用于防伪元件的制造方法和防伪元件与流程

文档序号:29861927发布日期:2022-04-30 11:25阅读:79来源:国知局
用于防伪元件的制造方法和防伪元件与流程
用于防伪元件的制造方法和防伪元件
1.本发明涉及一种用于防伪元件的制造方法,所述防伪元件产生彩色的、光学可变的图案(或者说图形对象)。此外,本发明还涉及这种防伪元件。
2.在现有技术中已知光敏层,在它们被光照射时,它们的物理和化学的特性改变。它们主要用于制造微纳结构。所述结构借助uv漆或者所谓的光致抗蚀剂产生,即最终通过微光刻方法产生。
3.制造具有彩虹色的层的一种可行性是所谓的色移层结构。尽管它们能够通过蒸镀方法完全施加在基底上,然而多色的结构要求多道工序并且因此需要耗费地制造。在各个单独的工作步骤中尤其需要注意套准稳定性的问题。
4.同样已知体积全息图,它们通过光衍射和干涉对于观察者产生三维效果的图像。体积全息图将入射光束的强度和相存储在光敏介质中。体积全息图的大规模制造是复杂和昂贵的,因为对于曝光需要耗费的设备并且通常必须将非常贵的光致抗蚀剂用于制造。
5.由m.ito等人的公开出版物“structural colour using organized microfibrillation in glassy polymer films”,《nature》,2019年6月20日,570卷,363

367页已知,通过驻光波(或称为光驻波)使聚合物交联并且因此形成由微纤维组成的结构,所述微纤维产生彩色图案。
6.本发明所要解决的技术问题在于,提供一种用于简单地制造产生彩色的光学可变的图案的防伪元件的制造方法以及这种防伪元件。
7.本发明在独立权利要求中定义;从属权利要求涉及优选的扩展设计。
8.用于制造有价文件、例如钞票或者支票等的光学可变的防伪元件具有聚合物膜并且可选地具有布置在聚合物膜下方的反射器层。在聚合物膜中形成横向结构化的微纤维,它们使得聚合物膜具有显现为彩色图案的颜色效果。在此,按照如在所述的《nature》的文章中描述的原理产生微纤维。因此,按照驻光波组织所述微纤维。所述驻光波例如来自相干光束的干涉,它们在聚合物膜中导致相长干涉的定位并且由此在聚合物中产生(通常局部改变的)交叉交联,所述交叉交联随即借助适当的溶剂暴露出。
9.这个在《nature》中描述的微纤维化方法在变型方案1中设计具有反射器层,所述反射器层在反射度和/或成型轮廓方面被横向结构化,从而由此在反射器层上方以反射光的曝光中在入射的和反射回的辐射之间形成干涉并且最终形成用于彩色图案的微纤维结构。反射器层这样用于交联,使得微纤维具有形成彩色图案的横向结构。反射器层例如可以设计为金属的镜面层并且也可以在微纤维化方法之后被去除。在变型方案2中,在聚合物膜中,在两个入射的射线之间产生干涉。由此不需要反射器层并且例如可以将体积全息图直接写入聚合物膜中。
10.因此,聚合物膜通过微纤维化在颜色效果方面尤其设计为体积全息图并且具有海绵状的结构,在所述结构中,各个单独的平面和/或孔周期性地布置。由此产生结构颜色。
11.聚合物膜通过以驻波的形式施加的光在一定程度上“被曝光”,其中,在变型方案1中,反射器层的横向结构化也将曝光部结构化,并且接下来通过基于溶剂地去除未交联组分而显影。通过将横向结构化的反射器层作用用于曝光步骤,能够非常简单地制造图案。
12.特别有利的并且保护环境的是使用可溶于水的聚合物,例如pva、pa、pvp、paa或者pam。在这些聚合物中,未交联的区域可以只借助水去除,并且因此不需要溶剂。
13.在实施方式中,反射器层被横向地反射度调制、尤其是像素化。这例如能够以像素结构的形式实现。补充地/备选地也可以横向地调制反射器层与聚合物层的距离。反射度例如可以通过金属层的厚度改变,所述厚度可以在最大反射层厚与零之间波动。作为用于反射器层的材料优选考虑金属如al、cu、cr、ni、au、ag等以及它们的合金、如zns、sio2、mgf2或者由现有技术已知的薄膜-干涉层系统。特别的电介质或者由所述材料组成的层系统也是可行的。
14.反射器层在微纤维化形成时产生聚合物中的所示图案的强度调制,所述强度调制又在显影过程期间导致形成横向结构化的微纤维。所述微纤维可以被视为横向结构化的布拉格平面,其作用产生颜色组分。由此尤其可以取消对聚合物膜的横向改变的结构化。因为反射器层能够相对简单地制造和横向结构化,所以这些实施方式具有在简单的可制造性方面的特别的优点。尽管如此,它们却难以被模仿或者伪造。
15.当然作为备选方案或者作为附加的扩展设计同样可行的是,在颜色效果方面横向地结构化所述聚合物膜。这例如可以通过用驻光波相应地曝光实现,所述驻光波横向地、光谱地和/或在强度上不同。
16.在实施方式中,微纤维结构提供一种体积全息图。为此在实施方式中,如针对反射全息图、透射全息图或者denisjuk全息图已知的那样曝光所述聚合物膜。在其它的实施方式中,反射器层设计为凸纹结构,所述凸纹结构具有用于显示图案的相应的凸纹,因此在曝光时,被这个横向结构化的表面反射的光以对象射线的形式与用作基准的入射射线在聚合物层中叠加并且因此产生干涉。表面凸纹用于实现由反射层反射的光的相调制,因此这个凸纹结构影响颜色效果。
17.凸纹结构尤其可以在聚合物层与反射层之间作用产生横向改变的距离。凸纹结构可以通过微纳光刻的方法制造并且通过不同的压印方法转印或者复制。凸纹结构尤其可以具有:处于影响颜色效果的不同高度水平中的、与聚合物结构间隔不同距离的平台、微镜、闪耀光栅结构、菲涅尔结构、蛾眼结构、具有尖锐的或者倒圆的棱边的亚波长结构、正弦光栅结构、柱结构或者具有倾斜的或垂直的侧面的阶梯光栅结构。在并排的区域中也可以使用这些光栅结构中的不同结构。所述结构主要是在中等周期或者类周期或者单独结构尺寸具有不同数量级的情况下也可以叠加。特别一般地,凸纹结构可以设计为自由形状面。例如可以显示对于钞票常见的图案,其中,三维图案也是可行的。在适当的照明时,也可以在没有横向结构化的反射层的情况下观察光学可变的效果。
18.在其它实施方式中,微纤维结构产生多色的像素图像,其中,作用产生像素图像的像素结构设计在反射器层(如果没有被去除)、聚合物层或者反射器层和聚合物层中。
19.在另一个实施方式中,垂直于聚合物膜的表面地实现微纤维结构的结构化。在此,聚合物膜的其中布置有各个单独的层和/或孔的海绵状结构这样产生,以使得曝光聚合物膜的驻波这样被施加,使得在聚合物膜与溶剂接触时,非周期性地形成微纤维结构。这例如可以通过用不同波长的驻波照射所述聚合物层来实现。
20.在该实施方式的第一变型方案中,有针对性地将缺陷嵌入微纤维结构中。例如将微纤维结构中的以下各个单独的层称为缺陷,通过用驻波照射和接下来基于溶剂地去除聚
合物膜中的未交联组分,所述层有针对性地变得比微纤维结构的其它层更厚或者更薄。由此在高反射性的区域(带隙)内在反射光谱中形成最小值/最大值,并且颜色印象与微纤维结构的周期性设计相比会改变。
21.在该实施方式的第二变型方案中,微纤维结构的层的厚度通过用驻波照射聚合物结构这样形成,使得层的厚度随着这些层与基底距离越来越远而连续地或者逐渐地增加。这会扩大反射光谱。例如可以通过以下方式实现层厚的增加,即随着层与基底距离越来越远而使用不同的光引发剂。光引发剂是化合物,所述化合物在吸收光之后分解并且由此形成可以启动反应的反应性粒子。光引发剂通过不同波长的光源曝光并且由此在不同的层中形成不同的层厚,例如对于更靠近基底的层使用光引发剂a,对于距离基底更远的层使用另一种光引发剂b,并且对于距离基底最远的层使用另一种光引发剂c。光引发剂是化合物,所述化合物在吸收光后之分解并且由此形成可以启动反应的反应性粒子。光引发剂通过不同波长的光源曝光并且由此在不同的层中形成不同的层厚。
22.在变型方案中,将不同的聚合物材料用于各个单独的聚合物层并且使用相同的光引发剂。不同的聚合物会产生不同的带隙,因为层厚和折射率根据聚合物而改变。
23.在实施方式中,不同聚合物的多个聚合物膜在多个工序中施加,并且曝光和显影在一个工序中进行。显影在此是指基于溶剂地去除聚合物的未交联组分。不同的显影剂混合物、例如乙酸在水中的浓度或者乙酸在不同溶剂中的混合物,以不同的速度使聚合物膜中的微纤维结构的不同层显影。在变型方案中,所述的层厚变化通过以下方式实现,即针对所述层不同地设置显影时长,也就是各个单独的层对于基于溶剂地去除聚合物的未交联组分所需的时长,例如上层已经完全显影,而下层还没有、或者只是部分地显影。在此,可以始终使用一种聚合物和光引发剂,并且在一个工序中进行曝光和显影。
24.这种对不同的显影剂混合物的使用不只可以用于垂直于聚合物膜表面地实现微纤维结构的结构化,而且还可以用于横向的结构化。不同的显影剂混合物可以在横向上并排地使用在聚合物膜上,以实现不同程度的横向显影并且由此实现不同的结构颜色。
25.在实施方式中,将显影剂混合物在时间上错移地横向地施加到聚合物膜上。这例如可以在两个工作步骤中完成。首先将显影剂混合物施加到聚合物膜上的第一位置上。然后将相同的显影剂混合物也施加到聚合物膜上的第二位置上。由此,显影剂混合物在聚合物膜上的第一位置处具有比在第二位置处更多的用于与聚合物膜相互作用的时间,并且显影在第一位置处更先一步,由此在横向不同的位置处产生不同的结构颜色。
26.根据另一实施方式,聚合物层设计为可弹性或者塑性变形的。由此可以通过改变施加在聚合物层的一部分或者整个表面上的机械压力、通过改变聚合物层的层厚来产生聚合物层的颜色的可逆或者不可逆的改变。聚合物层的颜色或者反射(或者透射)的波长通过改变其层厚来改变,层越薄,颜色印象越偏向蓝色。例如,如果聚合物层是红色的并且用手指对其施加机械压力,则聚合物层在该区域中被压缩,层厚减小并且结构颜色可以由此例如从红色经由黄色和绿色变为蓝色。
27.聚合物层的塑性并且因此永久的变形例如通过压印方法、优选通过雕版印刷进行。
28.聚合物膜的海绵状结构由微纤维和空腔组成。如果这些空腔至少部分是开孔的,则根据另一个实施方式,所述空腔可以填充有液态或者气态的介质。例如,如果一部分空腔
被水填充,而在另一部分中留有空气,则被填充的空腔范围中的区域具有不同的颜色,因为空气的折射率为1并且水的折射率为1.33。如果微纤维的折射率和空腔中的介质的折射率大小相同,则聚合物层也可能变得透明。
29.根据另一优选实施方式,反射器层可以保留在聚合物层上。备选地,聚合物层可以在背离观察(方向)的表面上涂有深色或者黑色。备选地,可以通过添加煤灰或者炭黑对聚合物层进行改性,以最佳地发挥干涉颜色的作用。为了进一步提高颜色强度,将透明的高折射颗粒、例如由tio2制成的颗粒添加到聚合物中,从而进一步提高在纤维化层和连续层之间的折射率差异。具有漫散射颜色的底印(unterdrucken)也会导致当以镜面或者非镜面的方式观察时不同的颜色、尤其是互补的颜色。
30.当然,针对防伪元件提到的方面也同样适用于制造方法,所述制造方法关于微纤维的产生遵循由所提到的《nature》的文章中提到的原理。尤其规定一种防伪元件,该防伪元件通过所述制造方法之一制造或者能够通过所述制造方法之一获得。
31.根据另一优选实施方式,根据本发明的聚合物层在接下来的工艺步骤中硬化或者说固化。这具有特别的优点,即提高了聚合物层例如针对机械磨损、之后的机械压力、溶剂或者其它环境影响的稳定性。所述硬化特别优选通过用紫外线辐射照射聚合物层来实现。通过将聚合物层嵌入保护层和/或薄膜之间进一步地提高聚合物层和保留在聚合物层上的反射器层的稳定性。
32.本发明还涉及一种具有上述类型的防伪元件的有价文件。在一个设计方案中,有价文件例如设计为钞票或者支票。
33.根据本发明的防伪元件可以与有价文件的任意的其它防伪元件组合,所述其它防伪元件例如是全息图、例如具有运行效果或者3d表面(菲涅耳式)的微镜、微凹镜或者亚波长结构。这分别优选地这样实现,使得反射层产生用于产生驻波的反射并且在其它横向的部分区域中产生描述的其它特征。可选地,在曝光之后去除产生驻波的部分,这例如可以通过蚀刻来完成。此外,与以下特征的组合是可行的:磁体、传导性、荧光、磷光。这些任意的其它防伪元件在此特别优选地横向地布置在微纤维旁边。
34.以下参照同样公开了对本发明重要的特征的附图根据实施例更详细地阐述本发明。这些实施例只用于说明并且不解释为限制性的。例如,对具有多个元件或者部件的实施方式的描述不应被解释为所有这些元件或者部件都是用于实施所必需的。相反,其它实施例也可以包含备选的元件和部件、更少的元件或者部件、或者附加的元件或者部件。只要没有另作说明,不同实施例的元件或者部件可以相互组合。针对实施例之一描述的修改和变型也可以应用于其它实施例。为避免重复,相同或者相应的元件在不同的附图中以相同的附图标记表示并且不再次阐述。在附图中:
35.图1示出具有多个防伪元件的钞票的示意图,
36.图2示出剖切图1的防伪元件之一得到的剖视图,
37.图3示出图2的防伪元件中的聚合物层的示意性剖视图,
38.图3a至3d示出用于曝光聚合物层以形成根据图3的结构的不同可行性,
39.图4示出类似于图2的防伪元件,但具有像素状地结构化的反射器层,
40.图5示出类似于图2的剖视图,但具有像素状地结构化的聚合物层,
41.图6示出类似于图4和5的视图,其中,反射器层和聚合物层都被像素状地结构化,
42.图7示出具有反射器层的防伪元件的一个实施方式,所述反射器层具有不同的平台,
43.图8示出类似于图2的用于提供形式为体积全息图的防伪特征的实施方式的视图,并且
44.图9示出用于提供形式为体积全息图的防伪特征的实施方式的视图,其中,在制造期间使用了两个干涉射线。
45.图1示意性地示出了具有多个防伪元件的钞票2的俯视图。一个防伪元件4设计为贴片的形式,另一个防伪元件设计为防伪条或者防伪线6的形式。防伪元件的具体面状设计可以根据应用来选择。以下描述单纯示例性地参照防伪元件4。
46.图2示出剖切防伪元件4得到的剖视图。所述防伪元件施加在基底8、例如钞票2的钞票纸上,其中,也可以将中间载体用作基底8,然后将中间载体施加到钞票2的钞票纸上,从而由此将防伪元件4设计为所谓的转移元件(transferelement)。
47.在基底8上存在聚合物层12,该聚合物层12已经从其上侧14通过在引用的《nature》的文章中描述的工艺配设有微纤维结构13。所述微纤维结构在图3中示意性地示出并且根据由对象射线与基准射线的干涉产生的驻波被组织化。为了提供这些射线存在两种变型方案:变型方案1与处于聚合物层下方的反射器层共同工作。入射的光束或者说射线由此是基准射线,在反射器层上被反射的射线是对象射线。在备选的变型方案2中,对象射线和基准射线是独立入射的。
48.微纤维结构13包括微纤维13a和空腔13b(参见图3)。在变型方案1中,所述微纤维结构通过以下方式产生,即用相干长度大于聚合物层12的厚度的辐射照射市场上常见的面状的聚合物、例如聚苯乙烯或者聚碳酸酯薄膜或者相应的膜(优选平行于其面法线)。优选使用uv辐射。在该照射期间,反射器层位于聚合物层12下方(参见图3-8),从而在反向反射中形成对象射线。在变型方案2(参见图9)中,对象射线和基准射线是独立入射的。在这两种情况下,聚合物层12的厚度都小于所使用的辐射的相干长度,由此在聚合物层12内形成驻波。聚合物在驻波强度最大的波腹处交联,并且在交联区域与未交联区域之间形成周期性机械应力场,其中,未交联区域位于驻波的节点处。优选将附加的光引发剂添加到聚合物中。
49.通过使用匹配的溶剂,随即根据图3形成以这种方式曝光的微纤维结构13,其中,微纤维13a和空腔13b的各个单独的平面根据驻波结构自动地周期性地排列。关于制造的细节,参考《nature》的文章以及所属的在《nature》中发表的补充材料。由此将这些公开出版物的内容在此完全纳入其中。
50.当聚合物层12已经以这种方式曝光和显影时,所述聚合物层12产生横向调制的颜色效果,在变型方案1中,该颜色效果受到在曝光时位于其下方的反射器层10的横向结构化部的影响,这也出现在聚合物层12在没有位于其下方的反射器层10的情况下装入防伪元件中时。
51.结构化可以在曝光时进行,即由微纤维13a和空腔13b组成的微纤维结构13可以被横向地、即横向于表面14地结构化。图3a示出了远场曝光16均匀地曝光整个聚合物层12的实施方式。通过附加地横向结构化的反射器层10形成横向结构化的微纤维结构13并且因此形成彩色图案。
52.在其上存在聚合物层12的基底8在此及以下未示出。所述基底可以布置在聚合物层12和反射器层10之间,或者布置在聚合物层12的上侧或者朝向曝光16的侧面上。在这两种情况下,基底10必须对用于使聚合物层12结构化所需的照明波长是透明的。
53.图3b示出可以通过使用掩膜18附加地实现结构化曝光。掩膜18在各个单独的位置上阻挡远场曝光16,使得光只能在掩膜18的间隙处入射到聚合物层12上。相应地,光也只能在这些区域中在反射器层上被反射并且入射光产生干涉,只要在这些被照射的区域中存在反射作用。颜色效果也只形成于这样的位置,在所述位置处,光穿过掩膜照射并且同时也在反射器层上被反射。以这种方式尤其可行的是,作为对通过反射器层10作用产生的结构化部的补充或者备选,在聚合物层12中形成结构化部、例如像素化部,其中,这种像素化部影响颜色。曝光也可以用不同的波长进行,从而通过聚合物层12产生的色调在横向上不同,例如具有由原色(例如红色、绿色、蓝色)的子像素形成的三色像素。为此,在不同波长或者在不同波长范围内在时间上依次地使用多个远场曝光16a、16b。附加的横向结构化部在此通过不同的掩膜18a、18b实现,所述掩膜分别作用于相应的远场曝光16a、16b。图3c以共同的视图示出这些依次相续地进行的曝光。当然,多色性不限于两种颜色;同样地,也可以进行三个、四个或者更多个不同的曝光步骤,其中,每个曝光步骤曝光聚合物层12的不同的部分面区域并且为其提供颜色效果。以这种方式多次地曝光,聚合物层12通过使用溶剂进行显影,以形成随后横向结构化的微纤维结构13。
54.根据优选的实施方式,掩膜保留在防伪特征上,以便例如在确定的区域中形成全息图或者其它的光学可变特征。为此,优选使用区域性地存在的金属层作为掩膜。优选在曝光之后区域性地从聚合物层上去除掩膜。
55.保留在基底上的掩膜特别优选在可见光谱范围内是透明的(即在最终产品中不可见或者至少不显眼)并且在uv范围内是不透明或者至少半透明的。在此,掩膜例如由50nm厚的tio2层组成。所述层在可见光范围内基本上是透明的,但在波长约为或者低于300nm的紫外范围内只显示非常低的透射率。
56.备选地,掩膜可以与薄膜幅(folienbahn)分隔开。
57.需要注意的是,在制成的防伪元件4、6中,与倾斜角相关的颜色效果在照明时同样通过干涉形成,可能也在没有反射器层10的情况下形成。在聚合物层显影时形成微纤维,其中,由于显影过程,所述微纤维彼此之间的距离可能与曝光时的波腹的原始距离不同。以这种方式,在曝光波长处于紫外范围内的情况下,在聚合物层显影之后,在观察时的布拉格最大值可能处于可见光谱范围内。
58.对远场曝光的备选是通过网格化的光束20(例如来自激光器或者led)进行曝光,所述光束具有所需的相干长度并且根据扫描样式22通过聚合物层12偏转。这在图3d中示出。在此,激光辐射的波长可以在各个单独的位置不同地设计,以便在颜色效果方面产生聚合物层12的横向结构化。
59.这些附加的结构化选项允许例如为反射器层10提供与亮度相关的用于图案的像素结构,并且通过附加的结构化(掩膜或者网格)为每个像素配设调节形成其颜色的子像素。
60.聚合物层12下方的横向结构化的反射器层10既可以存在于整个表面上,如在图2和3中所示的那样,也可以存在于部分表面上。图4示出了反射器层10的像素化部,所述像素
化部由具有高反射的反射器像素24和具有低反射或者没有反射的反射器像素26组成。驻波由此只在反射器层10具有足够反射的像素处形成,或者强度取决于像素反射率和/或面覆盖率。以这种方式可以产生有色的、网格化的像素图像。
61.如已经参照图3b、3c和3d所阐述的那样,通过曝光还可以产生聚合物层12的附加网格化,因此该聚合物层具有聚合物层像素28和30,如图5所示,在所述聚合物层像素中,在使用溶剂显影之后的颜色印象不同。由此实现彩色的像素图像。当然,多于两种的不同的像素类型也是可能的。
62.图4和5的原理当然也可以组合,如图6所示。在此,反射器像素和聚合物层像素的像素网格不一定必须相同,即使这可能是有利的。尤其可以通过反射器层中的非常高的像素密度与位置相关地调整由聚合物层像素形成的彩色像素内的各个单独颜色的亮度。最终可以由此自由地选择针对每个颜色点的亮度以产生图案。
63.因此,在特别的实施方式中规定,聚合物层12和反射器层10都具有像素结构,其中,反射器层10中的像素密度至少是聚合物层12的像素密度的两倍。因此可以特别有利地使用反射器层10负责一个位置上的强度并且聚合物层12负责颜色这一事实。
64.所提到的效果体现在微纤维结构中并且即使在没有反射器层10的情况下也在显影之后保持。
65.图7示出了反射器层10具有处于不同高度的平台32、34、36的实施方式。这利用了反射辐射的路径长度与在聚合物层内部设置驻波的波节和波腹相关的事实。由于不同的高度水平,即平台32、34、36相对于聚合物层12的不同距离,每个平台32、34、36产生不同的颜色强度,而聚合物层12在其它方面保持不变。这种方法尤其可以考虑用于未结构化的聚合物层12,例如通过根据图3a的远场曝光16获得的聚合物层,以便以横向结构化的方式分配不同的颜色强度。
66.图8示出了一种实施方式,其中反射器层10在其朝向聚合物层12的侧面上具有凸纹结构。以这种方式,如在说明书的

背景技术:
部分中已经阐述的那样,能够特别简单地产生类似于体积全息图的防伪元件,方式为将凸纹结构设计成使得它例如再现三维的光学印象。由于通过该反射器层10曝光,随即形成相应的对象射线并且在总体上形成包含微纤维的聚合物,其中,微纤维的作用类似于体积全息图中的布拉格平面,所述体积全息图还提供了从各种不同视角的三维视图。
67.在变型方案2中的制造方法中,根据图9,对象射线和基准射线作为能够干涉的分隔开的射线42、44入射。对象射线44不是如在变型方案1中的情况那样来自基准射线的反向反射。因此,没有设置反射器层。相反,如在全息拍摄中那样,对象光束44被对象46调制。备选地,借助光学的射线成形元件(例如dmd或者类似元件)产生调制。两个(或者更多)射线可以从聚合物层12的相同侧面或者相对置的侧面入射。
68.尤其是以下实施方式和设计方案是可行的:
69.1.光源
70.a.整个表面/部分表面的曝光:
71.光源可以将设计为聚合物膜的聚合物层在整个或者部分表面上曝光。对于整个表面的曝光,例如led是足够的(参见图3a),其相干长度是足够的。如果应该逐个像素或者逐个区域地曝光膜,可以使用可偏转的强聚焦光束(例如激光)(参见图3d),或者能够直接调
制的光源(micro-led)或者光学元件,如slm(空间光调制器)、dmd(数字微镜设备)或者doe(衍射光学元件)。产生部分表面的曝光的另一种可能性是使用掩膜(参见图3b、3c)。
72.整个表面或者至少部分表面的照明也可以通过自发光显示器或者自发光屏幕实现。在此,显示器或者屏幕照亮整个表面或者图案状地照亮聚合物。
73.在基于卷对卷(r2r)原理的工业制造方法中,曝光也可以备选地通过行状地布置的led实现,其中,所述行平行于卷的旋转轴定向。在此,聚合物的照明直接通过led或者通过led与聚合物之间的成像光学器件实现。
74.在所有情况下,都需要对象射线和基准射线在聚合物中的相干叠加。
75.微纤维化方法的优势在于,通过使用doe/slm/dmd结合led或者激光作为光源,光可以在微米的长度尺度上被调制。因此,通过微纤维化方法可以实现高达25000dpi的分辨率。同时,通过光学元件的灵活性实现了高度的个体化可能性。由于呈现布拉格平面的微纤维嵌入聚合物膜中,因此无法制作用于伪造目的的复制品或者模具,这实现了较高的防伪安全性。
76.b.波长的改变:
77.用不同波长的光的照射会产生不同的结构颜色。因此,通过rgb像素的加色混合能够覆盖较大的色彩空间。曝光可以通过显示器的不同颜色的显示内容、单色激光器或者具有不同发射波长的led依次或者同时地产生。为此,例如聚合物膜可以依次地被不同的掩膜18覆盖并且以单色辐射穿过所述掩膜曝光(参见图3d)。
78.2、反射层的面覆盖率
79.聚合物下方的反射层既可以存在于整个表面上,也可以存在于部分表面上。如果反射层存在于整个表面上,则可以只通过调制光源实现对颜色的逐个像素的网格化。如果反射层被网格化,则驻波只在下方存在反射层的像素中形成。因此可以产生网格化部(rasterung)。
80.3.反射层的凸纹结构
81.可以在聚合物膜下方放置压印的反射凸纹结构。压印结构可以由所有可能的凸纹结构组成,例如微镜、菲涅耳式微镜、闪耀光栅、蛾眼结构、亚波长光栅、正弦光栅、曼哈顿光栅或者阿兹台克结构。也可以通过涂覆例如较深的颜色实现结构化,其中,将颜色施加到凸纹结构的朝向照明装置的侧面上。这些和其它的结构也可以彼此并排地布置或者重叠。因此,例如可以通过区域性地布置的蛾眼结构或者其它吸收光的结构来区域性地抑制反射,并且在这些区域中不在聚合物层中产生微纤维。
82.凸纹图案可以
83.a)直接位于薄膜上并且保留在该处,
84.b)直接位于薄膜上并且在曝光之后在转移步骤中被剥离或者至少部分去除(例如通过完全或者部分地腐蚀掉金属涂层,而保留凸纹结构),
85.c)在薄膜的下方套准地共同运行,
86.d)静止地处于薄膜的下方(不共同运行),曝光套准地例如通过同步闪光光源实现。
87.以下实施方式是优选的:
88.i.具有结构颜色的单色像素图像:
89.通过使用在1a.和2.中所述技术之一,可以制造单色的、彩虹色的像素图像。通过改变有色区域的面覆盖率,还可以制造不同的色调饱和度。所制造的图案具有高达25000dpi的分辨率。
90.由于高分辨率,像素图像的使用对于具有诸如微透镜的微成像元件的防伪特征也是有利的,其中,像素图像可以用作微成像元件的焦平面中的微结构图像。
91.ii.具有结构颜色的多色像素图像
92.通过使用在1a.和2.中的描述的技术的组合以及在1b.中描述的对具有不同波长的光源的使用,可以制造多色的、彩虹色的像素图像。通过改变有色区域的面覆盖率,还可以制造不同的色调饱和度。所制造的图案具有高达25000dpi的分辨率。
93.由于高分辨率,像素图像的使用对于具有诸如微透镜的微成像元件的安全特征也很有意义。这将能够升级钞票市场中已经存在的微透镜特征,因为这些微透镜特征迄今只是单色的。
94.iii.微纤维化全息图的制造
95.通过使用微纤维化方法制造的体积全息图称为微纤维化全息图。使用微纤维化方法,光致抗蚀剂可以被聚合物膜、例如市场上常见的添加了少量光引发剂的聚合物代替。所述制造工艺在其它方面与通过用干涉射线曝光来制造体积全息图的常见制造相同。因此,全息图能够以已经描述的所有表现形式被记录,例如作为反射、透射或者denisjuk全息图。
96.备选地,也可以在不使用实质存在的对象的情况下制造全息图。因此可以使用slm或者dmd(只使用反射全息图)产生对象射线。
97.附图标记清单
98.2 钞票
99.4 防伪元件
100.6 防伪线
101.8 基底
102.10 反射器层
103.12 聚合物层
104.13 微纤维结构
105.13a 微纤维
106.13b 空腔
107.14 上侧
108.16、16a、16b 远场曝光
109.18、18a、18b 掩膜
110.20 激光
111.22 扫描样式
112.24、26 反射器像素
113.28、30 聚合物层像素
114.32、34、36 平台
115.38 嵌入介质
116.40 凸纹层
117.42 基准辐射
118.44 对象辐射
119.46 对象
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1