GOA电路的制作方法

文档序号:12475586阅读:306来源:国知局
GOA电路的制作方法与工艺

本发明涉及液晶显示器领域,尤其涉及一种GOA电路。



背景技术:

阵列基板行驱动(Gate Driver On Array,简称GOA)技术是利用现有薄膜晶体管液晶显示器阵列(Array)制程将栅极(Gate)行扫描驱动信号电路制作在阵列基板上,实现对栅极逐行扫描的驱动方式的一项技术。

在GOA电路设计都需要具有正反向扫描功能,而现在的普遍做法就是在GOA电路单元中增加U2D和D2U正反向扫描单元:正向扫描时,正向扫描控制信号U2D为高电平,反向扫描控制信号D2U为低电平;反向扫描时,反向扫描控制信号D2U为高电平,正向扫描控制信号U2D为低电平。而这种方式就需要芯片(IC)具有输出该信号的功能,对IC的可选择性有一定的限制,同时由于D2U和U2D的存在,在布局(Layout)设计时对更窄边框的设计也存在一定的限制作用,同时这种电路架构对应的IC成本相对较高。

参见图1,其为现有的GOA电路示意图,可用于LTPS面板。现有的GOA电路包括级联的多个GOA电路单元,其中输出第n级水平扫描信号的第n级GOA电路单元包括:薄膜晶体管T1,其栅极连接第n-2级GOA电路单元的信号输出点Gn-2,源极和漏极分别连接节点H和输入正向扫描控制信号U2D;薄膜晶体管T2,其栅极连接节点Q,源极和漏极分别连接第n级GOA电路单元的信号输出点Gn和输入时钟信号CKV1;薄膜晶体管T3,其栅极连接第n+2级GOA电路单元的信号输出点Gn+2,源极和漏极分别连接节点H和输入反向扫描控制信号D2U;薄膜晶体管T4,其栅极连接节点P,源极和漏极分别连接信号输出点Gn和恒压低电位VGL;薄膜晶体管T5,其栅极连接恒压高电位VGH,源极和漏极分别连接节点H和节点Q;薄膜晶体管T6,其栅极连接节点P,源极和漏极分别连接节点H和恒压低电位VGL;薄膜晶体管T7,其栅极连接节点H,源极和漏极分别连接节点P和恒压低电位VGL;薄膜晶体管T8,其栅极输入时钟信号CKV3,源极和漏极分别连接节点P和恒压高电位VGH;电容C1,其两端分别连接节点Q和信号输出点Gn;电容C2,其两端分别连接节点P和恒压低电位VGL。节点Q为用于控制栅极驱动信号输出的点;节点P为用于维持Q点及Gn点低电平的稳定点。图1中虚线框部分即为GOA电路的正反向扫描单元。

参见图2,其为图1的GOA电路正向扫描时序示意图,现结合图1,对电路的具体工作过程(正向扫描)介绍如下:

正向扫描时:U2D为高电平,D2U为低电平;

阶段1,预充电:Gn-2与U2D同时为高电平,T1导通,H点被预充电。当H点为高电平时,T5处于导通状态,Q点被预充电。当H点为高电平时,T7处于导通状态,P点被拉低;

阶段2,Gn输出高电平:在阶段1中,Q点被预充电,C1对电荷具有一定的保持作用,T2处于导通状态,CKV1的高电平输出到Gn端;

阶段3,Gn输出低电平:C1对Q点的高电平具有保持作用,而此时CKV1的低电平将Gn点拉低;

阶段4,Q点拉低到VGL:当Gn+2为高电平,此时D2U为低电平,T3处于导通的状态,那么Q点被拉低到VGL;

阶段5,Q点及Gn点低电平维持阶段:当Q点变为低电平后,T7处于截止状态,当CKV3跳变为高电平时T8导通,P点被充电,那么T4和T6均处于导通的状态,可以保证Q点及Gn点低电平的稳定,同时C2对P点的高电平具有一定的保持作用。

参见图3,其为图1的GOA电路反向扫描时序示意图,现结合图1,对电路的具体工作过程(反向扫描)介绍如下:

反向扫描时:D2U为高电平,U2D为低电平;

阶段1,预充电:Gn+2与D2U同时为高电平,T3导通,H点被预充电。当H点为高电平时,T5处于导通状态,Q点被预充电。当H点为高电平时,T7处于导通状态,P点被拉低;

阶段2,Gn输出高电平:在阶段1中,Q点被预充电,C1对电荷具有一定的保持作用,T2处于导通状态,CKV1的高电平输出到Gn端;

阶段3,Gn输出低电平:C1对Q点的高电平具有保持作用,而此时CKV1的低电平将Gn点拉低;

阶段4,Q点拉低到VGL:当Gn-2为高电平时,此时U2D为低电平,T1处于导通的状态,那么Q点被拉低到VGL;

阶段5,Q点及Gn点低电平维持阶段:当Q点变为低电平后,T7处于截止状态,当CKV3跳变为高电平时T8导通,P点被充电,那么T4和T6均处于导通的状态,可以保证Q点及Gn点低电平的稳定,同时C2对P点的高电平具有一定的保持作用。



技术实现要素:

本发明的目的在于提供一种GOA电路,无需D2U和U2D控制信号的配合实现正反向扫描功能。

为实现上述目的,本发明提供了一种GOA电路,包括级联的多个GOA电路单元,其中,设n为大于0的自然数,第n级GOA电路单元包括:

第一薄膜晶体管,其栅极连接第九薄膜晶体管的第一源极/漏极,当第n级非为首端一级时,其源极和漏极分别连接第n-1级GOA电路单元的信号输出点和第一节点,否则其源极和漏极分别输入第一启动信号和连接第一节点;

第九薄膜晶体管,其第二源极/漏极输入第一时钟信号,当第n级非为首端一级时,其栅极连接第n-1级GOA电路单元的第二节点,否则其栅极输入第二启动信号;

第三薄膜晶体管,其栅极连接第十薄膜晶体管的第一源极/漏极,当第n级非为末端一级时,其源极和漏极分别连接第n+1级GOA电路单元的信号输出点和第一节点,否则其源极和漏极分别输入第三启动信号和连接第一节点;

第十薄膜晶体管,其第二源极/漏极输入第三时钟信号,当第n级非为末端一级时,其栅极连接第n+1级GOA电路单元的第二节点,否则其栅极输入第四启动信号;

第七薄膜晶体管,其栅极连接第一节点,源极和漏极分别连接第三节点和恒压低电位;

第六薄膜晶体管,其栅极连接第三节点,源极和漏极分别连接第一节点和恒压低电位;

第五薄膜晶体管,其栅极连接恒压高电位,源极和漏极分别连接第一节点和第二节点;

第八薄膜晶体管,其栅极输入第四时钟信号,源极和漏极分别连接第三节点和恒压高电位;

第一电容,其两端分别连接第n级GOA电路单元的第二节点和第n级GOA电路单元的信号输出点;

第二薄膜晶体管,其栅极连接第n级GOA电路单元的第二节点,源极和漏极分别连接第n级GOA电路单元的信号输出点和输入第二时钟信号;

第二电容,其两端分别连接第三节点和恒压低电位;

第四薄膜晶体管,其栅极连接第三节点,源极和漏极分别连接第n级GOA电路单元的信号输出点和恒压低电位。

其中,该第一时钟信号,第二时钟信号,第三时钟信号和第四时钟信号为占空比为0.25的矩形波。

其中,正向扫描时,该第一时钟信号和第二时钟信号之间波形相差四分之一周期,该第一时钟信号和第四时钟信号之间波形相差四分之三周期。

其中,反向扫描时,该第三时钟信号和第二时钟信号之间波形相差四分之一周期,该第三时钟信号和第四时钟信号之间波形相差四分之三周期。

其中,对于首端一级GOA电路单元,正向扫描时,该第一启动信号初始为高电平,当该第一启动信号变为低电平时,该第n级GOA电路单元的信号输出点(Gn)变为高电平。

其中,对于末端一级GOA电路单元,反向扫描时,该第三启动信号初始为高电平,当该第三启动信号变为低电平时,该第n级GOA电路单元的信号输出点(Gn)变为高电平。

其中,对于首端一级GOA电路单元,正向扫描时,当该第一启动信号为高电平时,该第二启动信号为高电平。

其中,对于末端一级GOA电路单元,反向扫描时,当该第三启动信号为高电平时,该第四启动信号为高电平。

其中,其为LTPS面板的GOA电路。

其中,其为OLED面板的GOA电路。

综上,本发明的GOA电路无需D2U和U2D控制信号的配合就可以实现正反向扫描功能,这对于更窄边框的设计起到一定的帮助作用;同时该GOA电路对应的驱动时序简单,可以降低IC成本。另一方面,该电路可以有效改善Q点漏电情况的发生,保证GOA电路的稳定性。

附图说明

下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。

附图中,

图1为现有的GOA电路示意图;

图2为图1的GOA电路正向扫描时序示意图;

图3为图1的GOA电路反向扫描时序示意图;

图4为本发明的GOA电路示意图;

图5为图4的GOA电路正向扫描时序示意图;

图6为图4的GOA电路反向扫描时序示意图。

具体实施方式

参见图4,其为本发明的GOA电路示意图,可用于LTPS面板。该GOA电路包括级联的多个GOA电路单元,其中,设n为大于0的自然数,输出第n级水平扫描信号的第n级GOA电路单元包括:薄膜晶体管T1,当第n级非为首端一级时,其栅极连接薄膜晶体管T9的第一源极/漏极,源极和漏极分别连接第n-1级GOA电路单元的信号输出点Gn-1和节点H;薄膜晶体管T2,其栅极连接第n级GOA电路单元的节点Qn,源极和漏极分别连接第n级GOA电路单元的信号输出点Gn和输入时钟信号CKV2;薄膜晶体管T3,当第n级非为末端一级时,其栅极连接薄膜晶体管T10的第一源极/漏极,源极和漏极分别连接第n+1级GOA电路单元的信号输出点Gn+1和节点H;薄膜晶体管T4,其栅极连接节点P,源极和漏极分别连接信号输出点Gn和恒压低电位VGL;薄膜晶体管T5,其栅极连接恒压高电位VGH,源极和漏极分别连接节点H和节点Qn;薄膜晶体管T6,其栅极连接节点P,源极和漏极分别连接节点H和恒压低电位VGL;薄膜晶体管T7,其栅极连接节点H,源极和漏极分别连接节点P和恒压低电位VGL;薄膜晶体管T8,其栅极输入时钟信号CKV4,源极和漏极分别连接节点P和恒压高电位VGH;薄膜晶体管T9,当第n级非为首端一级时,其栅极连接第n-1级GOA电路单元的节点Qn-1,第二源极/漏极输入时钟信号CKV1;薄膜晶体管T10,当第n级非为末端一级时,其栅极连接第n+1级GOA电路单元的节点Qn+1,第二源极/漏极输入时钟信号CKV3;电容C1,其两端分别连接节点Qn和信号输出点Gn;电容C2,其两端分别连接节点P和恒压低电位VGL。

参见图5,其为图4的GOA电路正向扫描时序示意图。现结合图4,对电路的具体工作过程(正向扫描)介绍如下:

阶段1,预充电:Qn-1与CKV1同时为高电平,T9导通,而此时Gn-1也为高电平,T1导通,H点被预充电。当H点为高电平时,T5处于导通状态,Q(即Qn)点被预充电。当H点为高电平时,T7处于导通状态,P点被拉低;

阶段2,Gn输出高电平:在阶段1中,Q点被预充电,C1对电荷具有一定的保持作用,T2处于导通状态,CKV2的高电平输出到Gn端;

阶段3,Gn输出低电平:C1对Q点的高电平具有保持作用,而此时CKV2的低电平将Gn点拉低;

阶段4,Q点拉低到VGL:当CKV4为高电平时,T8导通,P点被充电,T6导通,Q点被拉低;

阶段5,Q点及Gn点低电平维持阶段:当Q点变为低电平后,T7处于截止状态,当CKV4跳变为高电平时T8导通,P点被充电,那么T4和T6均处于导通的状态,可以保证Q点及Gn点低电平的稳定,同时C2对P点的高电平具有一定的保持作用。

本发明提出了一种新的GOA电路,详见图4虚线框部分,正向扫描时序见图5:本发明在现有的GOA电路基础上增加T9、T10两个TFT,此时该GOA电路无需D2U和U2D控制信号的配合就可以实现正反向扫描功能,这对于更窄边框的设计起到一定的帮助作用。同时该GOA电路对应的驱动时序简单,可以降低IC成本。另一方面,该电路组成的预充电单元T1、T9、T3、T10只有在预充电阶段为高电平,其余阶段均为低电平,可以有效改善Q点漏电情况的发生,保证GOA电路的稳定性。

参见图6,其为图4的GOA电路反向扫描时序示意图。现结合图4,对电路的具体工作过程(反向扫描)介绍如下:

阶段1,预充电:Qn+1与CKV3同时为高电平,T10导通,而此时Gn+1也为高电平,T3导通,H点被预充电。当H点为高电平时,T5处于导通状态,Q(即Qn)点被预充电。当H点为高电平时,T7处于导通状态,P点被拉低;

阶段2,Gn输出高电平:在阶段1中,Q点被预充电,C1对电荷具有一定的保持作用,T2处于导通状态,CKV2的高电平输出到Gn端;

阶段3,Gn输出低电平:C1对Q点的高电平具有保持作用,而此时CKV2的低电平将Gn点拉低;

阶段4,Q点拉低到VGL:当CKV4为高电平时,T8导通,P点被充电,T6导通,Q点被拉低;

阶段5,Q点及Gn点低电平维持阶段:当Q点变为低电平后,T7处于截止状态,当CKV4跳变为高电平时T8导通,P点被充电,那么T4和T6均处于导通的状态,可以保证Q点及Gn点低电平的稳定,同时C2对P点的高电平具有一定的保持作用。

本发明提出了一种新的GOA电路,详见图4虚线框部分,反向扫描时序见图6:本发明在现有的GOA电路基础上增加T9、T10两个TFT,此时该GOA电路无需D2U和U2D控制信号的配合就可以实现正反向扫描功能,这对于更窄边框的设计起到一定的帮助作用。同时该GOA电路对应的驱动时序简单,可以降低IC成本。另一方面,该电路组成的预充电单元T1、T9、T3、T10只有在预充电阶段为高电平,其余阶段均为低电平,可以有效改善Q点漏电情况的发生,保证GOA电路的稳定性。

从图5和图6中还可知,时钟信号CKV1,时钟信号CKV2,时钟信号CKV3和时钟信号CKV4为占空比为0.25的矩形波。正向扫描时,时钟信号CKV1和时钟信号CKV2之间波形相差四分之一周期,该时钟信号CKV1和时钟信号CKV4之间波形相差四分之三周期。反向扫描时,时钟信号CKV3和时钟信号CKV2之间波形相差四分之一周期,时钟信号CKV3和时钟信号CKV4之间波形相差四分之三周期。

本发明对于首、末端级联的GOA单元可以采用输入启动信号的方式来代替缺少的信号输入。对于首端一级GOA电路单元,正向扫描时,该第一启动信号初始为高电平,当该第一启动信号变为低电平时,该第n级GOA电路单元的信号输出点Gn变为高电平。对于末端一级GOA电路单元,反向扫描时,该第三启动信号初始为高电平,当该第三启动信号变为低电平时,该第n级GOA电路单元的信号输出点Gn变为高电平。

对于首端一级GOA电路单元,正向扫描时,当该第一启动信号为高电平时,该第二启动信号为高电平。对于末端一级GOA电路单元,反向扫描时,当该第三启动信号为高电平时,该第四启动信号为高电平。

本发明的GOA电路已知和潜在的技术/产品应用领域及其应用方式如下:1、集成在阵列基板上的液晶显示器行扫描(Gate)驱动电路;2、应用于手机,显示器,电视的栅极驱动领域;3、可涵盖LCD和OLED的行业先进技术;4、本电路的稳定性适用于高解析度的面板设计当中。

综上,本发明提出的GOA电路无需D2U和U2D控制信号的配合就可以实现正反向扫描功能,这对于更窄边框的设计起到一定的帮助作用;同时该GOA电路对应的驱动时序简单,可以降低IC成本。另一方面,该电路组成的预充电单元T1、T9、T3、T10只有在预充电阶段为高电平,其余阶段均为低电平,可以有效改善Q点漏电情况的发生,保证GOA电路的稳定性。

以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1