晶体管电路的制作方法

文档序号:2594544阅读:156来源:国知局
专利名称:晶体管电路的制作方法
技术领域
本发明涉及一种用于驱动各种元件的晶体管电路,特别涉及一种可使其动作检查容易进行的晶体管电路。
例如,作为平面显示面板,有一种有机EL显示面板,该有机EL显示器将有机EL元件作为像素,并将其配置成若干矩阵状的结构。并且,就该有机EL元件的驱动方法来说,有一种有效矩阵方式,在每个像素中设置开关用的晶体管,通过控制这些晶体管,就能控制各像素的显示。
图5表示在现有的利用薄膜晶体管(TFT)的有机EL面板中的像素电路的结构例。上述像素呈矩阵型配置从而构成有机EL面板。
在沿行方向延伸的栅极线上,连接著作为由栅极线所选择的n沟道薄膜晶体管的第一TFT10的栅极。在该第一TFT10的漏极,连接着沿列方向延伸的数据线DL,在该源极的另一端连接着保持电容CS,而该作为低电压电源的保持电容CS与电容线SL相连。并且,第一TFT10的源极与保持电容CS的连接点连接著作为p沟道薄膜晶体管的第二TFT40的栅极。这样,该第二TFT40的源极连接着电源线VL,其漏极连接着有机EL元件EL。另外,有机EL元件EL的另一端连接着阴极电源CV。
因此,在H电平时栅极线GL使第一TFT10导通,此时数据线DL的数据将保持在保持电容CS中。然后,依据保持在该保持电容CS的数据(电位)控制第二TFT40的电流,随着该第二TFT40的电流使电流流动到有机EL元件EL而使其发光。
然后,当第一TFT10导通时,向数据线DL输送与该像素相应的视频信号。因此,与输送到数据线DL的视频信号相应地对保持电容CS进行充电,这样,第二TFT40流动着相应的电流,以进行有机EL元件EL的亮度控制。即,通过控制第二TFT40的栅极电位,并控制在有机EL元件中流动的电流,来控制各像素的显示色调。
在制造过程中,在这种有机EL面板中,在形成各像素的两个TFT等处会产生缺陷,而产生无法进行预定显示的像素。这样的上述缺陷将以预定的机率产生,而难于完全防止点缺陷的产生。而且,由于很难以视觉辨认出未显示出该缺陷的暗点,因此通过激光切断配线等方法,将缺陷像素予以暗点化。
因此,必须对各像素进行动作检查。就这种检查来说,虽有在真空中照射电子线等,并利用光检测器等检测出各像素所反射的2次电子,确认动作的方法,但该方法费时且无效率。
另一方面,在LCD中的形成像素电极的阶段,将开关元件予以导通,并对辅助电容和像素电极施加电压,这样进行充电于辅助电容的电荷量的阵列测试,并开发出一种用以进行上述测试的阵列测试器。
然而,有机EL面板的1像素具有两个TFT,在LCD的阵列测试中,虽可进行第一TFT的输出测试,但无法进行第二TFT的测试,即无法测试是否向有机EL元件输送了电流(进行发光)。
本发明就是鉴于上述课题的发明,其目的在于提供一种能使用阵列测试器进行各像素的动作测试的有机EL面板。
这样,通过增大第二晶体管的电容,可读出充电在此的电荷,并确认晶体管的动作。
并且,优选为在上述第一晶体管的另一端与第二晶体管的栅极上,连接着用于保持电荷的保持电容。
并且,本发明具有一端连接着信号线,且在栅极接收选择信号而动作的第一晶体管;在栅极连接着该第一晶体管的另一端,以控制与电流消耗或电流产生元件相关的电流的第二晶体管;连接在上述第一晶体管的另一端及第二晶体管的栅极的保持电荷用的保持电容,在上述第二晶体管的栅极与源极或与漏极之间所产生的晶体管电容大小为上述保持电容的电容量的5%以上。
这样,通过使第二晶体管的电容相对于保持电容在某种程度以上,可读出充电在此的电荷,并确认晶体管的动作。
并且,本发明具有一端连接着信号线,且在栅极接收选择信号而动作的第一晶体管;在栅极连接着该第一晶体管的另一端,以控制与电流消耗或电流产生元件相关的电流的第二晶体管,上述第二晶体管具有用以增大在其栅极与源极或与漏极之间所产生的晶体管电容的电容增加装置。
这样,通过增大第二晶体管(驱动晶体管)的电容,可读出充电在此的电荷,并确认晶体管的动作。
并且,上述电容增加装置优选为将上述第二晶体管的沟道区域的一部分沿平面扩展,同时维持沟道宽度、沟道长度地扩大沟道区域,以增大晶体管电容。
并且,优选为在上述第一晶体管的另一端及第二晶体管的栅极上,连接着用于保持电荷的保持电容。
并且,与上述第一晶体管的一端相连的信号线,是用于输送显示数据的数据线,上述第二晶体管优选为从电源线将与保持于保持电容的电压相应的电流输送至有机EL元件。
图2表示使第二TFT的电容上升的结构例的示意图。
图3表示使第二TFT的电容上升的结构例的示意图。
图4表示使第二TFT的电容上升的结构例的示意图。
图5表示像素电路的结构。
图6表示像素部的剖面图。
符号说明
10第一TFT;40第二TFT;CS保持电容;Cdtr驱动晶体管电容;VL电源线;DL数据线;GL栅极线

图1表示有机EL显示面板中的1像素的晶体管电路结构。这样,与图5同样,各像素具有第一TFT10、保持电容CS、第二TFT40、和有机EL元件EL。而且,第二TFT40必然具有电容,即第二TFT40的栅极·源极间具有晶体管电容Cdtr。
在本实施方式中,使第一TFT10导通,对保持电容CS和晶体管电容Cdtr进行充电,通过检测晶体管电容Cdtr的电容值,来检查第一TFT10和第二TFT40是否正常。
即,通过将数据线DL设定为预定的电压,使第一TFT10导通,然后读出从数据线DL补充的电荷量,可检测出第一TFT10是否正常。
其中,该电荷量也包括充电于晶体管电容Cdtr中的电荷量。因此,通过比较读出电荷量,可检测出晶体管Cdtr是否与设定值相符。即,将第一TFT10导通,且将数据线DL的电压设定为VT时,若将与电容线SL的电位差设定为Vt1,将与电源线VL的电位差设定为Vt2时,则补充的电荷为Qt=CS·Vt1+Cdtr·Vt2。因此,通过数据线DL检测出该电荷量,可测出晶体管电容Cdtr。
这是因为,当TFT的栅极与源极或与漏极发生短路,或无法正常形成源极、沟道、漏极等区域时,因Vt1或Cdtr产生变化,而使晶体管的电荷量产生变化。在本实施方式中,通过检测出该晶体管电容Cdtr×Vt2的电荷量,可判定第二TFT40是否正常,即可判定能否进行正常显示。
另外,该晶体管电容Cdtr的检测既可通过数据线DL读出充电电荷量,也可通过电源线VL读出充电电荷量。即,由于电源线VL连接在晶体管电容Cdtr的另一端,所以能够由此检测出充电于晶体管电容Cdtr中的电荷量。
其中,在上述检测中,当保持电容CS有波动时,则无法检测出晶体管电容Cdtr的变化。通常保持电容CS为100fF左右,晶体管Cdtr为数fF左右,难于检测出晶体管电容Cdtr的保持电荷量。
因此,在本实施方式中,需要增加第二TFT40的晶体管电容使其比通常情况大。这是通过下述方法来实现的。
(1)可通过增大第二TFT40的沟道面积而实现。即,晶体管电容Cdtr如下所示。
Cdtr=K·Sdtr/dsSdtr=n·Wdtr·LdTr其中,K为预定的常数,Sdtr为沟道面积,ds为栅极氧化膜的膜厚,n为第二TFT并联的数目,Wdtr为沟道宽度,LdTr为沟道长度。
因此,通过增大整个沟道面积,可增大晶体管电容Cdtr。
(2)并且,通过减小栅极氧化膜的膜厚ds,也能增大晶体管电容Cdtr。
通过这样的方法,可将晶体管电容Cdtr设定在5fF以上,优选为设定在10fF以上。并且,通过将保持电容CS与Cdtr之比Cdtr/CS设定在5%以上(优选为10%),就可确实地检测出晶体管电容Cdtr。
并且,还可采取一种积极增加晶体管电容Cdtr的方法。
图2表示一个例子的结构,通过改变由多晶硅等所构成的有源层40a,更具体地是指沟道区域的形状,来增大其面积。即,电源线VL一端连接着有源层40a,另一端则连接着阳极50。其中,TFT具有将栅极电极配置在比有源层40a更上方的顶部栅极构造,通过栅极电极40c其间挟持着栅极绝缘膜,覆盖着有源层40a的中央部分。该中央部分为沟道区域,其两侧为源极区域和漏极区域。
因此,如图2所示,沟道区域的一部分以扩展面积的方式突出形成于栅极电极40c的下侧。这样,通过增大栅极电极40c下方的沟道区域,即可在不改变第二TFT40的能力下增大该晶体管电容Cdtr。
图3表示另一个例子,在该例中,在栅极电极40c的一部分、即除有源层40a上方以外的部分,也即在由第二TFT40偏移的部分中,使栅极电极40c延伸至电源线VL的下方。这样,电源线VL与栅极线40c隔着层间绝缘膜形成相对,且在此处形成电容。
并且,也可使电源线VL延伸至电源线VL的上方。即,在电源线VL的一部分、即除有源层40a上方以外的部分,也即在由第二TFT40偏移的部分中,使电源线VL的一部分延伸至栅极电极40c的上方。这样,电源线VL与栅极线40c隔着层间绝缘膜形成相对,且在此处形成电容。
图4显示又一个例子,在该例中,与有源层40a同时另外设置与有源层40a同样地由例如多晶硅所形成的半导体层,将该半导体层的一端与电源线VL相连,以将有源层40a与电源线VL相连的相同结构相连,而该半导体层的另一端则延伸至栅极电极40c的下方。这样,在栅极电极40c的下方,隔着氧化膜(栅极氧化膜)可确定另一端与电源线VL相连的半导体层的位置。半导体层在栅极电极40c的下侧虽未接受杂质的掺杂,但通过隔着栅极氧化膜使半导体层与栅极电极40c相对的结构,可在此形成电容。
如上所述,通过图2~图4的结构,可积极地增加第二TFT40的晶体管电容Cdtr。因此,通过具有这种第二TFT40像素的电路结构,利用检测所增加的晶体管电容Cdtr,可检查该像素的动作。
特别是,这种检查可在层积有机EL元件EL的有机层之前进行。即,可在形成阳极50的阶段进行该项检查。而且,对于所发现的不良像素(特别是有亮度缺陷的像素),可通过激光将配线切断。
有机EL元件是在形成阳极50后,形成第二平坦化膜60。因此,可通过该第二平坦化膜60,利用激光,填埋所产生的孔,从而能够排除制品中因激光修整造成残留孔的缺陷。
这里,图6表示第二TFT40与有机EL元件EL的剖面结构。这样,第二TFT40形成于玻璃基板30上,且该第二TFT40具有由低温多晶硅所形成的有源层40a。该有源层40a的两端是掺杂有杂质的源极区域和漏极区域,而夹在上述两区域的中央部的是沟道区域。在该沟道区域的上部,隔着由氧化硅所构成的栅极绝缘膜40b形成栅极电极40c。栅极绝缘膜40b与栅极电极40c由层间绝缘膜34所覆盖,在栅极电极40c的两侧,形成了通过层间绝缘膜34的接触孔而与源极区域和漏极区域相连接的源极电极40d及漏极电极40e。而且,源极电极40d、漏极电极40e的上端位于层间绝缘膜34的表面。
并且,在层间绝缘膜34的表面上,配置着用以连接漏极电极40e与电源线VL的金属配线等。而且,通过覆盖该层间绝缘膜34,形成第一平坦化膜36。
此外,在第一平坦化膜36的上面,形成了由ITO构成的透明电极50,其一端通过第一平坦化膜36的接触孔与驱动TFT40的源极电极40d相连接。
并且,该透明电极50构成有机EL元件的阳极,在该透明电极50上,通过空穴输送层52、有机发光层54、电子输送层56形成金属制的阴极58。另外,在透明电极50的周围及侧方配置着第二平坦化膜60。
这样,有源层40a配置在玻璃基板30的正上方,在有源层40a上隔着栅极绝缘膜40b形成栅极电极40c。并且,电源线VL隔着层间绝缘膜34形成在栅极电极40c的上层。因此,如上所述,可知通过采用改变有源层40a、栅极电极40c和电源线VL的形状,或设置与有源层同层的半导体层等增加电容的方法,可增大第二TFT40的电容。
并且,就第二TFT40来说,尽管在上述例中采用了p沟道TFT,但也可采用n沟道TFT。在这种情况下,在连接有机EL元件上侧与保持电容CS下侧的同时,还设有与低电压电源相连的放电用TFT,只要当电容CS进行数据改写时使该TFT导通即可。另外,有关这种结构的说明记载在特愿2001-303768号中。
并且,尽管在上述例中表示的是有机EL面板的结构,但也可采用荧光显示管或传感器等来取代有机EL元件。当采用传感器时,是从电源线VL读出电流。
而且,虽然只在上述电路中,第二TFT40的栅极连接了保持电容CS,但也可连接在复位电路,内存电路等各种电路(或元件)中。在该情况下的元件既可为有源元件,也可为无源元件。
如上所述,根据本发明,通过增大第二晶体管(驱动晶体管)的电容,就能读出在此充电的电荷,并能对晶体管的动作进行确认。
权利要求
1.一种晶体管电路,其特征为具有一端连接着信号线,通过在栅极接收选择信号而动作的第一晶体管;和栅极连接着所述第一晶体管的另一端,用于控制与电流消耗或电流产生元件相关的电流的第二晶体管;所述第二晶体管的栅极与源极或与漏极之间所产生的晶体管电容在5fF以上。
2.如权利要求1所述的晶体管电路,其特征为在所述第一晶体管的另一端和第二晶体管的栅极上,连接着用于保持电荷的保持电容。
3.一种晶体管电路,其特征为具有一端连接着信号线,通过在栅极接收选择信号而动作的第一晶体管;栅极连接着所述第一晶体管的另一端,用于控制与电流消耗或电流产生元件相关的电流的第二晶体管;以及连接着所述第一晶体管的另一端和第二晶体管的栅极的用于保持电荷的保持电容,在所述第二晶体管的栅极与源极或与漏极之间所产生的晶体管电容大小为所述保持电容的电容大小的5%以上。
4.一种晶体管电路,其特征为具有一端连接着信号线,通过在栅极接收选择信号而动作的第一晶体管;栅极连接着所述第一晶体管的另一端,用于控制与电流消耗或电流产生元件相关的电流的第二晶体管,所述第二晶体管具有用于增大其栅极与源极或与漏极之间所产生的晶体管电容的电容增加装置。
5.如权利要求4所述的晶体管电路,其特征为所述电容增加装置是通过将所述第二晶体管的沟道区域的一部分沿平面扩展,同时维持沟道宽度、沟道长度来扩大沟道区域,以增大晶体管电容。
6.如权利要求4或5所述的晶体管电路,其特征为在所述第一晶体管的另一端和第二晶体管的栅极处,连接着用于保持电荷的保持电容。
7.如权利要求2、3、6中任一项所述的晶体管电路,其特征为连接着所述第一晶体管一端的信号线,是输入显示数据的数据线,所述第二晶体管将与保持于保持电容的电压相应的电流从电源线输送至有机EL元件。
全文摘要
本发明提供一种晶体管电路,其目的在于易于进行动作确认。其中,在第二TFT(40)中,增大必然形成于其栅极与漏极间的晶体管电容Cdtr。并且使第一TFT(10)导通,对该晶体管电容Cdtr进行充电,通过检测充电后的电荷,进行第一TFT(10)、第二TFT(40)的动作确认。
文档编号G09G3/32GK1461107SQ03119
公开日2003年12月10日 申请日期2003年3月13日 优先权日2002年3月15日
发明者神野优志 申请人:三洋电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1