热处理的费-托催化剂颗粒的用途的制作方法

文档序号:5110672阅读:181来源:国知局
专利名称:热处理的费-托催化剂颗粒的用途的制作方法
技术领域
本发明涉及催化剂。更具体地说,本发明涉及制备抗碎的自支撑型沉淀法铁基费-托催化剂颗粒的方法,制备具有优异合成性能或称活性的自支撑型沉淀法铁基费-托催化剂颗粒的方法,涉及按此方法制成的催化剂颗粒,和该催化剂颗粒在淤浆床费-托反应器中的应用。
背景技术
美国专利5324335和5504118披露了通过在约316℃(600°F)的空气中加热进行退火热处理来驱出残留水分并使催化剂稳定的方法来生产粒径范围为1到50微米的粗球形铁基费-托催化剂颗粒的过程。退火热处理步骤,即加热并逐步控制冷却的步骤将针铁矿转化为赤铁矿后催化剂可被活化并使用。按上述专利,退火热处理方法不能生成具有抗碎性或优异操作性能的催化剂颗粒。
南非专利90/7530披露了生产包括1到80%(重)活性炭在内的铁基费-托催化剂的方法。该催化剂的抗碎性较传统催化剂有所提高,特别是粒径低于约45微米。该专利的催化剂颗粒不具有优异的合成性能,且预计在约300℃下水热法烧结。
因而,需要一类抗碎的铁基费-托催化剂颗粒,特别是能应用于低温费-托过程,如淤浆床反应器内进行生产,产品中包括蜡和其它合成油及化学品过程的催化剂颗粒。抗碎的自支撑型沉淀法铁基费-托催化剂颗粒能够很好地防止反应器内形成催化剂粉末,从而维持反应器的操作性能并减少催化剂粉末对下游生产过程和催化剂的污染。
在本说明书中,除非行文中有明确的不同表达,催化剂和催化剂颗粒涉及到的用语“粉末”当然是指那些当浓度达到总催化剂量的约30%时,由于尺寸原因,往往会降低费-托淤浆床反应器固体分离系统操作性能的颗粒。一般粉末的粒径小于45微米,通常约22微米。
更进一步的需求是一类具有优异的合成性能或称活性的自支撑型铁基费-托催化剂颗粒,特别是应用于低温费-托过程,如在淤浆床反应器内进行,生产蜡和合成油及化学品过程的催化剂颗粒。
发明概述通常认为对自支撑型沉淀法催化剂颗粒进行热处理会对其活性有负面影响。特别是在250℃以上的温度下催化剂颗粒表面积和孔隙体积很可能会下降。因而从事本领域工作的人员一般要避免对这类费-托催化剂材料进行这种热处理。
令人意外的是,现已发现通过在至少250℃的温度下热处理的方法可提高自支撑型沉淀法铁基费-托催化剂颗粒的抗碎性和合成性能或称活性。

发明内容
因此,本发明提供一种生产用于费-托淤浆床工艺的自支撑型沉淀法铁基催化剂颗粒的方法,所述颗粒具有抗碎性,因而能防止形成催化剂粉末,该方法包括将所述颗粒在至少250℃的温度下进行热处理。
热处理方法可以是将所述颗粒在至少250℃的温度下焙烧。
所述颗粒的热处理过程可在250℃到500℃之间的温度下进行,优选在320℃到500℃之间的温度,且更优选在360℃到390℃之间的温度,最优选在380℃的温度下进行。
按照本发明的第二方面,提供一种生产用于费-托淤浆床工艺的自支撑型沉淀法铁基催化剂颗粒的方法,本催化剂颗粒在低温费-托淤浆床操作条件下具有优异的合成性能或称活性,该方法包括将所述颗粒在至少250℃的温度下进行热处理。
本方法的热处理温度可在250℃到500℃之间,优选在320℃到500℃之间,且更优选在360℃到390℃之间,最优选为380℃。
所述催化剂颗粒在热处理温度下一般要保持至少0.1小时,优选0.2到12小时之间,更优选0.5到4小时之间的时间。
按照本发明另一方面,提供一种用于费-托淤浆床工艺的自支撑型沉淀法铁基催化剂颗粒,所述催化剂颗粒按照上述对所述催化剂颗粒热处理的方法生产。
按照本发明另一方面,提供一种维持因淤浆床反应器内催化剂颗粒粉末的增加造成操作性能下降的费-托法淤浆床反应器固体分离系统操作性能的方法,该方法包括使用上述催化剂颗粒。
按照本发明另一方面,提供一种合成油和/或化学品如蜡的合成方法,该方法包括在费-托淤浆床反应器中,于适宜的反应温度下,将适宜的合成气与上述自支撑型沉淀法铁基费-托催化剂颗粒进行接触的步骤。
本方法可在适宜的容器内实施,未反应的反应物和气态产物可从淤浆床上部取出,且另外的液态产物也可从容器中移出。
本方法典型的适宜操作温度为160℃到280℃范围的温度,甚或更高的温度来生产更低沸点产物。
典型的适宜操作压力为18bar到50bar。


图1表示使用未焙烧催化剂液体产物的回收速率随合成试验循环次数关系以说明未焙烧催化剂的固体分离性能。
图2表示使用焙烧催化剂液体产物的回收速率随合成试验循环次数关系以说明焙烧催化剂的固体分离性能。
图3表示催化剂活性与在线时间关系用以比较焙烧催化剂较未焙烧催化剂活性的提高。
图4表示在线收集的未焙烧催化剂颗粒各种倍数的电镜照片。
图5表示在线收集的焙烧催化剂颗粒各种倍数的电镜照片。
具体实施例方式
现在将通过以下非限定性实施例的方法例示说明本发明。
实施例1本实施例例示说明将应用于淤浆床反应过程的自支撑型沉淀法铁基低温费-托催化剂颗粒进行热处理在提高所述催化剂机械强度方面的效果。
对于实验室规模的小型操作来说,是将250克中试法和工业法制成的催化剂放在瓷盘内,放入马福炉中。其后将炉子以1℃/分钟的速度加热到预期的热处理温度。维持热处理或称焙烧温度(如下表1所示)4小时,然后将炉子冷却到100℃以下。
对于更大规模的操作来说,是将催化剂于室温下从料斗送入便携式中试旋转窑内。该旋转窑有一耐火炉衬且采用电加热方法。此设备的尺寸如下长2.1cm。直径0.47cm,倾斜度=2°,旋转速度=1rpm。窑内平均温度控制在385℃。进料速度在30kg/h左右变动,使得停留时间接近1小时。按此方式将1500kg催化剂热处理。
按上述方式热处理后的催化剂颗粒样品进行喷气冲击试验。在此试验中,使用空气射流将新鲜催化剂颗粒撞击到板上。喷气冲下的粒径小于22微米样品的分数用来量度催化剂颗粒的机械强度。表1示出由此试验获得的结果。标准中试法制备的催化剂颗粒和标准工业法制成的催化剂颗粒用作参比材料。
表2还反映出对经300℃热处理的样品进行反复喷气冲击试验所得到的结果。反复喷气冲击试验结果表明热处理后的催化剂颗粒在最初破碎后强度更高。可以推断热处理过程使催化剂整体,而不是仅仅使颗粒的外层增强。
实施例2本实施例例示说明将标准自支撑型沉淀法铁基低温费-托淤浆床催化剂颗粒进行热处理不会改变铁相组成,也不会改变所述催化剂颗粒的结晶性,反而能促进催化剂颗粒机械强度的提高。
采用穆斯鲍尔光谱在4.2K下测定未处理的标准催化剂颗粒和经热处理的样品二者的相组成和相对微晶尺寸。各参数列于表3。
两个样品都可描述为高分散的Fe(III)氧化物。已鉴别出Fe相为α-Fe2O3。颗粒呈现超顺磁行为,并且从四级分裂参数估算初级粒子的尺寸在2到4nm之间。
在77K下,经热处理的样品示出的Δ值略有提高,表明初级粒子的尺寸相应降低。根据这些结果,看来似乎热处理使构成初级粒子的离子发生了重构和重新排序,从而产生了较低能态,即强度更高的颗粒。
实施例3本实施例例示说明在半工业化中试反应器内进行实验时,催化剂热处理方法对所述催化剂颗粒固体分离系统的操作所带来的改进之处。
液体产物的回收速度随合成试验循环次数变化的关系绘制在图1。采用这些标准催化剂颗粒进行合成试验得到的分离速度水平最高仅达到350相对单位/小时。
采用热处理的催化剂进行类似合成试验得到的数据列于图2。液体产物平均回收速度明显高于1000相对单位/小时。
实施例4本具体实施例例示说明将用于淤浆床反应过程的标准自支撑型沉淀法铁基低温费-托催化剂颗粒进行焙烧或热处理能够使在常规费-托合成条件下催化剂颗粒所产生的粉末量明显减少。
未处理和热处理的催化剂颗粒按上面实施例3所述分别进行合成试验期间获得有代表性的在线催化剂颗粒样品的粒径分布。表4列出了催化剂粉末含量比较结果。热处理的催化剂清楚地显示出反应器内存在的粉末量急剧减少。
电镜照片1和2分别为上述未处理的和经热处理的在线催化剂颗粒样品的扫描电镜照片。从热处理型的图案再一次看出,经热处理的样品中不存在粉末是显而易见的。
实施例5本实施例示出标准自支撑型沉淀法铁基费-托催化剂颗粒热处理时活性显著提高,图3非常细致地说明了这一点。转变为热处理型催化剂颗粒后催化剂活性显示连续提高(图3中以垂直线划分)。
实施例6本实施例例示说明从新制备的催化剂颗粒中除去水分不会使催化剂颗粒的机械强度更好。
将未处理的标准催化剂颗粒在100℃的真空烘箱内处理,直到水分含量为原值的一半。然后将未处理样品的和经真空干燥的样品进行喷气冲击(JI)试验,测定它们的机械强度。试验结果与热处理的样品比较,列于表5。
表1催化剂物性随焙烧温度变化的关系

表2反复喷气冲击后的情况

表3穆斯鲍尔光谱参数

表4催化剂粉末在线量

表5干燥样品的机械强度

权利要求
1.一种合成油和/或化学品的合成方法,该方法包括在费-托淤浆床反应器中,于适宜的反应温度下,将适宜的合成气与热处理的自支撑型沉淀法铁基费-托催化剂颗粒进行接触的步骤,该方法的特征在于自支撑型沉淀法铁基费-托催化剂颗粒是通过一个包括将所述颗粒在至少300℃下热处理的方法制备的。
2.按权利要求1的方法,其中所述催化剂颗粒于320℃到500℃之间的温度下进行热处理。
3.按权利要求2的方法,其中所述催化剂颗粒于360℃到390℃之间的温度下进行热处理。
4.按权利要求3的方法,其中所述催化剂颗粒于380℃的温度下进行热处理。
5.按前述任一项权利要求的方法,其中所述催化剂颗粒在热处理温度下要保持至少0.1小时。
6.按权利要求5的方法,其中所述催化剂颗粒在热处理温度下要保持0.5到4小时之间的时间。
7.一种维持在淤桨反应器中由合成气生成合成油和/或化学品的费-托工艺的固体分离系统操作性能的方法,其中操作性能的下降是由于淤桨床反应器内催化剂颗粒粉末增加而造成的,该方法的特征在于使用催化剂颗粒,所述自支撑型沉淀法铁基费一托催化剂颗粒是通过一个包括将所述颗粒在至少300℃下热处理的方法制备的,所述热处理使催化剂颗粒具有抗碎性,因而在使用时能防止形成催化剂粉末。
8.按权利要求7的方法,其中所述催化剂颗粒于320℃到500℃之间的温度下进行热处理。
9.按权利要求8的方法,其中所述催化剂颗粒于360℃到390℃之间的温度下进行热处理。
10.按权利要求9的方法,其中所述催化剂颗粒于380℃的温度下进行热处理。
11.按权利要求8-10任一项的方法,其中所述催化剂颗粒在热处理温度下要保持至少0.1小时。
12.按权利要求11的方法,其中所述催化剂颗粒在热处理温度下要保持0.5到4小时之间的时间。
全文摘要
本发明提供经热处理的自支撑型沉淀法铁基费-托催化剂颗粒在合成油和/或化学品及维持固体分离系统操作性能中的用途。本发明的颗粒具有抗碎性且呈现优异合成性能。
文档编号C10G2/00GK1515359SQ0312064
公开日2004年7月28日 申请日期1998年10月7日 优先权日1998年4月1日
发明者R·L·埃斯皮诺加, P·吉布森, J·H·绍尔茨, R L 埃斯皮诺加, 忌, 绍尔茨 申请人:Sasol技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1