炉、尤其是玻璃炉以及这种炉的用途及使用方法

文档序号:1830241阅读:983来源:国知局
专利名称:炉、尤其是玻璃炉以及这种炉的用途及使用方法
技术领域
本发明涉及熔化高熔点热塑性材料例如玻璃的技术。更具体地讲,本发明涉及用于熔化这样的材料的炉子以及其应用。
这样的一个熔化例如玻璃材料的炉子必须这样来设计,使其侧壁将熔化液与外部适当地绝缘,以保证好的热效率,而同时防止熔化的玻璃移往外面。
在这方面,炉子侧壁的一种典型构造是,在外部侧有足够厚度的绝缘材料,而在内部侧有抗玻璃腐蚀的耐火材料制造的表面。
这些耐火材料是以平板或板块的形式安置在炉子中的,这些平板或板块并排地放置着,在它们之间应该进行密封的连接,以避免玻璃透过。
在炉子的底部,通过一个非成型层,在绝缘材料板块上放置了导热率高的耐火材料平板,它提供了一个完全水平的基部。这通常是一种基于水凝粘合剂的水泥,它不加热地沉积在绝缘材料板块上。
原则上讲,炉子运作时的温度分布是这样的,即耐火材料下面的温度接近于玻璃的结晶温度,或者至少是玻璃的粘性变得很高的温度,使得如果玻璃穿透耐火材料,玻璃就在绝缘材料的上层凝结或者结晶(除去玻璃光泽),因此玻璃的移动就停止。
特别是由于热膨胀应力的作用而使耐火材料板块裂开时,或者当两个板块之间的接口密封不充分时,就可能发生这样的玻璃渗透。当以固态进入炉子的玻璃包含有金属废料时,也可能发生这样的玻璃渗透。这是因为在耐火材料和玻璃之间的交接面上有一滴熔化金属时,会使耐火材料的腐蚀加速,因而可能形成裂缝,通过这些裂缝玻璃迅速地向绝缘材料渗入。
尽管有所有这些可能采取的预防措施,有时仍然会发生事故,这种事故使炉子的密封发生问题,这时玻璃似乎能够到达绝缘板块,其温度高得足以不会凝固,因而损害绝缘材料。特别是,玻璃中夹带的金属渗入绝缘材料板块会产生严重的损害,这是因为金属侵蚀绝缘材料并产生空穴,而玻璃由此被掏空/或充填这些空穴。
由于玻璃穿透炉子侧壁容易影响炉子的生产能力以及其运作的安全性,因此防止玻璃穿透构成炉子内部侧壁的表面是重要的。
本发明的目的是减少这些危险,特别是当金属废料进入玻璃熔化液时,提供具有对玻璃的渗透性得到改进的炉子侧壁。
这个目的以及稍后将给出的其他目的,按照本发明是在其构造期间,通过赋予炉子内部表面的至少一部分以内衬而达到的,这个内衬包含有耐火材料的砂砾。
关于“耐火材料的砂砾”,在本申请中通常应该理解是指微粒状或颗粒状的耐火材料,尤其是可以通过研磨或粉碎而获得的材料。
在这方面,本发明的主题是一个用于熔化高熔点材料例如玻璃的炉子,这个炉子包含有一个底部和侧壁,它们限定了熔融材料的熔化液的范围,其特征在于至少是与此熔融材料接触的底部表面的一部分,也可以是侧壁的一部分,最初是由至少一包含耐火材料的砂砾层组成。
关于“最初”,应该理解为是指这个表面或这表面的一部分,炉子刚开始运作(在加热之前或刚刚加热之后)后,就有指定的构造。在这方面,本发明的主题是一种用于制造炉子的方法,下面将给以说明。
似乎令人惊讶的是,由微粒材料例如耐火的砂砾制造的侧壁表面,与由预先形成的构件例如平板的并置而构成的表面相比较,表现出改进了的对玻璃的不渗透性。
下面主要谈及的是玻璃的熔化液,把它看作炉子中熔化的矿物材料;除非另外指出,这种表述一般是指任何天然的或人造的可熔的矿物材料,尤其是玻璃以及岩石。
与侧壁内部表面的传统制造方法相关联的一个问题是由于热膨胀应力而造成的开裂,而传统的制造方法是在不同性质的基层上面重叠放置平板。这是因为,由于这些层的热膨胀系数不同,就发生了带摩擦的这些层相互不同的运动,这种运动引起这些平板的拉伸,使这些平板裂开甚至破碎。与此相反,按照本发明使用微粒材料就能形成连续的表面层,没有任何接缝,它对炉子热膨胀应力有出色的抵抗力。因此减少了开裂的危险,对玻璃的不渗透性得到改善。
一般说来,耐火材料可以是任何类型的耐玻璃腐蚀的材料(耐腐蚀程度可能较高),尤其是基于氧化铬或基于氧化锆,氧化硅以及/或者氧化铝类型(AZS类型)的材料。按照本发明,所用的砂砾可以由再生的耐火材料得到。
这种砂砾的颗粒尺寸可以不同,小于50mm,例如大约1mm到50mm是有利的。然而颗粒尺寸大于50mm也是有用的。为了更明确,这里的“细”是指砂砾的颗粒尺寸大约小于5mm,“中等”是指砂砾的颗粒尺寸大约为5到30mm,“粗”是指砂砾的颗粒尺寸大约30到50mm,而“非常粗”是指砂砾的颗粒尺寸大于50mm。这些颗粒尺寸应该理解为用于筛选颗粒材料的筛子的最小网孔的尺寸。
在一个特殊形式的实施例中,与玻璃相接触的表面基本上是由砂砾组成的。此砂砾的的颗粒尺寸可以根据熔化液中玻璃的性质而选择是有好处的,特别是根据侧壁温度时其粘度以及其表面张力来选择,以便使砂砾不被熔化液中玻璃润温,或者只是稍微变湿,因此阻止玻璃进入砂砾颗粒之间的空隙。一般说来,在这个实施例中,由于如此形成的层更加致密,所以包含小颗粒子尺寸的砂砾更有利。砂砾包含有不同尺寸颗粒的混合物是有好处的,这适合于得到最大的或者优化的层的致密度或者填充度,以便形成不能渗透的层。
在另一某些方面可能是优选的另一实施例中,表面与玻璃接触的这一层,或至少这些层的一层,除了包含有砂砾之外,还有与此玻璃熔融液兼容的矿物粘合剂,它可以是化学凝固或陶瓷凝固类型的,尤其是由一种或多种熔化氧化物或琉态材料构成的矿物粘合剂。在这一实施例中,这些砂砾颗粒之间的空隙至少部分地充填了该粘合剂,以便形成一种复合材料。此粘合剂开始最好与这些层的至少一层中颗粒形式的砂砾相混合。
基于耐火砂砾和此粘合剂的复合材料是一种相当有粘合力的材料,它不让或几乎不让熔融材料例如玻璃在这些砂砾颗粒之间通过。它也是一种玻璃腐蚀速率低的材料,因此它的寿命得到改善。
由于这些颗粒是被粘合剂固定住的,因此砂砾颗粒尺寸在这个实施例中不是关键的。然而,使用较细砂砾依然是有利的,这是因为这可能产生一种致密的层,并且在颗粒和粘合剂之间有高的接触面积,对熔化液中的玻璃以及可能存在的其他废料来说,此复合层成为不渗透的阻挡层。
在一个特别的实施例中,此底部的表面(或至少它的一部分),也可以是该侧壁的表面只包含有单一的含耐火砂砾的层。这一层的颗粒尺寸最好小于50mm,尤其是小于30mm,特别是小于20mm。砂砾包含有不同尺寸的颗粒的混合物是有好处的,这适合于得到最大的或优化的层致密度或填充度,以便形成不能渗透的层。
然而在某些应用中,砂砾最好不要太细,以便防止由于在底部表面以及侧壁表面处有力的搅动而引起的砂砾进入玻璃熔化液的任何危险,这种危险对熔化玻璃的质量是有害的。
在一个特别优选的实施例中,把称为“接触层”的第一层安放得与熔化液接触,第一层包含有第一砂砾,而在接触层下面至少有一个称为“下层”的另外一个层,这层包含有另外的砂砾,接触层砂砾的颗粒尺寸大于此砂砾和这个下层或每个下层的砂砾混合物的颗粒尺寸。
接触层的砂砾不会因熔化液的搅拌而被带动是有好处的,它保护低层不受搅动的影响。
在这种情况下,与熔化液接触的该层最好包含颗粒尺寸大于10mm的砂砾,特别是大约10到50mm,特别是大约20到50mm,该下层或各个下层最好包含颗粒尺寸小于20mm或10mm的砂砾,视具体情况而定,尤其是大约1到10mm,非常有好处的是小于5mm,如果有必要,是一种各种颗粒尺寸的混合物。
按照一个特别的实施例,该下层或至少一个下层包含有如上所述的矿物粘合剂,而此接触层基本上由较粗砂砾组成。
当表面的内衬层包含有保证砂砾颗粒之间结合的粘合剂时,此粘合剂可以由不同的矿物材料构成,尤其由氧化物或琉态材料,例如玻璃,也可以是失透的玻璃或岩石,例如玄武岩构成。此玻璃与熔化液中的玻璃可以相同也可以不相同。特别是它可以至少一部分是再生玻璃(碎玻璃)或是一种在红外线范围吸收放射线的致密玻璃是有好处的。
根据在侧壁温度下的粘度以及根据表面张力来选择粘合剂是尤其有好处的,这样能够至少部分地封闭(淤塞)砂砾颗粒之间的间隙。
在一有利的实施例中,粘合剂可以选择得其密度(尤其是在底部温度时)大于炉子中玻璃的密度。这样就实现了粘合剂玻璃和炉子中产生的熔化玻璃之间有效的物理分离。
粘合剂选择得其粘性大于炉子中玻璃的粘性也是有好处的。这样粘合剂玻璃在底部温度的粘性对正常地保持砂砾颗粒是足够高的,这种粘性的差别防止粘合剂与炉子中产生的熔化玻璃相混合。
使用去透玻璃作为粘合剂是特别有好处的。
粘合剂可以选择得使其热导率小于该炉子中产生的熔化玻璃的热导率也是有好处的。因此,在保证砂砾层下面的温度相当低的情况下,就可能降低玻璃对炉子构成材料的腐蚀率。
尤其是根据使用的耐火砂砾材料性质的不同,对于砂砾而言此矿物粘合剂有或大或小的化学不活泼性。
这是因为粘合剂(玻璃或其他粘合剂材料)可能与耐火砂砾材料起反应,随着氧化物元素从耐火材料进入粘合剂相而腐蚀此材料。粘合剂中含有的耐火氧化物元素通常有改变玻璃失透特性的作用以及/或者改变间隙的矿物粘合剂的粘性的作用。
似乎如此形成的层的粘合力至少部分地与粘合剂化学成分的逐渐改变有关,这种改变导致在底部或侧壁温度下粘合剂的粘性以及/或者玻璃失透性的增加,防止熔化液的玻璃进入耐火材料的颗粒之间。
与耐火材料交换的面积越大,也即砂砾的颗粒尺寸越细,空隙玻璃(或其他材料)的富集也就越明显。
对与熔化液中的玻璃直接接触的所谓“接触层”而言,耐火的砂砾材料最好是耐玻璃腐蚀的或对其不敏感的。此耐火材料最好是既耐粘合剂玻璃的作用,又耐熔化液中玻璃的作用。如此形成的接触层则在炉子的自始至终的运作中不变化或几乎不变化,因此特别保证了所制造玻璃的质量高,而且此质量在整个时间中是不变的。
用于接触层的耐火砂砾包含有氧化铬是有好处的,按重量计算最好是至少10%,尤其是至少30%,例如至少按重量计算60%。
此外,对所谓的“下层”来说,耐火材料最好是至少可部分地被空隙的粘合剂腐蚀,最特别的是一种包含氧化铝的材料。因而就可能把两种作用结合起来首先,含耐火氧化物多的玻璃(或其他粘合剂)对下部结构层是较少腐蚀的;其次,含耐火氧化物的玻璃(或其他粘合剂)是更有粘性的并且不易受到对流运动的影响。
用于这层的砂砾可以在AZS型材料中选择是有好处的,尤其是那些再利用材料,也可以是里面加入了有限数量的氧化铬。
尤其是根据其氧化物成分以及其粘性,可以同时调整各层粘合剂玻璃的选择,以便合适地与每一层的砂砾交互作用。
根据炉子中待熔融材料的性质来对颗粒尺寸和粘合剂玻璃类型的选择做出调整。
可以用不同的方式来制作复合层尤其是在此表面上铺上耐火砂砾和矿物材料的混合物,然后在炉子开始工作时加热此混合物,以便形成复合物,或是首先放置一层砂砾,接着放上一层矿物材料,使此矿物材料熔化以便渗入砂砾。
在这一方面,本发明还有一个目的是一种制造炉子的方法,例如制造一种玻璃用的炉子的方法,在这种炉子中,设置有底部和侧壁,用于限定融化材料熔化液的范围,其特征在于,它包含有以下步骤一在底部表面的至少一部分上,也可以是在侧壁表面的一部分上,铺上具有耐火材料砂砾的层,用于与熔化液相接触,然后一升高炉子的温度,引入高熔点的材料,例如玻璃,以形成熔融材料的熔化液。
在第一阶段,可以铺上矿物粘合剂,作为与至少一层的砂砾的混合物,或者作为砂砾层顶部上的一层。在这个第一阶段,最好在包含粘合剂的层上,铺上主要是由具有颗粒尺寸大于这个下层的砂砾组成的另一层。
第二阶段能让粘合剂熔化或是热激活,以便形成至少一个复合层。
底部和/或侧壁的结构可以根据需要来采用;特别是包含有砂砾的这一层或这些层,可以铺在由耐火材料或绝缘材料制作的平板或板块的成形的或不成形的基层上。关于“成形的”,应该理解为是由成形的物件制作的层,它们装在炉子中,与沉积在或散布在炉子中的由均匀材料制成的层不同。特别是,可以在下面可能的实施例中挑选。
-可以把包含耐火砂砾的这一层或这些层铺在耐火材料的平板或板块上,这些平板或板块通常用来实现与熔化液接触的表面;-可以把包含耐火砂砾的这一层或这些层铺在水平水泥层上或直接铺在绝缘板块上,来取代平板或板块形的常规材料。
也可以把包含砂砾的这一层或这些层铺在炉子内壁上的一些完全确定的区域,这些区域的选择尤其取决于相关区域的熔化液内的或上面的温度,或者取决于有关区域中熔化液中材料的性质。
当希望在炉子的竖直壁上铺上基于耐火砂砾层时,可以使用使颗粒材料在竖直壁上固定到位的适当方法,或者是,可以沉积上颗粒材料,以便使得它自由地形成斜坡,只要材料的坡面角小的足以让表面层不是太倾斜。
当炉子的熔化液深度浅时(尤其是小于800mm,特别是小于500mm),由于在坡面角适当的情况下,倾斜的侧壁不占据非常大的熔化液容积,因而第二实施例可以证明是特别有好处的。
一般说来,基于耐火砂砾的复合材料可以用于所有类型的炉子,以便有利地形成底部的整个表面,也可以形成炉子侧壁的整个表面。然而其使用情况可依炉子的类型而不同。
因此在此底部上,包含砂砾的层可以用在电炉底部,尤其是具有埋入式电极型电炉底部的整个表面上,而在燃烧炉中这种层只能使用于入炉区域,在燃烧炉的下游可以使用传统的平板与熔融材料接触。
一般说来,此底部至少在炉子的一个区域中具有一种包含耐火砂砾层是有利的,待熔化的材料就送入这个区域。因此,当该材料包含有会在炉子供料区域的熔化液底部上沉积的可熔残渣,特别是金属废料时,按照本发明的表面内衬就完全地适合于容纳这些残渣,尤其是可以阻止这些残渣前进到侧壁的下部结构层次,例如绝缘板块。
特别是,当待熔融材料含有金属废料时,按照本发明的侧壁表面内衬具有明显的优点,在这个意义上来讲,在温度接近其熔点的情况下,此内衬比常规的耐火接触材料更耐熔融材料的腐蚀。
这是因为在玻璃用炉子中的底部表面是由通常的耐火材料的平板组成的,在这个炉子的底部表面上存在液体金属,在熔化玻璃/液体金属/耐火材料的三相点上,会引发非常严重的对耐火材料的腐蚀。
因此很快会观察到因为金属的浸入而造成的侧壁组成部件的变坏。
当实现了按照本发明的侧壁表面时,这个缺点就不会发生,或是大大降低了。
在这一方面,本发明的目的还有上面所描述的炉子的用途,用来熔化含有金属废料的再生玻璃。
再生玻璃可有不同的来源,尤其是来自镜子,来自汽车加热窗户,特别是后窗,或是来自特别是用于汽车车窗的上锡的或上釉的玻璃,或来自其他再利用的包装。在这种回收的玻璃中作为金属废料存在的金属尤其可以是银,铅,铜,锡或其他金属。
出乎意料的是观察到,由熔化再生玻璃而产生的液态金属可能穿透或是不能穿透表面层或是这些表面层,取决于所使用砂砾的颗粒尺寸(对一定的矿物粘合剂来说)。砂砾颗粒的极限尺寸取决于金属的性质,特别是取决于在其底部温度下熔化态的粘度,还取决于间隙矿物粘合剂以及在熔化液中的熔化玻璃。
因此,炉子侧壁的表面适宜于通过熔化来回收与玻璃分离的金属,此表面对该金属是可渗透的。
在这一方面,本发明的目的也是一种分离存在于再生玻璃中金属的方法,这个方法包括一个在上述的炉子中熔化再生玻璃的步骤,在这个步骤中,包含在底部表面层中的砂砾与玻璃相接触,此砂砾的颗粒尺寸适于使该层可渗透该金属。
在第一实施例中,在该层的下面紧接着提供了一个回收流过该层的液态金属的空间。也可以把一个带孔的部件例如一个珊格可以放在这个空间的顶部,用作接触层的支撑物。
在另一个实施例中,在该接触层下面紧接着可以放置一个称为“下层”的第二层,这个下层包含的砂砾其颗粒尺寸适于不让该下层渗透液态金属。
因此,最后金属被捕获在两个基于砂砾的层之间,并在炉子运行期间逐渐堆积起来。经过一个或几个运行炉期之后,所要做的就是取出底部的表面内衬,从此内衬上可以容易地提取回收金属。
这个方法利用同一设备可以再利用再生玻璃,同时单独回收金属。
在下面对附图所作的详细说明中会看到本发明的进一步的特点和优点,其中

图1表示本发明炉子的部分纵切剖面的示意图;图2表示图1中炉子底部放大了的细节;图3表示按照本发明的另一种炉子的纵切剖面的示意图。
在图1和图3中只给出了理解本发明所必需的部件,而没有考虑此设备的比例。
在图2中,只是考虑到相应部件的尺寸的数量级。
图1中所示的炉子1主要由底部2、侧壁3和炉顶4组成,它们限定了熔融材料例如玻璃的熔化液5的范围。它还包括供给待熔化材料7的机构6,例如一个传送机,和一个熔融材料流动的通道8,使材料7熔化的机构没有画出来。待熔化材料可以由再生玻璃(碎玻璃)和/或粉状的氧化物成分组成。
炉底2从外向内主要包含有成一行或多行放置的(只画出一行)由绝缘板块9制成的底壁;一层可选的耐火水泥10,在这层水泥上也可以安置耐火材料平板11;接下来是基于耐火材料的连续的第一层12和第二层13。
由放大的图2可以看出层12和13的细节。第一层12,也即下层,是由耐火材料的砂砾14组成,特别是由具有AZS型或是氧化铬型的砂砾组成,它的颗粒尺寸较小,尤其是小于20mm,有利的是小于10mm,特别是大于5mm,它们埋在粘合剂15中,或是由粘合剂包围着。此粘合剂由氧化物或由象玻璃这样的琉态材料组成。
第二层13,或说是接触层,是由另一种耐火材料砂砾16组成。它的成分和砂砾14的成分可以相同也可以不同,特别是其颗粒尺寸至少为10mm,有利的是至少20mm,但是它的颗粒尺寸比第一层砂砾14大,砂砾16的颗粒由矿物粘合剂17包围着,此粘合剂与接触层12的成分相同,也可以不同。
平板11的表面上的这两层可以由不同的方法制造。
在第一种制造方法中,较小的砂砾14的下层设置在平板11上。然后把较粗砂砾16的上层放在该下层上。接下来,在整个厚度上覆盖上可熔的琉态材料碎渣,特别是碎玻璃,然后让炉子开始工作这种碎渣的熔化使得其能浸透此砂砾层,并能逐渐包住砂砾颗粒14和16,以便最后生成层12和13,在这两层中熔化的碎玻璃起粘合剂的作用,并保证这个组件的粘结。
当熔融的碎玻璃逐渐在砂砾的颗粒之间流动时,它与砂砾颗粒的表面相互作用,粘上了耐火的氧化物元素,例如,在AZS砂砾的情况下是粘上了Al,Zr,Si,在铬砂砾的情况下粘上了Cr。带有耐火氧化物元素的玻璃就变得更加粘稠,也可能在自由填隙空间中以玻璃失透作为结束,失透的粘稠材料防止玻璃从熔化液流向下层。
在一种变型的实施例中,在两层砂砾之间可以安置隔离部件例如一个由耐火金属制作的栅格或筛子,也可以在第二层上安放类似的部件,以便保持这些层的相应高度。
使用保持栅格的同样技术可以用来在侧壁3上铺上类似的一层或几层。
在另一种制造方法中,放置的砂砾颗粒14和16分别与粘合剂15和17密切混合,成为层12和13。当升高炉子1的温度使炉子开始工作时,熔化的粘合剂就给砂砾颗粒涂层并保证此组件的粘结。在上面制造方法中描述的化学交换现象当然可能与这些同样的作用一起发生。
在图2中另外还说明了这两层12和13对以熔化状态存在于熔化液5中的金属18在性能方面的不同,尤其是在待熔化材料7中含有金属废料的再生玻璃的情况下。
砂砾16的颗粒尺寸和粘合剂玻璃17的性质应是使层13可以渗透金属18。
相反,砂砾14的颗粒尺寸和粘合剂玻璃15的性质应是使层12不可以渗透金属18。
因此在运行中,熔化液5中以熔化状态存在的金属18因重力而流到炉底2上,穿过层13,在砂砾颗粒16之间开辟了通道,最终夹在层13和12之间,在这里它以滴状累积起来,尺寸逐渐增加。
层13的厚度以下面方式确定是有利的,即对一定时间的炉期来讲,它能在砂砾之间的间隙空间中提供足够储存金属的能力。
图3表示了本发明的另一实施例。如果图3中的炉子20包含的元件与炉子1的部件完全相同或者相当时,这些部件用相同的数字标号表示。
与第一实施例的重要差别是与炉子底部的结构和侧壁的结构有关。
此底部由包含有耐火砂砾的三层组成下层21(类似于炉子1中的下层12)包括粘合剂和较细的砂砾,例如,其颗粒尺寸大约为0到5mm,具有较易被玻璃基粘合剂腐蚀的类型,例如,AZS类型,也可以包括有限数量的氧化铬。
该层是不能渗透玻璃的,尤其是因为细砂砾压得非常致密,并且由于高交换面积的原因,间隙玻璃充满了耐火氧化物;此外,该层耐腐蚀。特别是,该层起着耐火水泥的作用,因此是耐火水泥层10的可选角色;中间层22包含有粘合剂以及比层21的砂砾粗的砂砾,例如其颗粒尺寸大约为10到30mm,而且具有比较能被玻璃基粘合剂侵蚀的类型,与层21中砂砾的类型可以相同也可以不同。在一个特别的例子中,此砂砾可以是AZS型的,它所包含的氧化铬可到30%。
层22的功能是使空隙的玻璃能富集耐火氧化物,一方面,当到达低的层21时,它使得腐蚀较少,另一方面使得粘性变大,以便限制有腐蚀性的氧化物的对流和扩散;上层23(可以与炉子1中的接触层13类似)包含较粗的砂砾,例如其颗粒尺寸至少为50mm,从此粗砂砾中已经小心地除去了细的颗粒,具有耐玻璃腐蚀的类型,例如是单相的和含氧化铬多的。
上层的基本功能是阻止在下层上的对流;由于其颗粒尺寸大,它不会被玻璃流带走,也不会因其尺寸大而产生缺陷。
层21,22和23的砂砾可以是重复利用的材料。
每一个侧壁都是由绝缘板块9制造的下部组成,这些板块置于可选的耐火水泥层10上。在此下部上安置了用耐火材料(例如用于形成炉子1的侧壁的)的板块3制造的顶部。
该侧壁朝向玻璃熔化液的表面有一个内衬,此内衬包含有耐火的砂砾,而此砂砾与上层23是连续的。
此内衬与竖直线倾斜的角度与用于形成该层23的耐火材料的坡面角相当。它用于使板块3和9与玻璃熔化液隔离开来。
作为与第一实施例有关的一个变型,砂砾基的两层21,22可以这样来制造,即首先制备相关的砂砾和相应的玻璃基粘合剂的微粒形式混合物,尤其是碎玻璃,以及连续地铺开-用于下层21的混合物的紧凑的水平层;-然后是用于中层22的该混合物的紧凑的水平层。
上层23是通过放置一个粗砂砾的水平层制成的,此砂砾层位于使耐火的板块3与绝缘板块9分开的隔离层上面,最后,沿着垂直侧壁铺上斜坡形式的粗砂砾。
最后,开始加热炉子,使一种或几种粘合剂熔化,分别形成层21和22。接下来引入高熔点材料,例如玻璃或碎玻璃,以便启动该炉子;层23中的砂砾则被熔化的材料变湿,形式粘合剂。
在达到能保证所希望的不渗透水平之前,在加热或启动炉子的时候,粘合剂玻璃和耐火玻璃之间的化学交换可以继续一个时段。
由于在炉子内壁上有砂砾基内衬,因而可以减少耐火板块3的厚度并用价格比较低廉的绝缘板块9来替换炉子1的下部耐火板块3,以及大大地减少炉子的成本,而不会损害绝热和耐腐蚀能力。
刚刚在一个玻璃炉子的特别的情况中描述了本发明,具有给定结构的炉子底部在其整个表面上,装有至少两个砂砾基层,本发明决不是限于这一实施例。在详细描述中给出的信息可以扩展到其他实施例,尤其是扩展到下列情况底部有另一结构(尤其是,不存在绝缘板块,水泥以及/或者平板);只使用单一的砂砾基层;只在底部的一部分上铺上一层或几层。
目前玻璃类型炉子的其他通常的装置也适用于本发明中。
权利要求
1.用于熔化高熔点材料例如玻璃的炉子(1;20),这个炉子包括底部(2)和侧壁(3),它们限定了熔融材料的熔化液(5)的范围,其特征在于至少是与熔融材料(5)相接触的炉底(2)表面的一部分,也可以至少是侧壁(3)的与熔融材料(5)相接触的一部分,最初是由至少一个包含耐火材料砂砾(14,16)的层(12,13;21,22,23)组成。
2.按照权利要求1所述的炉子,其特征在于此耐火砂砾材料(14,15)是耐玻璃腐蚀的材料,尤其是这种材料具有基于氧化铬的类型或基于氧化锆,氧化硅和/或氧化铝的类型。
3.按照权利要求1或2所述的炉子,其特征在于该层或至少这些层(12,13;21,22,23)的一层,除了砂砾(14,16)之外,还包含有矿物粘合剂(15,17),这种粘合剂由氧化物或由琉态材料,例如玻璃,尤其是由再生玻璃构成是有利的。
4.按照权利要求3所述的炉子,其特征在于该层或至少这些层(12,13;21,22)的一层是由砂砾以及粘合剂构成的,它们开始以微粒的形式混合在一起。
5.按照前面权利要求中的任一项所述的炉子,其特征在于此粘合剂的密度或是每种粘合剂的密度都大于熔化液(5)中含有的熔融材料的密度。
6.按照前面权利要求中的任一项所述的炉子,其特征在于此粘合剂的粘度或是每种粘合剂的粘度都大于盛在熔化液(5)中熔融材料的粘度。
7.按照前面权利要求中的任一项所述的炉子,其特征在于此粘合剂的热导或是每种粘合剂的热导都小于盛在熔化液(5)中熔融材料的热导。
8.按照前面权利要求中的任一项所述的炉子,其特征在于该表面或该表面的一部分包含有由砂砾组成的单层,此砂砾颗粒的尺寸最好是小于50mm,尤其是小于20mm。
9.按照权利要求1到7中的任一项所述的炉子,其特征在于该表面或该表面的一部分包含有一个第一层(13;23),这个第一层包含有与熔融材料相接触的第一砂砾(16),在此第一砂砾下面至少有一个下层(12;22,21),这个下层包含有下部砂砾(14),第一砂砾(16)的颗粒尺寸大于下部砂砾(14)的颗粒尺寸。
10.按照权利要求9所述的炉子,其特征在于第一层(13,23)包含有砂砾(16),其颗粒尺寸至少为10mm,特别是大约在20到50mm之间,而下层(12;22,21)包含有砂砾(14),其颗粒尺寸小于20mm,尤其是大约1到10mm。
11.按照权利要9或10所述的炉子,其特征在于与熔融材料相接触的第一层(23)的砂砾是耐玻璃腐蚀型的,而这一下层或每个下层(21,22)的砂砾都是较易被玻璃腐蚀型的。
12.按照前面权利要求中的任一项所述的炉子,其特征在于包含有砂砾(14,16)的这一层或这些层(12,13;21,22,23)铺在一个成型的或不成型的基层上,此基层是由耐火材料或绝缘材料的平板或板块制成的。
13.按照前面权利要求中的任一项所述的炉子,其特征在于至少一个侧壁(3)的表面是由内衬(23)组成的,此内衬包含有耐火材料的砂砾,它相对于竖直线是倾斜的。
14.按照前面权利要求中的任一项所述的炉子,其特征在于至少在炉子的供应待熔融材料的那一部分上,底部的表面包含有耐火的砂砾层。
15.制造炉子(1)例如玻璃炉的方法,在这种炉子中,制作了一个底部(2)和侧壁(3),用于限定熔融材料的熔化液(5)的范围,其特征在于,它包括下述步骤-在至少底部(2)的表面的一部分上,也可以是在至少侧壁(3)的表面的一部分上铺上至少一个包含有耐火材料砂砾(14,16)的层(12,13;21,22,23),用于与溶化液(5)相接触,然后-升高炉子(1)的温度,引入高熔点材料,例如玻璃,以便形成熔融材料的熔化液(5)。
16.按照权利要求15所述的制造炉子的方法,其特征在于在第一步骤中,铺上矿物粘合剂(15,17),作为与至少一层(21,22)的砂砾(14,16)的混合物,或是作为安置在砂砾层(14,16)顶部的一层,在第二步骤中,使粘合剂(15,17)熔化和/或热激活,以便形成至少一复合层(12,13;21,22)。
17.按照权利要求16所述的制造炉子的方法,其特征在于在第一步骤中,在包括粘合剂的层(22)上铺上另一层(23),这一层包含砂砾的颗粒尺寸基本上比这个下层或这些下层的颗粒尺寸大。
18.按照前面权利要求中的任一项所述的炉子的用途,是用来熔化含有金属废料的再生玻璃。
19.回收存在于再生玻璃中的金属(18)的方法,包括在按权利要求1到15中的一项所述的炉子中熔化再生玻璃的步骤,在这个炉子中,包含在底部(2)的层(13)中的与玻璃相接触的砂砾(16),其颗粒尺寸适宜于使该层(13)可渗透该金属(18)。
20.按照权利要求19所述的回收方法,其特征在于炉子(1)包括一个就位于该表面层(13)下面的下层(12),此下层包含有砂砾(14),其颗粒尺寸不适宜于使下层(12)渗透金属(18)。
全文摘要
按照本发明的炉子用于熔化高熔点材料,例如玻璃,它包括底部(2)和侧壁(3),它们限定了熔融材料的熔化液(5)的范围,其特征在于:至少是与熔融材料相接触的炉底表面的一部分,也可以是至少侧壁(3)的与熔融材料相接触一部分,是由至少一个包含耐火材料砂砾(14,16)的层(12,13;21,22,23)组成。尤其是这样的砂砾层带有基于氧化物或琉态材料的粘合剂。
文档编号C03B5/43GK1272097SQ99800789
公开日2000年11月1日 申请日期1999年5月18日 优先权日1998年5月19日
发明者T·马萨特, S·毛根德雷, D·里扎拉祖, D·亚奎斯, A·阿诺德 申请人:伊索福圣戈班公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1