半透射半反射型电光装置以及电子装置的制作方法

文档序号:2574114阅读:133来源:国知局
专利名称:半透射半反射型电光装置以及电子装置的制作方法
专利说明半透射半反射型电光装置以及电子装置 [发明所属的技术领域]本发明涉及能够切换使用了外部光的反射型显示和使用了光源光的透射型显示的半透射半反射型电光装置以及具备那样的装置的电子装置的技术领域。在半透射半反射型液晶装置等半透射半反射型电光装置中,在明亮的场所关断光源进行使用了外部光的反射型显示,在黑暗的场所接通光源进行使用了光源光的显示。更具体地讲,通过在设置了光透射用的狭缝等的半透射半反射膜中去除掉狭缝等的部分,经过液晶等电光物质层反射来自外部的外部光,进行反射型显示。另一方面,通过经由狭缝等透射从半透射半反射型膜的背面一侧到来的光源光,进而经过液晶层等电光物质层向外部出射,进行透射型显示。这种半透射半反射型电光装置已经在省电要求强烈同时适于在黑暗场所使用的移动电话机等便携型电子装置用的显示装置等中得到普及。
另一方面,还开发用染料和颜色使树脂材料着色的滤色片(在本申请说明书中,适当地称为「选择透射型滤色片」),进行彩色显示的彩色反射型电光装置。但是,这样的滤色片由于被构成为对每个像素在有选择地透射规定波长范围内的光的同时,有选择地吸收该范围外的光,因此基本上光的利用效率很低。从而,如果根据仅具有有限光强度的外部光,使用这样的选择透射型滤色片进行彩色反射型显示,则一般都比较暗淡。因此,还开发了能够进行明亮的彩色反射型的,不是有选择地使规定波长范围内的光透射的方式,而是有选择地进行反射的方式。例如,特开平8-304626号公报,特开平9-146088号公报,特开2000-231097号公报等中,公开了使用胆甾型液晶,聚合体膜等,有选择地反射规定波长范围的光的反射方式的滤色片(在本申请说明书中,适当地称为「选择反射型滤色片」)。如果依据这些技术,则通过提高外部光的利用效率,能够进行明亮的彩色反射型显示。但是,在把上述的选择反射型滤色片应用在上述半透射半反射型电光装置中时,虽然能够进行明亮的反射型显示,但是在进行透射型显示时,光源光中,有选择地透过选择反射型滤色片的光,即,以对于有选择地反射的光的颜色为补色的光作为光源光,透过选择反射型滤色片以后,出射到外部。即,在透射型显示时,对于反射型显示成为补色显示。从而,如果像彩色反射型显示中的色调为正常那样构成装置,则存在着彩色透射型显示中的色调不正常的问题。
即使根据上述任一种技术,以上的结果都存在着无法兼顾进行正常色调的彩色显示与在半透射半反射型电光装置中进行明亮的彩色反射型显示这样难以解决的问题。
本发明是鉴于上述问题而进行的,其课题在于提供能够进行正常色调的彩色透射型显示,而且能够进行明亮的彩色反射型显示的半透射半反射型电光装置以及具备了该装置的电子装置。为了解决上述课题,本发明的半透射半反射型电光装置把电光物质夹在一对基板之间,具备设置在上述一对基板中至少一方基板上的上述电光物质一侧的显示用电极;设置在上述一对基板中的一方基板上的上述电光物质一侧、并且对每个像素具有有选择地反射规定波长范围内的光的选择反射区以及对每个像素具有透射上述规定波长范围内外的光的光透射区的第1滤色片;在与该第1滤色片的上述电光物质的相反一侧,与上述选择反射区相向配置的遮光膜;在与上述第1滤色片的上述电光物质的相反一侧,与上述光透射区相向配置、并且对每个像素具有有选择地透射上述规定波长范围内的光的选择透射区的第2滤色片;设置在与上述第2滤色片的上述电光物质的相反一侧的光源装置,上述一对基板中经过上述电光物质与上述第1滤色片相向一侧的基板由透明基板构成。
如果依据本发明的半透射半反射型电光装置,则在进行明亮场所的反射型显示时,使光源装置成为断开状态,即不出射光源光的状态。在该状态下,从透明基板一侧入射的外部光经过电光物质,在第1滤色片的选择反射区反射,从透明基板一侧出射。这时,第1滤色片对每个像素,例如按R(红色)、G(绿色)、B(蓝色)的差异等,有选择地反射规定波长范围内的光。这样的第1滤色片由众所周知的胆甾型液晶、全息图、分色镜等构成。从而,例如如果将偏振片重叠配置在透明基板上,则通过用设置在基板上的显示用电极驱动液晶等电光物质,把透明基板一侧作为显示画面,根据外部光,能够进行例如RGB彩色等多种色彩的反射型显示。
另一方面,在进行黑暗场所的透射型显示时,使光源装置成为接通状态,即出射光源光的状态。在该状态下,从光源装置出射的光源光透过第2滤色片的选择透射区,与此相前后,透过没有设置遮光膜的部位以后,透过第2滤色片的光透射区,进而经过电光物质从透明基板一侧出射。这时,第2滤色片对每个像素,例如按R、G、B的差异等,有选择地透过规定波长范围内的光。这样的第2滤色片由用染料或者颜色使树脂材料着色的众所周知的滤色片等构成。从而,如果例如将偏振片分别重叠配置在基板上,则通过用设置在基板上的显示用电极驱动液晶等电光物质,把透明基板一侧作为显示画面,基于光源光,例如能够进行RGB彩色等多种色彩的透射型显示。
这里,假设在进行透射型显示时,使用第1滤色片进行彩色显示,即在上述那样的本发明的结构中,不设置第2滤色片或者遮光膜,而且在第1滤色片中也不存在光透射区的情况。于是,由于光源光中有选择地透过了第1滤色片的光从透明基板一侧出射,因此在透射型显示中,在每个像素中对于反射型显示则显示出补色。而与此不同,在本发明中设置第2滤色片或者遮光膜,而且在第1滤色片中也存在光透射区,因此在透射型显示时,透过了第2滤色片的光由于经过第1滤色片的光透射区,从透明基板一侧出射,因此在每个像素中对于反射型显示不显示出补色。
这样的本发明中的显示用电极根据驱动方式,设置在一对基板的两方或者一方。例如,如果是无源矩阵驱动,则设置在基板的两方使得相互交叉的条形电极相向。如果是TFD(薄膜二极管)有源矩阵驱动,则设置在基板的两方使得岛形像素电极与条形电极相向。如果是TFT(薄膜晶体管)有源矩阵驱动,则设置在基板的两方使得岛形像素电极与形成在一个面上的对置电极相向。或者,如果例如是横向电场驱动方式的TFT有源矩阵驱动,则在任一方的基板上都将岛形像素电极排列成矩阵形。
另外,有关偏振片的配置方法,根据液晶等电光物质的配置状态可以考虑有各种形态,除此以外,也可以在偏振片上重叠配置色校正用的延迟片。
另外,在上述的本发明的结构中,与透明基板相向一侧的其它基板可以是透明基板,而如果在该其它基板的电光物质一侧,采用配置有第1滤色片、遮光膜、第2滤色片以及光源装置的结构,则该另一基板不必是透明基板。
如果依据本发明的半透射半反射型电光装置,则以上的结果在明亮场所通过选择反射方式的第1滤色片,光的利用效率高,由此能够进行明亮的彩色反射型显示。在黑暗场所,由于与第1滤色片的存在无关,通过第2滤色片,对每个像素能够与彩色反射型显示时相同,进行着色了的彩色透射型显示。
在本发明的半透射半反射型电光装置的一种形态中,上述第1滤色片对每个像素具备设置在上述选择反射区中的选择反射层,在上述光透射区中,则局部性地欠缺上述选择反射层。
如果依据该形态,则在第1滤色片的选择反射区中,例如通过众所周知的胆甾型液晶、全息图、分色镜等构成的选择反射层,反射外部光,由此能够进行明亮的彩色反射型显示。另一方面,在第1滤色片的光透射区中,由于局部性地欠缺这样的选择反射层,因此使光源光通过,与反射型显示相比较,能够进行不是补色显示而且是明亮的透射型显示。
在该形态中,在上述选择反射层上,也可以构成为在上述光透射区中开孔或者开设狭缝。
如果这样构成,则根据规则地或者不规则地对每个像素开设的一个或多个孔或者狭缝,能够比较简单地而且可靠地准备光透射区。
或者在该形态中,也可以构成为在相邻接的选择反射层之间隔开间隙,使该间隙成为光透射区。
如果这样构成,则对于各个像素中的开口区(即,对显示有贡献的光反射或者透射的区域)的轮廓,通过设置小一圈的轮廓的选择反射区,作为其间隙,能够比较简单而且可靠地准备光透射区。
在本发明半透射半反射型电光装置的其它形态中,上述显示用电极包括配置在上述第1滤色片的上述电光物质一侧的条形的一个透明电极,以及经过上述电光物质与该一个透明电极相向配置、同时与上述一个透明电极相交叉的条形的其它透明电极。
如果依据该形态,则在第1滤色片的物质一侧,例如形成由ITO(氧化铟锡)膜等构成的条形的一个透明电极。与此相对照,例如由ITO膜等构成的条形的其它透明电极经过电光物质与该一个透明电极层相向配置。即,这种情况下,一个透明电极被设置在设置了光源装置一侧的基板上,其它的透明电极设置在外部光入射一侧的透明基板上。从而,能够实现无源矩阵驱动方式的半透射半反射型电光装置。
或者,在本发明的半透射半反射型电光装置的其它形态中,上述显示用电极包括配置在上述第1滤色片的上述电光物质一侧、同时对每个像素设置成岛形的一个透明电极,以及经过上述电光物质与该一个透明电极相向配置的其它透明电极。
如果依据该形态,则在第1滤色片的电光物质一侧,形成例如由ITO膜等构成的岛形的一个电极,即像素电极。与此相对照,例如由ITO膜等构成的透明电极,即形成在基板的一个面上的或者形成为条形的对置电极经过电光物质与该一个透明电极相对配置。即,在这种情况下,像素电极被设置在设置了光源装置一侧的基板上,对置电极被设置在外部光入射一侧的透明基板上。从而,能够实现有源矩阵驱动方式。
或者,在本发明的半透射半反射型电光装置的其它形态中,上述显示用电极包括经过上述电光物质与上述第1滤色片相向配置、同时在每个像素上设置成岛形的一个透明电极,以及经过上述电光物质与该一个透明电极相向配置的其它的透明电极。
如果依据该形态,则经过电光物质与第1滤色片相向配置例如由ITO膜等构成的岛形的一个透明电极,即像素电极。与此相对照,经过电光物质与该一个透明电极相向配置例如由ITO膜等构成的透明电极,即在基板的一个面上形成的或者形成为条形的对置电极。即,在这种情况下,像素电极被设置在外部光入射一侧的透明基板上,对置电极被设置在设置了光源装置一侧的基板上。从而,能够实现有源矩阵驱动方式。
在这些显示用电极包含岛形的一个透明电极的形态下,对每个像素也可以进一步具备与上述一个透明电极连接的开关元件。
如果这样构成,则通过用TFT、TFD等开关元件开关驱动一个透明电极,即像素电极,能够进行有源矩阵驱动。
在本发明的半透射半反射型电光装置的其它形态中,上述第2滤色片被设置在上述一方基板的上述电光物质一侧。
如果依据该形态,则能够由在一方基板上的电光物质一侧按照该顺序叠层了的第2滤色片以及第1滤色片,分别进行透射型显示以及反射型显示。
在本发明的半透射半反射型电光装置的其它形态中,上述第2滤色片被设置在与上述一方基板的上述电光物质相反的一侧。
如果依据该形态,则能够由设置在与一方基板上的电光物质相反一侧的第2滤色片以及由设置在一方基板上的电光物质一侧的第1滤色片,分别进行透射型显示以及反射型显示。
在本发明的半透射半反射型电光装置的其它形态中,上述光源装置包括在与上述第2滤色片的上述电光物质相反的一侧,与上述第2滤色片相对配置的导光片,以及在上述导光片上使光入射的光源。
如果依据该形态,则在黑暗场所的透射型显示时,从光源出射光源光,用导光片导向第2滤色片。这样被导行的光源光有选择地透过第2滤色片,进而通过第1滤色片的光透射区,经电光物质从透明基板出射,因此与反射型显示相比较,不是补色显示而且是明亮的透射型显示成为可能。
或者,在本发明的半透射半反射型电光装置的其它形态中,上述光源装置包括在与上述第2滤色片的上述电光物质相反的一侧,经过上述第2滤色片分别与上述光透射区相向配置的多个点光源。
如果依据该形态,则在黑暗场所的透射型显示时,朝向第1滤色片的光透射区从光源出射光源光。该光源光有选择地透过第2滤色片,进而经过第1滤色片的光透射区,经过电光物质从透明基板出射。从而,由于几乎不存在用遮光膜遮挡的被浪费掉的光源光,因此能够实现光源中的能量效率高而且明亮的透射型显示。
在本发明的半透射半反射型电光装置的其它形态中,还具备在与上述第1滤色片的上述电光物质相反的一侧,分别与上述光透射区相向配置的多个微透镜。
如果依据该形态,则在黑暗场所的透射型显示时,从光源出射的光源光在透过第2滤色片的前后,由微透镜向第1滤色片的光透射区聚光,该光源光通过第1滤色片的光透射区,经电光物质从透明基板出射。从而,由于用遮光膜遮挡的被浪费掉的光源光很少,因此能够实现光源中的能量效率高而且明亮的透射型显示。
在本发明的半透射半反射型电光装置的其它形态中,上述遮光膜夹在上述第1滤色片与上述第2滤色片之间。
如果依据该形态,则通过夹在第1滤色片与第2滤色片之间的遮光膜,能够防止在透射型显示时光源光有选择地透过第1滤色片的选择反射区,即,能够防止发生与反射型显示相比较构成补色显示的光源光。其中,这样的遮光膜既可以与第2滤色片设置在同一层内,也可以设置在第2滤色片中的与第1滤色片相反的一侧。
为了解决上述课题,本发明的电子装置具备上述本发明的半透射半反射型电光装置(其中,包括其各种形态)。
如果依据本发明的电子装置,则由于具备上述本发明的电光装置,因此能够实现可以进行明亮的反射型显示以及透射型显示的液晶电视,移动电话机,电子笔记本,文字处理器,取景器型或者监视器直视型录像机,工作站,电视电话,POS终端,触摸屏,投射型显示装置等各种电子装置。
本发明的这些作用以及其它的优点将从以下说明的实施例得知。图1是示出从对置基板一侧观看作为本发明第1实施例的无源矩阵驱动方式的半透射半反射型液晶装置的图解平面图。
图2是包括滤色片等示出了图1的A-A’剖面的半透射半反射型液晶装置的图解剖面图。
图3是放大地示出图2中的选择反射型滤色片,选择透射层型滤色片以及遮光膜的部分的图解放大剖面图。
图4是示出在第1实施例中,在选择反射型滤色片上开设的狭缝或者开口部分的各种具体例子的放大平面图。
图5是作为本发明第2实施例的无源矩阵驱动方式的半透射半反射型液晶装置的剖面图。
图6是作为本发明第3实施例的无源矩阵驱动方式的半透射半反射型液晶装置的剖面图。
图7是作为本发明第4实施例的无源矩阵驱动方式的半透射半反射型液晶装置的剖面图。
图8是一并示出本发明第5实施例的半透射半反射型电光装置中的液晶元件以及驱动电路的等效电路图。
图9是与像素电极等一起原理性地示出图8所示的TFD驱动元件的一个具体例子的平面图。
图10是图9的B-B’剖面图。
图11是示出本发明第5实施例的半透射半反射型电光装置的总体结构的图解剖面图。
图12是构成本发明第6实施例的电光装置的图像显示区的形成为矩阵形的多个像素中的各种元件,布线等的等效电路图。
图13是示出第6实施例中的像素开关用的TFT的剖面构造的图解剖面图。
图14是示出第6实施例的半透射半反射型电光装置的总体结构的图解剖面图。
图15是作为本发明第7实施例的各种电子装置的外观图。以下,根据


本发明的实施例。以下的实施例是把本发明的半透射半反射型电光装置应用于半透射半反射型液晶装置中的情况。
(第1实施例)参照图1至图4说明本发明的第1实施例。第1实施例是把本发明应用于无源矩阵驱动方式的半透射半反射型液晶装置中的情况。图1是为了方便去除掉在第1基板上形成的滤色片和遮光膜等,从第2基板一侧观看第1实施例的半透射半反射型液晶装置的图解平面图,图2是包括滤色片和遮光膜等示出图1的A-A’剖面的半透射半反射型液晶装置的图解剖面图,图3是放大地示出图2中的选择反射型滤色片、选择透射型滤色片以及遮光膜的部分的图解放大剖面图。图4是示出在选择反射型滤色片中开设的狭缝或者开口部分的各种具体例子的放大平面图。
另外,在图1中,为了说明上的方便,图解地示出了纵横各6条条形电极,而实际上存在着多条电极,在图2以及图3中,为了把各层或者各构件取为可在图面上看到的程度的大小,使各层或者各构件中比例尺不同。
在图1以及图2中,第1实施例中的半透射半反射型液晶装置具备透明的第1基板10;与第1基板10相向配置的透明的第2基板20;夹在第1基板10与第2基板之间的液晶层50;配置在第1基板10中与第2基板20相向一侧(即,在图2中是上侧表面)的多条条形的透明电极14;配置在透明电极层14上的取向膜15。半透射半反射型液晶装置具备在第2基板20上与第1基板10相向的一侧(即,在图2中是下侧表面),与透明电极14相互交叉那样配置的多条条形透明电极21;配置在透明电极21上的取向膜25。半透射半反射型液晶装置在第1基板10中与液晶层50相反的一侧,还具备偏振片107以及延迟片108,在偏振片107的外侧,具备荧光管119和把来自荧光管119的光从偏振片107导向液晶屏内的导光片118。第1基板10以及第2基板20在液晶层50的周围,用密封材料31贴合在一起,液晶层50用密封材料31以及封口材料32,封入到第1基板10以及第2基板20之间。进而,半透射半反射型液晶装置在第2基板20上与液晶层50相反的一侧,具备偏振片105,第1延迟片106以及第2延迟片116。
第1基板10以及第2基板20要求对于可见光透明或者至少是半透明的,例如由玻璃基板或者石英基板等构成。
透明电极14以及透明电极21例如分别由ITO膜等透明导电性薄膜构成。
取向膜15以及25分别由聚酰亚胺薄膜等有机薄膜构成,通过旋转涂敷或者胶印形成,施加摩擦处理等规定的取向处理。
液晶层50在透明电极14以及透明电极21之间没有加入电场的状态下由取向膜15以及25获得预定的取向状态。液晶层50例如由混合了一种或者多种向列液晶的STN(超扭曲向列)液晶构成。
密封材料31例如是由光固化性树脂或者热固化性树脂构成的粘结剂。
封口材料32由在经过密封材料31的注入口真空注入了液晶以后,封死该注入口的树脂性粘结剂等构成。
导光片118是在整个背面上形成散射用的粗糙面,或者形成了散射用的印刷层的丙烯树脂片等的透明体,在端面接受作为光源的荧光灯119的光,从图的上表面放射出大致均匀的光。
在本实施例中,特别是在第1基板10上的透明电极14的下侧,对每个像素开设了预定形状的狭缝或者开口部分的同时,形成有选择地反射规定波长范围内的光的选择反射型滤色片141,以及有选择地透过规定波长范围内的光的选择透射型滤色片142。而且,在这些选择反射型滤色片141与选择透射型滤色片142之间,形成开设了狭缝的遮光膜143。
如图3放大地示出那样,作为第1滤色片的一个例子的选择反射型滤色片141对每个像素具有在反射R光的同时,透过G光以及B光的选择反射层141R、在反射G光的同时透过R光以及B光的选择反射层141G、以及在反射B光的同时透过R光以及G光的选择反射层141B。这样的选择反射层141R、141G以及141B由众所周知的胆甾型液晶、全息图、分色镜等构成。另一方面,作为第2滤色片的一个例子的选择透射型滤色片142对每个像素具有在透过R光的同时吸收G光以及B光的选择透射层142R、在透过G光的同时吸收R光以及B光的选择透射层142G、以及在透过B光的同时吸收R光以及G光的选择透射层142B。这样的选择透射层142R、142G以及142B用染料或者颜料对众所周知的树脂材料着色构成。
在选择反射层141R、141G以及141B上,分别开设预定部位的狭缝141h以及开口部分。该狭缝141h还被连续地开设在遮光膜143上。另一方面,选择透射层142R、142G以及142B被设置在与该狭缝141h相向的区域中,选择透射型滤色片142中的其它部分由平坦化膜142f构成。
这里,参照图4说明在选择反射层141R、141G以及141B上开设的狭缝141h或者开口部分的各种具体例子。
如图4(a)所示,对每个像素还可以在四方配置4个矩形槽,也可以如图4(b)所示,对每个像素在横向并排配置5个矩形槽,还可以如图4(c)所示,对每个像素离散地配置多个圆形开口(例如2μm直径的开口),还可以如图4(d)所示,对每个像素配置一个较大的矩形槽。通过使用了抗蚀剂的光刻工序/显影工序/剥离工序能够容易地制作这样的开口部分。开口部分的平面形状除图示的以外,既可以是正方形,或者,还可以是多角形、椭圆形、不规则形,也可以是跨过多个像素延伸的狭缝形。另外,能够在对选择反射层141R、141G以及141B构图的同时开设开口部分,如果这样做则可以不增加制造工艺数。特别是,在图4(a)、(b)或者(d)所示那样的狭缝的情况下,狭缝的宽度最好定为大约3~20μm。如果这样构成,则无论在反射型显示时还是透射型显示时,都能够进行明亮的高对比度的显示。另外,除去设置这样的狭缝或者开口部分以外,例如,从与第2基板20垂直的方向平面地观看,还可以形成相互分断了的选择反射层141R、141G以及141B,使得光能够透过相邻的选择反射层141R、141G以及141B的间隙。
另外,还可以按照Δ排列、条形排列、嵌镶形排列、三角形排列等排列为构成选择透射型滤色片142的RGB各自的选择透射层142R、142G以及142B。
另外,虽然在图1以及图2中进行了省略,然而还可以与密封材料52的内侧相并行,设置例如由与遮光膜143相同或不同材料构成的作为规定图像显示区的周边的边框的遮光膜。或者这样的边框也可以由装入到半透射半反射型液晶装置中的遮光性罩的外缘规定。
其次,参照图3说明以上那样构成的第1实施例的半透射半反射型液晶装置的工作。第1实施例的半透射半反射型液晶装置例如由常黑模式的无源矩阵驱动方式驱动。
首先,说明反射型显示。
这种情况下,在图2以及图3中,如果从偏振片105一侧(即图2中的上侧)入射外部光L1(参照图3),则经过偏振片105、透明的第2基板20以及液晶层50,由设置在第1基板10上的选择反射型滤色片141反射,作为被着色成规定颜色的反射光L2(参照图3),再次经过液晶层50、第2基板20以及偏振片105从偏振片105一侧出射。这里,如果从外部电路在透明电极14以及透明电极21上,以规定的时序供给图像信号以及扫描信号,则在透明电极14与透明电极21交叉部位的液晶层50的部分上,按照每行或者每列或者每个像素依次施加电场。从而,通过由该施加电压以各个像素单元控制液晶层50的取向状态,由此对透过了偏振片105的光量进行调制,能够进行彩色的灰度显示。
其次,说明透射型显示。
在这种情况下,在图2以及图3中,如果从第1基板10的下侧经过偏振片107入射光源光L3(参照图3),则透过选择透射型滤色片141以及狭缝141h,作为被着色成规定颜色的透射光L4,经过液晶层50、第2基板20以及偏振片105,从偏振片105一侧出射。
这里,如果从外部电路在透明电极14以及透明电极21上以规定的时序供给图像信号以及扫描信号,则在透明电极14与透明电极21交叉部位的液晶层50的部分上,按照每行或者每列或者每个像素依次施加电场。由此,通过以各个像素单元控制液晶层50的取向状态,对光源光进行调制,能够进行灰度显示。
以上的结果,如果依据第1实施例,则在透射型显示时,对每个像素相对于反射型显示不显示补色,在反射型显示时通过选择反射型滤色片141能够进行正常色调的彩色显示,如果这样构成装置,则即使在透射型显示时,也能够通过选择透射型滤色片142进行正常色调的彩色显示。而且,在利用仅具有有限光强度的外部光的反射型显示时,由于不使用传统的选择透射型滤色片,而是使用选择反射型滤色片141,因此能够进行明亮的反射型显示。
(第2实施例)其次,参照图5说明本发明的第2实施例。这里,图5是示出第2实施例的结构的剖面图,对于与图2所示的第1实施例相同的结构要素标注相同的参考符号,并且适当地省略其说明。
如图5所示,在第2实施例中,与第1实施例的结构不同,选择透射型滤色片142以及遮光膜143被设置在与第1基板10的液晶层50相反的一侧。其它的结构与第1实施例相同。
如果依据第2实施例,则通过设置在与第1基板10上的液晶层50相反一侧的选择透射型滤色片142以及通过设置在第1基板10上的液晶层50一侧的选择反射型滤色片141,能够分别进行透射型显示以及反射型显示。
(第3实施例)其次,参照图6说明本发明的第3实施例。这里,图6是示出第3实施例的结构的剖面图,对于与图2所示的第1实施例相同的结构要素标注相同的参考符号,并且适当地省略其说明。
如图6所示,在第3实施例中,与第1实施例的结构不同,代替导光片118以及荧光管119,在与选择反射型滤色片141的狭缝141h相向的位置,即与选择透射型滤色片142的选择透射层142R、142G以及142B相向的位置,散布地设置由LED(发光二极管)、EL(电致发光片)等构成的多个点电源120。其它的结构与第1实施例相同。
如果依据第2实施例,则几乎不从点光源120出射被遮光膜143遮挡的被浪费掉的光源光。从而,光源的能量效率增高,在相同的功耗下,能够进行更明亮的透射型显示。
(第4实施例)其次,参照图7说明本发明的第4实施例。这里,图7是示出第4实施例的结构的剖面图,对于与图2所示的第1实施例相同的构成要素标注相同的参考符号,并且适当地省略其说明。
如图7所示,在第4实施例中,除第1实施例的结构以外,还在导光片118上,在与选择反射型滤色片141的狭缝141h相向的位置,即选择透射型滤色片142的选择透射层142R、142G以及142B相向的位置设置多个微透镜121。其它的结构与第1实施例相同。
如果依据第4实施例,则由于从导光片118出射的光源光被微透镜121聚光,因此减少了被遮光膜143遮挡的被浪费掉的光源光。从而,光源的能量效率提高,在相同的功耗下,能够进行更明亮的透射型显示。
(第5实施例)其次,参照图8~图11说明本发明的第5实施例。第5实施例是把本发明应用于TFD有源矩阵驱动方式的半透射半反射型电光装置中的情况。这里,图8是一并示出第5实施例的半透射半反射型电光装置中的液晶元件以及驱动电路的等效电路图,图9是与像素电极等一起原理性地示出图8所示的TFD驱动元件的一个具体例子的平面图,图10是图9的B-B’剖面图。另外,图11是示出第5实施例的半透射半反射型电光装置的总体结构的图解剖面图。
另外,在图11中,为了说明的方便,仅以图解方式示出6个像素电极,而实际上存在多个像素电极,在图10以及图11中,为了把各层或者各构件定为在图面上可看到的程度的大小,使各层或者各构件中比例尺不同。
首先,参照图8说明TFD有源矩阵驱动方式的反射型液晶装置的结构以及工作。
图8中,TFD有源矩阵驱动方式的液晶装置的排列在第2基板上的多条扫描线3b连接扫描线驱动电路100,排列在第1基板上的多条数据线6b连接数据线驱动电路110。另外,扫描线驱动电路100以及数据线驱动电路110既可以在第2基板或者第1基板上形成,也可以由外部IC构成并且经过规定的布线连接到扫描线3b或者数据线6b上。
在矩阵形的各像素区中,扫描线3b连接TFD驱动元件40的一个端子,数据线6b经过液晶层50以及像素电极连接TFD驱动元件40的另一个端子。
从而,如果在与各像素区对应的扫描线3b上供给扫描信号,在数据线6b上供给数据信号,则该像素区中的TFD驱动元件40成为导通状态,经过TFD驱动元件40,在位于像素电极以及数据线6b之间的液晶层50上施加驱动电压。
这里,参照图9以及图10,说明这样的像素开关用的TFT驱动元件40的一个具体例子。
在图9以及图10中,TFD驱动元件40以在构成TFD阵列基板的第2基板20上形成的第2绝缘膜13为基底,在其上面形成,从第2绝缘膜13的一侧开始,顺序地由第1金属膜42、绝缘层44以及第2金属膜46构成,具有TFD构造或者MIM(金属·绝缘体·金属)构造。而且,TFD驱动元件40的第1金属膜42与在第2基板20上形成的扫描线3b连接,第2金属膜46连接像素电极9b。另外,也可以代替扫描线3b,在第2基板20上形成数据线6a,连接像素电极9b,把扫描线3b设置在第1基板10一侧。
第1基板20例如由玻璃,塑料等具有绝缘性以及透明性的基板或者不透明的半导体基板等构成。这样在本实施例中,第2绝缘膜13还能具有作为TFD驱动元件40的基底膜的功能,但也可以用氧化钽等形成与第2绝缘膜13不同的基底膜专用的绝缘膜,或者,如果第2基板20的表面状态不存在任何问题,则也能够省略这样的基底膜。第1金属膜42由导电性的金属薄膜构成,例如由钽单质或者钽合金构成。绝缘膜44例如由在反应液中把第1金属膜42的表面阳极氧化而形成的氧化膜构成。第2金属膜46由导电性的金属膜构成,例如由钽单体或者钽合金构成。
进而,在面对像素电极9b、TFD驱动元件40、扫描线3b等的液晶的一侧,设置第1绝缘膜12,在其上面设置取向膜15。
如以上那样,除TFD驱动元件以外,还能够在本实施例的半透射半反射型液晶装置中应用ZnO(氧化锌)可变电阻、MSI(金属半绝缘体)驱动元件、RD(环形二极管)等具有双向二极管特性的二端子型非线性元件。
如图11所示,第5实施例的半透射半反射型电光装置与第1实施例的情况相比较,在第1基板10上,代替条形的透明电极1,最好具备长条形的透明的数据线6b。进而,构成为在第2基板20上具备透明的像素电极9b以及与该电极邻接的TFD驱动元件40,以代替透明的条形的透明电极21。而且,在第2基板20一侧,设置与TFD驱动元件40连接的在图8~图10中说明过的扫描线3b等。其它的结构与第1
如果依据第5实施例,则在第1基板10上,在作为透明电极的数据线6b的下侧设置选择反射型滤色片141,在与开设在其上的狭缝相向的位置设置选择透射型滤色片142,而且在这些滤色片之间,在去除掉狭缝的区域形成遮光膜143。从而,通过在选择反射型滤色片141中的去除掉狭缝以外的区域反射外部光,并且从第2基板20一侧出射,能够进行TFD有源矩阵驱动中的反射型显示。另一方面,如果接通荧光管119,则经过选择透射型滤色片142以及选择反射型滤色片141的狭缝,从第2基板20一侧出射光源光,由此能够实现TFD有源矩阵驱动中的透射型显示。特别是,由于经过TFD驱动元件40向各个像素电极9b供给电压,因此能够降低像素电极9b之间的交调失真,能够进行更高品位的图像显示。
(第6实施例)其次,参照图12至图14说明本发明的第6实施例。第6实施例是把本发明应用于TFT有源矩阵驱动方式的半透射半反射型电光装置中的情况。这里,图12是构成第6实施例的电光装置的图像显示区形成为矩阵形的多个像素中的各种元件、布线等的等效电路,图13是示出像素开关用的TFT的剖面结构的图解剖面图。图14是示出第6实施例的半透射半反射型电光装置的总体结构的图解剖面图。另外,在图14中,为了说明的方便,仅以图解方式示出6个像素电极,而实际上存在多个像素电极,在图13以及图14中,为了把各层或者各构件取为在图面上可看到的程度的大小,使各层或者各构件中比例尺不同。
在图1中,在构成本实施例的电光装置的图像显示区形成为矩阵形的多个像素中,分别形成像素电极9a和用于开关控制该像素电极9a的TFT30,供给图像信号的数据线6a被电连接到该TFT30的源极上。写入数据线6a的图像信号S1、S2、…、Sn既可以按照该顺序线顺序地供给,也可以对于相邻的多条数据线6a之间,按照每组供给。另外,在TFT30的栅极10上电连接扫描线3a,以规定的时序,在扫描线3a上以脉冲形式按照该顺序线顺序地施加扫描信号G1、G2、…、Gm。像素电极9a被电连接到TFT30的漏极,通过仅在恒定期间闭合作为开关元件的TFT30的开关,以规定的时序写入从数据线6a供给的图像信号S1、S2、…、Sn。经过像素电极9a,写入到作为电光物质的一个例子的液晶中的规定电平的图像信号S1、S2、…、Sn在与形成于对置基板(后述)的对置电极(后述)之间保持恒定期间。液晶根据施加的电压电平,使分子集合的取向或者向序发生变化,由此对光进行调制,能够进行灰度显示。如果是常白模式,则根据以各个像素单元施加的电压减少对入射光的透射率,如果是常黑模式,则根据以各个像素单元施加的电压,增加对入射光的透射率,作为总体,从电光装置出射具有对应于图像信号的对比度的光。这里,被保持的图像信号为了防止漏泄,添加与在像素电极9a和对置电极之间形成的液晶电容并联的存储电容70。存储电容70具备由电容线300的一部分构成的固定电位侧电容电极和连接到TFT30的漏极一侧以及像素电极9a的像素电位侧电容电极。
其次,图13中示出图12所示的像素开关用的TFT30的一个具体例子。
如图13所示,TFT30具备有沟道区1a’的半导体层1a;由在其上经过栅绝缘膜2相向配置的扫描线3a的一部分构成的栅极电极。另外,电容线300和半导体层1a的漏区的延伸部分经过栅绝缘膜2相向配置,由此构成存储电容70。而且,数据线6a经过在层间绝缘膜71上开设的连接孔连接到半导体层1a的源区。由ITO膜等构成的透明的像素电极9a经过在层间绝缘膜72上开设的连接孔,连接到半导体层1a的漏区。从而,如果向扫描线3a供给扫描信号,则TFT30成为导通状态,能够把供给到扫描线3a的图像信号写入到像素电极9a,进而借助于存储电容,能够保持写入到该像素电极9a的电压。
另外,图13所示的TFT30是一个例子,作为图12所示的TFT30,还能够采用LDD(轻掺杂漏)结构的TIT、自对准型TFT、双栅的TFT等各种TFT,进而,作为半导体层1a还能够采用低温多晶硅膜、高温多晶硅膜、非晶硅膜等各种硅膜等。
如图14所示,第6实施例的半透射半反射型液晶装置与第1实施例的情况相比较,在第1基板10上,具备在每个像素上设置成岛形的透明的像素电极9a,以代替条形的透明电极14,与此相邻接,设置TFT30。进而,在第2基板20上,构成为具备在基板的一个面上形成的对置电极21’,以代替透明的条形的透明电极21。而且,在第1基板10一侧,设置连接到TFT30的在图12以及图13中说明过的扫描线3a、数据线6a、电容线300等。
其它结构与第1实施例相同。另外,既可以在第1基板10上的周边区域内制作驱动扫描线3a的扫描线驱动电路和驱动数据线6a的数据线驱动电路等周边电路,也可以使这些周边电路外接。
如果依据第6实施例,则在第1基板10上,在透明的像素电极9a的下侧设置选择反射型滤色片141,在与开设于其上的狭缝相向的位置设置选择透射型滤色片142,而且在这些滤光片之间,在除去狭缝的区域中形成遮光膜143。从而,通过由选择反射型滤色片141中的除去狭缝以外的区域反射外部光,并且从第2基板20一侧出射,能够进行TFT有源矩阵驱动中的反射型显示。另一方面,如果接通荧光管119,则经过选择透射层滤色片142以及选择反射型滤色片141的狭缝,从第2基板20一侧出射光源光,能够进行TFT有源矩阵驱动中的透射型显示。特别是,由于经过TFT30对各个像素电极9a供给电压,因此能够减少像素电极9a之间的交调失真,能够进行更高品质的图像显示。
构成以上说明过的第1至第6实施例中的选择透射型滤色片142的选择透射层142R、142G以及142B既可以用喷墨方式形成,也可以用胶印形成。如果这样形成,则能够仅在与选择反射型滤色片141的狭缝141h相向的区域比较容易地形成选择透射层142R、142G以及142B。
另外,在以上说明过的第1到第6实施例中,在第2基板20一侧没有设置滤色片,而除第1基板10一侧的选择反射型滤色片141以及选择透射型滤色片142以外,也能够在第2基板20一侧设置选择透射型滤色片。
(第7实施例)其次,参照图15说明本发明的第7实施例。第7实施例由应用了上述本发明的第1至第6实施例的半透射半反射型电光装置的各种电子装置构成。
首先,如果把第1至第6实施例中的半透射半反射型电光装置应用于例如图15(a)所示的移动电话机1000的显示部分1001中,则能够实现可交替地进行明亮的彩色反射型显示以及彩色透射型显示的节能型的移动电话机。
另外,如果应用于图15(b)所示的手表1100的显示部分1101中,则能够实现可交替进行明亮的彩色反射型显示以及彩色透射型显示的节能型的手表。
进而,在图15(c)所示的个人计算机(或者信息终端)1200中,如果应用于设置在自由开闭地安装在带键盘1202的主机1204上的外盖内的显示画面1206,则能够实现可交替地进行明亮的彩色反射型显示以及彩色透射型显示的节能型的个人计算机。
除以上图15所示的电子装置外,在液晶电视,取景器型或者监视器直视型录像机,车辆导行装置,电子笔记本,台式电子计算器,文字处理器,工程·工作站(EWS),电视电话,POS终端,备有触摸屏的装置等电子装置中,也能够应用第1~第6实施例的半透射半反射型电光装置。
本发明不限于上述的实施例,在与从权利要求范围以及全部说明书读取的本发明的要旨或者思想不相悖的范围内能够进行适当的变更,与这样的变更相伴随的电光装置以及电子装置也包含在本发明的技术范围内。
权利要求
1.一种半透射半反射型电光装置,其特征在于把电光物质夹在一对基板之间,具备显示用电极,该显示用电极设置在上述一对基板中至少一方基板上的上述电光物质一侧;第1滤色片,该第1滤色片设置在上述一对基板中的一方基板上的上述电光物质一侧,对每个像素具有有选择地反射规定波长范围内的光的选择反射区以及对每个像素具有透射上述规定波长范围内外的光的光透射区;遮光膜,该遮光膜在与该第1滤色片的上述电光物质的相反一侧,与上述选择反射区相向配置;第2滤色片,该第2滤色片在与上述第1滤色片的上述电光物质的相反一侧,与上述光透射区相向配置,对每个像素具有有选择地透射上述规定波长范围内的光的选择透射区;光源装置,该光源装置设置在与上述第2滤色片的上述电光物质的相反一侧,上述一对基板中,经过上述电光物质与上述第1滤色片相向一侧的基板由透明基板构成。
2.如权利要求1所述的半透射半反射型电光装置,其特征在于上述第1滤色片对每个像素具有设置在上述选择反射区中的选择反射层,在上述光透射区中,局部性地缺少上述选择反射层。
3.如权利要求2所述的半透射半反射型电光装置,其特征在于在上述选择反射层上,在上述光透射区中开设孔或者狭缝。
4.如权利要求2所述的半透射半反射型电光装置,其特征在于在相邻的选择反射层之间隔开间隙,以该间隙作为上述光透射区。
5.如权利要求1~4的任一项中所述的半透射半反射型电光装置,其特征在于上述显示用电极包括配置在上述第1滤色片的上述电光物质一侧的条型的一个透明电极;经过上述电光物质与该一个透明电极相向配置的同时,与上述一个透明电极相互交叉的条型的其它透明电极。
6.如权利要求1~4的任一项中所述的半透射半反射型电光装置,其特征在于上述显示用电极包括配置在上述第1滤色片的上述电光物质一侧的同时,对每个像素设置成岛形的一个透明电极;经过上述电光物质与该一个透明电极相向配置的其它透明电极。
7.如权利要求1~4的任一项中所述的半透射半反射型电光装置,其特征在于上述显示用电极包括经过上述电光物质与上述第1滤色片相向配置的同时,对每个像素设置成岛形的一个透明电极;经过上述电光物质与该一个透明电极相向配置的其它透明电极。
8.如权利要求6或7所述的半透射半反射型电光装置,其特征在于对每个像素还具备与上述一个透明电极连接的开关元件。
9.如权利要求1~8的任一项中所述的半透射半反射型电光装置,其特征在于上述第2滤色片设置在上述一方基板的上述电光物质一侧。
10.如权利要求1~8的任一项中所述的半透射半反射型电光装置,其特征在于上述第2滤色片设置在与上述一方基板的上述电光物质的相反一侧。
11.如权利要求1~10的任一项中所述的半透射半反射型电光装置,其特征在于上述光源装置包括在与上述第2滤色片的上述电光物质的相反一侧与上述第2滤色片相向配置的导光片以及使光入射到上述导光片的光源。
12.如权利要求1~10的任一项中所述的半透射半反射型电光装置,其特征在于上述光源装置包括多个点光源,这些点光源在与上述第2滤色片的上述电光物质的相反一侧,经过上述第2滤色片,分别与上述光透射区相向配置。
13.如权利要求1~12的任一项中所述的半透射半反射型电光装置,其特征在于还具备多个微透镜,这些微透镜在与上述第1滤色片的上述电光物质的相反一侧,分别与上述光透射区相向配置。
14.如权利要求1~13的任一项中所述的半透射半反射型电光装置,其特征在于上述遮光膜被夹在上述第1滤色片与上述第2滤色片之间。
15.一种电子装置,其特征在于具备权利要求1~14的任一项中所述的半透射半反射型电光装置。
全文摘要
本发明的课题是,在半透射半反射型的液晶装置等电光装置中,在进行正常色调的彩色透射型显示的同时进行明亮的彩色反射型显示。电光装置具备夹在第1基板(10)以及第2基板(20)之间的电光物质(50);设置在第1基板中的与第2基板相向一侧的显示用电极(14)。还具备对每个像素具有有选择地反射规定波长范围内的光的选择反射区,以及对每个像素具有透过规定波长范围内外的光的光透射区的第1滤色片(141);与该选择反射区相向配置的遮光膜(143);对每个像素具有有选择地透过规定波长范围内的光的选择透射区的第2滤色片(142)。
文档编号G09F9/00GK1391130SQ02122430
公开日2003年1月15日 申请日期2002年6月6日 优先权日2001年6月7日
发明者饭野圣一 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1