧性和硬度。特别适宜的是具有碳化硅基体,并用碳化硅纤维或碳纤维增强的SiC-SiC或SiC-C陶瓷材料。用此材料的部件是这样制造的先令一种气态的前体物质分解,然后分解产物沉积到由一叠碳化硅纤维层或碳纤维层嵌制的预制件中使之陶瓷化。在其周边壁上的喷丝孔最好是用激光束穿透法来形成。这样的陶瓷材料在非氧化性条件下,SiC-SiC可用于1200℃以上的温度,在许多情况中,要求材料在连续过程中用于1100-1200℃的温度范围就够了。此时,例如可以应用钴-基合金和碳化物(特别是碳化钨)增强的合金,或镍-基γ′增强合金。例如,下列合金能应用-Ni10%(重量)-Cr29%(重量)-W7.5%(重量)-C0.25%(重量)-Co余量或-Co19%(重量)-Cr22.5%(重量)-Al3.7%(重量)-W2%(重量)-Ti1.9%(重量)-C0.15%(重量)-Ta1.4%(重量)-Nb1%(重量)-Ni余量第三类可应用于本发明的合适材料是前已提到的ODS合金,这类ODS合金可分成两大类材料,一类是铁素体合金,它如其名称所示主要是以铁为基,通常含有铬和铝,另一类是以镍-铬为基的奥氏体合金。
选择合金时要牢记正在进行连续操作时离心器的温度,也要看它耐熔融矿物材料腐蚀的能力,以及它的机械强度特性。
一般而言,铁素体合金具有最好的高温抗蠕变性,但其抗温度急变性较差。离心器的温度急变主要是在起始阶段,因而即是对离心器的预热之时。当预热进行得恰当,温度急变引起材料破坏的危险可大大降低。另外,要指出的是,铁素体合金只能用于要纤维化的材料含铁(更精确地说是铁的氧化物)较高的情况,无论如何须超过3%(重量),否则,这些合金将被迅速腐蚀。
另一方面以镍-铬为基的奥氏体合金与含铁成分高的及含铁成分低的相比,其抗腐蚀性能极好。而且,其抗温度急变性也明显优于铁素体合金。但奥氏体合金使用的温度极限则明显低于铁素体ODS合金。然而如后面所示,发现其极限温度常常是很够用的。
形成ODS合金时分散在合金中的氧化物最好是氧化钇。这类材料中氧化物的含量往往是相当低的,通常低于合金重量的1%。
能用于一些离心器供形成纤维之用的铁素体ODS合金,特别是其中含铁是高的,其主要组成如下-Cr13至30%(重量)-Al2至7%(重量)-Ti小于1%(重量)-Y2O30.2至1%(重量)-Fe余量一种更适合的合金组成为
-Fe74.5%(重量)-Cr20%(重量)-Al4.5%(重量)-Ti0.5%(重量)-Y2O30.5%(重量)适合于应用在本发明过程的奥氏体合金例如其组成如下-Cr15至35%(重量)-C0至1%(重量)-Al0至2%(重量)-Ti0至3%(重量)-Fe小于2%(重量)-Y2O30.2至1%(重量)-Ni余量ODS合金的生产和由该合金形成为部件,可按现有工艺的技术进行。
根据本发明可用的原料特别是天然的玄武岩,但也可是类似的组合物,例如为了改变它的某些性质而在玄武岩中添加其它成分,或者是一些材料的组合使之可以具有玄武岩的主要特征,特别是其温度性能,尤其是其通常不低于1200℃的熔点。这些组合物也是矿物质的组合物,如高炉炉渣或那些生产被称为石绒时所用的组合物。所用的材料也包括那些可称之为“玻璃的”各种组合物。这后一类材料称为“硬玻璃”以表明因它们的熔化温度高所引起的困难。
本发明范围内使用的玄武岩和其它矿物,其基本特征是,它们与玻璃组合物不同,碱金属含量较低,就碱金属氧化物含量而言,通常低于10%(重量),多数情况下低于5%(重量)。正是碱金属含量低,因此只在相当高的温度才会熔化。而另一方面,碱土金属的含量特别是CaO+MgO,比在玻璃组合物则较高,这个事实说明了对本发明要使用的材料为什么具有高的液相线温度。碱土金属的含量通常不低于10%(重量),其总含量可以达到35%(重量)或者更高。在本发明的优选实施例中,碱土金属含量在8.5%和20%(重量)之间。
关于结构组份SiO2或Al2O3(在其中段加入五氧化二磷P2O5,它决定着玻璃的硬度),根据本发明,其含量最好低于75%。必需指出玄武岩一般比玻璃态组合物含铝较多而相应地含硅较少。但如前所述,“硬玻璃却也在本发明可使用的范围之内因为它们在其温度性能上具有相同的特征并因而在生产时也需要同样的条件。
玄武岩与玻璃组合物另一显著差异之处在于其氧化铁含量较高。对纯正的玄武岩氧化铁含量在3%(重量)以上,通常超过6%(重量)。
本发明的另一个目的是从下述材料生产矿物棉的毡,该材料具有高的液相线温度,即高于1200℃,同时在液相线温度具有低的粘度,例如低于5000泊,最常见的是低于3500泊,其中尺寸在100μm以上的小珠含量要少于10%(重量),最好是少于5%(重量)。
本发明的目的特别是具有上述特征的矿物棉毡,其组成中二氧化硅加氧化铝加五氧化二磷的总含量在67%(重量)和73%(重量)范围内,助熔剂CaO+MgO的含量在9%(重量)和18%(重量)范围内。
本发明更特别是针对具有马克隆尼气流式纤维细度F/5g小于6,最好是在2.5和4范围内的毡物。
本发明特别是针对对应于在下表中所示的组合物的毡物,这些组合物全部都可在从离心器(Spinner,纺丝器)中粘度的观点看来(在320/350泊到80000泊)最佳的条件下成形的纤维,而在操作时温度始终低于1300℃仍不致产生在离心器中材料结晶出来的问题。表中的组成以燃烧失重后以重量百分数表示。
“矿物棉毡”这一名词是意指所有的毡状矿物棉产品,而不管其压制,焙固等处理为何。
本发明进一步的详情,特征和优点将从下面的描述结合附图看得很清楚。


图1到图7是各种组合物的粘度/温度图;
图8a是一个纵视截面的简图表示现有技术中人们所知的玻璃棉生产的一种纤维设备;
图8b是和图8a相对应的本发明纤维化设备的一个实施例的图;
图9是说明与各种晶体物质出现有关的问题的曲线图(温度/晶体尺寸图)。
在本开发工作的第一阶段,确定了本发明可能应用的组合物。在本说明书来的表中给出了已试验过的组合物(各组分用燃烧失重后的重量百分数表示)。关于粘度给出了对应于泊表示的粘度的常用对数(lgμ)的温度。表中除了用0表示该组合物是一种常规的玻璃,它通常“内离心法”形成纤维以外,所有另外的材料都具有高的液相线温度和低的粘度。
图1到图7的粘度/温度曲线上的各点表示了在这些表中的相应数据,其中粘度以粘度(泊)的常用对数表示,对每种组合物的温度变化限于已由实验证实了该材料的粘度温度关系遵守Vogel-Fulcher-Tammann定律的温度范围。在这些图中适于本发明的使用范围以虚线表示。可使用的最高温度由离心器合金的耐热性决定。对应于ODS类合金或陶瓷类材料可接受的使用寿命,其温度上限是1400℃。
代表下限值的1200℃并不是一个严格的界限,而是基于这样的事实,即利用已知的通常的“内离心法”技术所能使用的最终下限温度,如果撇开此法另外的缺点不管,而此法中离心器的使用寿命非常短是可以接受的话。沾度在3000泊(lgμ=3.47)以上,本技术对组合物就不再能满意地应用了。因为该材料已不再能按需要的方式流过喷丝孔。这个粘度上限并不意味着实际上有重量意义的限制,因为所研究过的组合物在本发明所打算用的温度范围内其粘度低得多。
下限100泊是非常重要的。若低于该粘度,而且时常当粘度已小于200泊(lgμ=2.3)或甚至小于320/350泊(lgμ=2.5)时,实际上不可能成功地使从喷丝孔喷出的丝拉细成纤维。为了为这些低粘度制定一个合理的安全界限以防止阻碍用内离心法时纤维的形成,最好是采用那些能在粘度从300到350泊的范围工作的组合物。对于大多数组合物也给出了其液相线温度,TL1和TL2值对应于最先观察到的两种结晶物质的液相线温度的值。除了第2号组合物其结果是相反的以外,第一个温度对应于尖晶石的出现,第二个温度对应于硅酸盐相的出现。按下列方法测量这些液相线温度将一份5g粉碎的试样在铂-金坩埚中加热至测量温度,保持一段时间使到达平衡状态(实际条件下是16小时)。然后从炉中取出试样,淬冷到室温,然后在显微镜下观测;液相线温度相应于未观察到晶体的高温度范围与可以看到晶体的低温度范围之间的界限温度在本说明书末的一些表中,给出了作为时间和温度函数的晶体溶解曲线上的一个特定点,该点对应于30分钟的时间,即前述的温度TSD。这种曲线的一般形状如图9所示。非常高的温度对应于非常短的时间;换言之,当熔化后立即进行纤维化(对玄武岩材料来说,即一般加热到15000以上,时间长于30分钟),就不需要进行任何特别的额外处理来消除所有的晶核。
在另一个极端,曲线超向液相线温度,该温度对应于一个等于无穷大的溶解时间。用下列方法测量TSD值将颗粒状的材料升温到试样仍含很多晶体的温度,对这些试验,就是将材料升温到约1150℃,时间1小时。有了形成的晶体后,再将材料升温到测量温度。将那一个前面形成的晶体恰在30分钟内溶解掉的温度确定为TSD。因此这个值就是对这样一个温度的表示,为了使形成的晶体溶解必须加热到该温度,例如在离心器的某个较冷区域就是这个温度。在本发明范围中,TSD是首先重要的,其意义在于这个温度乃是为了在30分钟时间内消除试样中的晶核,必须将试样加热到的最低温度。
在图10中表示了代表过冷温度随时间变化的曲线的走向。最重要的是,该图中有一温度阀值,高于该值过冷温度可认为是稳定的,2小时的过冷温度就代表了该稳定的温度。藉过冷却结晶的“稳定”温度比Tsurf1和Tsurf2线高。其测定方法如下将5g材料在一个铂-金坩埚中加热到1500℃即比TTSD1高100-200℃的温度,维持30分钟。接着将炉温降至测量温度。由于炉子有热惯性即到达温度须有个响应时间,测量温度至快要在一刻钟后到达。在该温度维持2小时以后,将熔融材料淬冷,然后在显微镜下观察试样中晶体是否出现。对第10号组合物,测量出尖晶石相的过冷温度,它比液相线温度高,这在理论上是不可能的,这种反常的值与高含量的氧化硼有关,可能是由于予热到1500℃过程中,此试验组合物的变型引起的过冷温度和液态温度之间的差异,按本发明者最初的假设,可以参照图11予以解释,该图中表示了晶体生长速率曲线(实线)和成核作用曲线(虚线)。成核作用曲线与晶体生长曲线相比偏向于较低温度。因此,如图11中箭头所指的,从一个其时所有晶核都已被消除的高温度(比至少30分钟的析晶温度高的某个温度)开始,首先通过一个区域A,在这区域内,除了液相线温度(严格地对应于结晶速度为零)之外,晶体生长速度不是零,但由于不存在晶核,在这个区域里晶体不能出现。只要不与坩埚或离心材料发生反应,或者也不是环境受到如空气中所含颗粒的“污染”,晶体不出现因此就是个长时间稳定的现象。实验已证明,在2,10或65小时测出的过冷温度的值都是相同的。在过冷温度,核开始出现。然而,若温度不是很低于过冷温度,成核过程的速率可能是较低的,结果是推迟了晶体出现,并且是推迟了很多,因为此时的晶体生长速度仍是低的。这一点就容易解释了为什么有可能在温度很低于过冷状态的结晶温度时测量材料的粘度。此时逐步冷却测得粘度曲线。如果继续冷却,就会出现其它晶体物质与先出现的晶体之间的竞争,但这些其它物质将会在先已形成的晶体上生长,而生长速度有时极快。就因为这个道理,应该采用所有的加热装置,为的是使材料的温度特别是在操作的起始阶段决不容许低于温度TL2,即使偶然低于也不容许。除了适宜作为玻璃组合物的第26号组合物外,根据本发明在表中所用的所有组合物,其相应的材料都是高熔点的,其典型的液相线温度在1200℃和1400℃之间。
大多数所试验的组合物的液相线温度TL1是在纤维化温度即操作温度范围之外,或者至少在优选的纤维化温度范围之外。另一方面,所有这些组合物都有一个与纤维化的温度范围相容的过冷状态结晶温度,如果纤维化温度范围较宽地规定的话(粘度在100和3500泊之间)。然而第3号和第10号组合物则必须在粘度低于350泊时操作,如前所述,在这种条件下是很容易在产品中出现大量的小珠。
另一方面,必须指出,第8号组合物是特别硬的,其液相线温度高于1300℃,但它在相当高的粘度进行纤维化,其粘度3200泊是在1268℃的温度获得。这又给出了另一比过冷状态的结晶温度高50℃以上的温度界限。
根据本发明能在至少为50℃的温度范围中操作的优先组合物是1、2、4、5、8、13、14、15和16号。对这些优选组合物,二氧化硅加三氧化二铝加五氧化二磷的总含量为67%(重量)和73%(重量)之间,助熔剂CaO+MgO的量在8.5%(重量)和18%(重量)之间。
本发明的应用可用图8a和8b表示,它们分别是现有技术和本发明的装置的简图。
本发明的装置是从内离心法生产玻璃纤维传统使用的装置发展而来的,这个传统的装置的详尽说明是在专利说明书ER-B1-2443436和EP-B1-91381中。在图8a简示的这种传统装置,主要包含一个离心器1,它的周边壁2有许多个喷丝孔。周边壁2通过一连接区4,与凸缘3相连接,此连接区4因为它的形状而称为“喇叭”。如图所示,周边壁2,喇叭4和凸缘是制成一个整体部件的。凸缘3固定在一根支撑轴5上,该轴在这个实施例中是空心的,熔融矿物材料通过其空腔供料。
支撑轴5或其主凸缘3还支撑着一个同心的分配装置6,后者通常称为“杯子”或“篮子”。这个分配杯6的周边壁上有为数不很多的较大直径的孔,分配杯用作离心器的底,其作用是分配熔融矿物材料,即将其分为许多股的细小液流分布到周边壁2的内表面上。
离心器1被一些加热装置所围绕一个感应加热器的环形磁铁7专用于加热离心(纺丝)器1的底部,首先是为了补偿因与周围空气相接触造成的冷却,而周围空气是由于离心器1旋转吸进的大量空气以及一个水冷的环形外燃烧器8而被强烈冷却的。外燃烧器8的通道的壁9和10的端部距离心器1很近。仅有一个很小的距离h,例如在5mm左右,如图8a左上角简图所示。
环形外燃烧器8产生一种高温高速的气流,其方向基本上垂直向下,这样就沿着周边壁2的外表面流过。这个气流一方面作为热源或维持周边壁2的温度,另一方面用来将旋转抛出的熔融矿物的丝拉细成纤维。
如图所示,外燃烧器8最好用一个冷空气(如压缩空气)鼓风环11所围绕,其主要目的是限制热气流的径向膨胀,以防止生成的纤维与环形磁铁7相接触。
在离心器1的内部有一个环形内燃烧器12补充,这些外加热器,此环形内加热器位于支撑轴5的里面,仅在纤维成形装置操作的起始阶段用于对分配杯6进行予热。
如图8b所示,本发明的一个纤维化装置也是由与上相同的部件组成,其仅有的差别将在下面讨论。
最突出的差别是关于环形外燃烧器13的位置,它的通道壁14和15的端部是位于离心器周边器壁19的上方,距离为h′。这个距离明显地大于图8a中的距离h。这些配置的关系用在图8b的右上角的简图表示。例如,h′在15-30mm范围内,特别在20-25mm范围内最好,因为这样的距离仍然能使气体流动的准确性很好。再者,通道14的内壁直径明显小于周边壁19顶部直径。为了引导喷射时的气流,外燃烧器13的喷射孔由两个互相垂直的倾斜表面16和17所限制,而且这两个倾斜表面例如对外面是倾斜约45°。为了减轻来自外燃烧器13的热气体的径向膨胀问题,外倾斜表面17的长度只约为内倾斜表面16的长度的一半,并终止于一个基本垂直的壁18。倾斜表面16和壁18的终点在纺丝器上面一个高度,基本上是对应于传统外燃烧器8(参照图8a)的通道壁9和10的垂直距离h。
用于外燃烧器13的这种安装,不仅加热了纺丝器1′的周边壁19,也加热了喇叭20。然而,气流不应沿喇叭20上升,以致加热了离心器1′的支撑轴22。为了避免这个毛病,一个环形突起物21或另一种旋转的密封元件可安装在例如喇叭20的一半高度处,装在这一位置就决定了环形气体流加热喇叭的长度。可以在支撑轴22和离心器周边壁23之间的缝隙中充压,为此目的,在支撑轴22的顶端引入冷空气,这个空气引入更具体地说最好是垂直于旋转轴的方向,因为因此是要得到一个流体屏障而不是指向喇叭处的冷空气流。
试比较图8a和图8b,可见还有另一个明显差异,即图8b中装了另一个内燃烧器25,其位置是同心地围绕着中央环形内燃烧器26,通常是用来加热分配杯27的。这第二个内燃烧器25是一个喷出发散火焰的环形燃烧器,火焰指向离心器的周边壁19和喇叭20的内表面。火焰的分布最好用喇叭内部的突起物29来优化,这些突起物起着阻留火焰的作用。
在图8b的这个实施例中,分配环27有一个较厚的底壁28,为了避免被熔融矿物材料迅速腐蚀,它是例如由一块陶瓷板或耐热混凝土制成。此外,这个厚的底壁也有隔热作用,从而阻止了底壁因离心器旋转而引起的或吸入的气体或空气流而受到冷却。最后,可以提出的是,离心器的形式已最好地作了一些修正,为的是使熔融圹物材料在离心器内的逗留时间尽可能短,这种修正办法主要是降低离心器周边壁的总高度(就纵向上这些孔的总高度相同而言),以此方法使最下面一排的喷丝孔接近离心器的底部,以避免产生熔融材料的滞留区。
用第2号组合物进行了纤维化试验制成了矿物棉材料,所用设备的特征和操作条件上的变化总结在下面的一些表中。试验中,使用的离心器的直径为200mm,外燃烧器的通道壁之间的距离为6.5mm,熔融硪物材料流入一直径70mm的分配杯中,杯的周边壁上钻有150个喷丝孔。发散型内燃烧器IB的流量范围用每小时标准立方米表示。除了在予热期间外,收敛型内燃烧器不采用。高温点和低温点是对应于在周边壁上测出的两个极端温度。
必须指出,测量熔融矿物材料即“玻璃”的温度,是用放在距分配杯底约2m的炉的出口的一支热电偶进行测量的,该热电偶先经过正确标定。而为离心器和外燃烧器的气流所给出的温度值是采用隐丝式光学高温计来测量的,该高温计经相对于黑体标定过。由于多重的湍流,气流所测定的值不可能是十分精确的,但在不同试验中作为相对值进行比较确实还是恰当的。但必须记住,这些测量的值至少应在进料15分钟以后进行测量,而利用所有装上可用的加热装置(但对第一次试验不用发散型内燃烧器)对离心器和分配杯进行预热,以促进平衡。
这些试验中采用的离心器是用一种奥氏体类的镍-基型合金为材料,它含铬30%,熔点1380℃,在1150℃时撕裂阻力为130Mpa,1150或1250℃经1000小时后的蠕变阻力为70或55Mpa,1250℃延性为5%。
高于铁素体型的ODS合金,它是以铁为基,含铬20%,铝5.5%,熔点1480℃,在1150℃撕裂阻力为110Mpa,1150℃或1250℃经1000小时后的蠕变阻力为60或50Mpa,1250℃延性为3%。关于所生产纤维的质量,F/5g的值,是对应于马克隆尼气流式纤维。细度测量法(Micronaire)的,该法是表征纤维细度的一种标准方法,现为矿物棉生产厂家所普遍采用,其详情可参见德国工业化标准(DIN)53941“Bestimmung des Micronaire”(Micronaire reading)和标准ASTMD 1448“Mioronaire reading of Cotton fibers”。例如,对所谓轻质热绝缘玻璃棉产品(指轧制产品,其密度小于40kg/m3),主要的技术标准是其耐热性,它是用Micronaire值为3的矿物棉制造的,而轻重质的产品(要求有相当大的机械强度)则是用Micronaire值为4的矿物棉制造的。
主要采用结构如图8a的环形外燃烧器加热,以非常热的玻璃和离心器进行的第一个试验得以生产出小球含量低的高质量矿物棉,但此时离心器的使用寿命非常短。仅在30分钟以后由于大多数喷孔丝已被堵塞,纤维化过程就得停止。经分析还发现了离心器在多处已经熔化。因此温度条件一方面太高(玻璃熔体的温度很高),同时又太低(离心器只在1200℃)。
另一个值得注意之点是在开始阶段离心器的温度。在试验1的试验安排中,对离心器的预热只是利用外加热装置和会聚型内燃烧器来进行的。在这些条件下,进一步观测到最热的点是仅低于950℃的某一温度,而低温的一些点是在900℃以下,这样在进料开始就产生一个相当大的热冲击,并实际上很可能阻塞的危险。由于这个原因,在以后的试验中,在予热阶段和纤维化期间都使用了发散型内燃烧器。在这些条件下,就得以升高离心器周边壁的温度约200℃,从而使之加热到大约1150℃,因而一旦进料后,材料的温度总是高于尖晶石相的过冷状态结晶温度(1250℃)。在以后的试验中用了一个本发明的外燃烧器进行加热。如表中清楚可见,这种试验安排充分地升高了离心器孔壁的温度,同时降低了玻璃体温度。使用上述的两类合金都得到满意结果,对耐热性最差的奥氏体合金来说,这在某种程度有些出乎意料。
以这样的安排效果是很直接的,离心器的寿命,在试验2是13小时30分,试验3是26小时,此时玻璃体的温度较低,而加热装置的作用大得多。用离心器温度在1260-1270℃左右(对此组合物在1300℃至1216℃粘度为350至1000泊,因此这完全是在纤维化的范围内)时得到了最好的结果。这个温度显著低于其液相线温度(1290℃),但实际上高于过冷状态的上结晶温度。试验3和试验4进行时温度是有限的,在各点上测出的温度低于Tsurf1。这倾向于表明,在不利条件下仍可能进行纤维化操作长达20小时以上的时间,但仍远在硅酸盐的过冷状态结晶温度之上。要始终注意,因温度测量的精确度差,在结果解释上要慎重。
当离心器的喷丝孔的直径减小,离心器的寿命就会增长。因此,试验4和试验5比较,离心器的寿命增大至两倍多从23小时到大于50小时(材料的纤维化过程则有意终止)。根据本发明,优选采用的直径小于0.4mm但保持大于0.10mm。
还可以注意到,通过平衡各种热源即加热装置可得到最佳结果,特别是内燃烧器采用较高流量的气体(但无论如何不超过外燃烧器流量的十分之一)以及对环形磁铁供应同样较大的能量。
与本专利在同一天由同一公司申请者或代理人平行申请的另一个专利是“矿物棉生产的方法和设备以及由此生产的矿物棉”,其全部内容可参阅之包括到本专利中。结合该专利的内容,本专利原理的应用将是特别有裨益的。
权利要求
1.一种产生矿物棉的方法,其特征在于由一种在高的液相线温度时(特别是高于1200℃)具有高流动性,其时粘度小于5000泊的材料制造矿物棉,所述方法是将焙融矿物材料在所有晶核消除之后输入一离心器,离心器的周边壁上有许多小直径的喷丝孔,由所述的熔融矿物材料通过这些孔离心流出形成细丝,这些细丝在一给定情况下经受沿离心器周边壁流动的热气流的进一步拉细作用,热气流是由一个同心的环形外燃烧器产生的,在操作中离心器的温度维持在一平衡温度,该温度低于或等于熔融矿物材料的粘度是100泊的温度,而高于要被纤维化的材料在过冷状态的结晶温度。
2.如权利要求1所述的方法,其特征在于材料加入离心器以前,将它加热到高于或等于材料的上析晶温度(TSD),为时至少30分钟,以消除在此以前可能已经生成的晶核。
3.如权利要求1或2所述的方法,其特征在于所述有待纤维化的材料在过冷状态的结晶温度选为等于过冷状态的“稳定的”结晶温度。
4.如权利要求1至3任何一项所述的方法,其特征在于输入到离心器的能量部分地是从纤维化期间工作的内加热装置得到的。
5.如权利要求4所述的方法,其特征在于所述的内加热装置主要由一个发散型环状内燃烧器构成。
6.如权利要求5所述的方法,其特征在于所述的发散型内燃烧器生成的火焰紧靠离心器周边壁的内侧。
7.如权利要求5或6所述的方法,其特征在于所述的发散型内燃烧器的火焰能保持紧靠离心器周边壁的内表面上,是由于在离心器的喇叭形套筒的内表面上装了火焰阻留装置。
8.如上述各权利要求中的任何一个方法,其特征在于环形外燃烧器是在与离心器周边壁上端距离为15mm到20mm范围内安装的。
9.如权利要求1到8中任何一项所述的方法,其特征在于所述的环形外燃烧器具有一个内排放通道壁并最好还具有一个排放通道壁供发出热气体之用,其直径小于离心器周边壁上部的直径。
10.如权利要求1到9中任何一项所述的方法,其特征在于所述的环形非燃烧器的排放通道壁沿长为倾斜的排放唇,供喇叭形的热气流界定其形状之用。
11.如权利要求8到10中任何一项所述的方法,其特征在于利用一个起密封作用的突起物或旋转的密封垫圈阻止热气体沿离心器的支撑轴返流。
12.如权利要求1到11中任何一项所述的方法,其特征在于利用一个环形感应加热器可进一步对离心器进行加热。
13.如权利要求1到12中任何一项所述的方法,其特征在于将所述的焙融矿物材料喂入一个分配装置即分配杯中,它的底由一块耐热绝缘材料板保护,特别好的是陶瓷材料或耐热混凝土。
14.如权利要求1到13中任何一项所述的方法,其特征在于离心器的形状可以避免产生焙融矿物材料会停滞的区域。
15.如权利要求1到14中任何一项所述的方法,其特征在于所述的离心器由一种用碳化物特别是碳化钨增强的钴-基含金构成。
16.如权利要求1到14中任何一项所述的方法,其特征在于离心器由一种镍基γ增强合金构成。
17.如权利要求1到14中任何一项所述的方法,其特征在于所述的离心器是由一种陶瓷材料构成。
18.如权利要求17所述的方法,其特征在于所述的离心器是由一种氮化硅型的陶瓷材料构成。
19.如权利要求17所述的方法,其特征在于所述的离心器由一种SiC-SiC型或SiC-C型的陶瓷材料构成。
20.如权利要求1到14中任何一项所述的方法,其特征在于所述的离心器由一种氧化物弥散增强(ODS)合金构成。
21.如权利要求20所述的方法,其特征在于所述的离心器由一种铁素体ODS合金构成,主要组分如下-Cr 13至30%(重量)-Al 2至7%(重量)-Ti 小于1%(重量)-Y2O30.2至1%(重量)-Fe 余量
22.如权利要求20所述的方法,其特征在于所述的离心器由一种奥氏体OSD合金构成,其主要组分如下-Cr 15至35%(重量)-C 0至1%(重量)-Al 0至2%(重量)-Ti 0至3%(重量)-Fe 小于2%(重量)-Y2O30.2至1%(重量)-Ni 余量
23.一种矿物棉毡,其特征在于其制造所用的材料,液相线温度高于1200℃,在其液液相线温度时的粘度低于5,000泊,大小超过100μm小珠的含量低于10%(重量),其组成是使得其对应于100泊沾度时的温度和过冷状态的上结晶温度之间的差要大于50℃。
24.一种矿物棉毡,其特征在于其制造所用的材料的液相线温度高于1200℃,其液相线时的沾度低于5000泊,大小过100μm的小珠的含量低于5%(重量),其组成是使得其对应于350泊粘度时的温度和过冷状态的上结晶温度之间的差要大于50℃。
25.一种如权利要求23或24所述的矿物棉毡,其特征在于其过冷状态的结晶温度低于1300℃,最好是甚至低于1250℃,因而可以在低于1350℃最好是甚至低于1300℃时进行纤维化。
26.一种矿物棉毡,其特征在于其制造所用的材料,液相线温度高于1200℃,其在液相线温度时的粘度低于5000泊,大小超过100μm的小珠的含量低于10%(重量),最好低于5%(重量),二氧化硅加氧化铝加五氧化二磷的总含量在67和73%之间,助熔剂CaO+MgO的含量在8.5%和20%之间。
27.一种矿物棉毡,其特征在于其中大小超过100μm的小珠的含量低于10%(重量),最好低于5%(重量),其组成对应于下列说明中的一种(以重量百分数表示)
28.如权利要求23到27中任何一项所述的矿物棉毡,其特征在于其马克隆尼气流式纤维细度F/5g的值小于6,最好小于2.5到4。
全文摘要
一种生产矿物棉的方法,使用了在它的较高的液相线温度具有高的流动性、且其在液相线温度的粘度低于5000泊的熔融材料。上述材料在消除所有的结晶核以后输入离心器(1′),并通过离心器的周边壁的小口径喷丝孔离心流出形成细丝,这些细丝在一给定情况下经受沿离心器周边壁流动的拉细作用而形成纤维。热气流由一个同心的环形外燃烧器(13)生成。在连续操作中离心器的温度维持在一个平衡值,以避免产物中未纤维化颗粒比例过高。
文档编号C03B37/00GK1087611SQ9311653
公开日1994年6月8日 申请日期1993年8月20日 优先权日1992年8月20日
发明者贝尔纳·让吕克, 维涅苏尔特·塞尔日, 巴蒂格里·让, 贝尔捷·居伊, 富尔塔克·汉斯 申请人:伊索圣-戈班
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1