借助激光光斑放大来激光加工工件的方法

文档序号:2764079阅读:345来源:国知局
专利名称:借助激光光斑放大来激光加工工件的方法
技术领域
本发明涉及激光微加工,且特别是涉及一种采用快速偏转反射镜来移动激光光斑的方法和设备,其中该激光光斑在衬底上依所需的图形具有聚焦的光斑尺寸,用以去掉该衬底上比聚焦光斑尺寸大的目标区域。
背景技术
这里仅针对多层电子工件以示例方式展示背景技术,所述多层电子工件例如为集成电路芯片封装、多芯片模块(MCM)和高密度互连电路板,它们已成为电子封装工业最优选的元件。
用于封装单个芯片的器件,如球状矩阵排列、引脚网格阵列、电路板及混合微电路,通常包括分立的金属、有机电介质和/或增强材料以及其它新材料的元件层。近来,大量的工作已经以开发基于激光的微加工技术为目标,为的是在这类电子材料上形成通路孔(via)或者进行其它处理。对于微加工,在这里仅以示例方式来讨论通路孔,且其也可采取完整的通孔形式或者采取被称为盲通路孔的不完整的孔的形式。遗憾的是,激光微加工包含大量的变量,这些变量包括激光器类型、运行成本以及激光器和目标材料特定的工作参数,如光束波长、功率和光斑尺寸,因此导致加工生产量和孔的质量变化很大。
对于许多用途来说,与所希望的切口宽度和孔的直径相比,目前在微加工操作中所使用的脉冲紫外激光器产生较小的光斑尺寸。用于形成比激光光斑尺寸大的特征几何特征(在下文中称之为“外形加工”)的激光加工的生产量可以通过使用较大和功率密度较低的激光光束来提高。如在Owen等人的美国专利第5841099号中所描述的激光器离焦操作,能够有效地增大激光光斑尺寸并降低其功率密度。同样属于Owen等人的美国专利第5593606号和第5841099号,描述了使用紫外激光器系统在有利的参数范围内产生激光脉冲输出,从而在多层器件中形成通路孔或者盲通路孔的优点。这些专利提到了众所周知的技术,用这些技术,通过穿孔、同心圆加工或者螺旋加工(spiral processing)能够生产直径比聚焦光斑尺寸大的通路孔。这些技术在下文中都将被称为“外形钻孔(contoured drilling)”。
遗憾的是,激光的离焦操作经常导致无法预料的和不希望的能量分布和光斑形状并对通路孔质量(包括通路孔壁锥度、在通路孔底部的铜层的熔化程度、及在钻孔期间由熔化铜的飞溅所引起的环绕通路孔周围的“边缘”的高度)产生不利影响。此外,因为进入常规的准直和聚焦光学器件的光斑尺寸与碰撞目标的光斑尺寸成反比,因此施加在上述光学器件上的功率密度很快超出了光学器件的损坏阈值。
Ward的美国专利第4461947号公开了一种外形钻孔的方法,在该方法中,以一透镜在垂直于入射激光光束的平面内旋转,从而影响尺寸上比聚焦激光光斑大的目标区域。所述透镜的旋转与支撑安装臂的位置无关。Ward的专利也公开了一种现有技术的外形钻孔方法,该方法依靠安装臂在一平面内的移动来实现透镜旋转。在该背景技术中,Ward的专利公开了可以通过旋转反射镜来旋转光束。
Kawasaki等人的美国专利第5571430号公开了一种激光焊接系统,该系统采用了一种凹面聚光镜,其绕第一轴枢转,并且由一个旋转支撑部件支撑在轴承上从而使该凹面聚光镜可以绕与第一轴垂直的第二轴旋转。该凹面聚光镜绕第一轴转动为的是增加被去掉目标的“宽度”,而绕第二轴转动为的是形成环形图形。

发明内容
因此,本发明的一个目的是,提供一种方法或者设备,用以在空间上快速分布高重复率脉冲激光的聚焦激光光斑,并且由此而分布能量密度。
本发明的另一个目的是快速地形成比聚焦激光光斑的尺寸大的几何特征。
本发明的一个进一步的目的是提高在这种激光加工操作中的工件的生产能力和/或质量。
Cutler等人的美国专利第5751585号和第5847960号亦即Cutler的美国专利第6430465 B2包含分裂轴定位系统的描述,在该系统中,上部工作台是不被下部工作台支撑的并且独立于下部工作台移动,并且在该系统中,工件被承载于一个轴或者工作台上,而工具则被承载于另一个轴或者工作台上。上述这些定位系统具有一个或者多个上部工作台,它们各自支撑一个快速定位器,并且能够同时以高生产率处理一个或多个工件,这是因为上述被独立支撑的工作台各自承载比堆叠工作台系统更小的惯性质量并且能够更快地加速、减速或者改变方向。这样,因为一个工作台的质量不由其它的工作台来承载,给定负载的谐振频率就增加了。此外,在响应定位命令数据流、同时协调定位器各自的移动位置从而在数据库所定义的目标位置上产生暂时固定的工具位置时,慢速和快速的定位器适合于移动而不停止。这些分裂轴、多速率的定位系统减少了现有系统的快速定位器移动范围的限制,同时提供了显著提高的工具加工生产量,并且能够根据面板化(panelized)或者非面板化(unpanelized)的数据库来工作。
由于工件的整个质量和尺寸增加,虽然使用更长并因此而质量更大的工作台的这样的分裂轴定位系统正在变得甚至更加有利,但是它们不能提供足够的带宽以便有效地以大几何间隔将能量分布到在高脉冲重复频率(PRF)的各激光脉冲之间。
因此本发明采用一种快速偏转反射镜,例如一种压电控制镜,在光路中以高速规定图形在标称的目标位置周围连续地移动激光光束,以便从空间上分离以高激光重复率产生的聚焦激光光斑,并且因此而形成比聚焦激光光斑的尺寸大的几何特征。本发明允许一系列在给定重复率上的激光脉冲表现为一系列在较低脉冲重复率上的较大直径脉冲,而没有与离焦工作相关的光束质量问题。
本发明另外的目的和优点将从下面参考附图对优选实施例进行的详细描述中变得显而易见。


图1是根据本发明结合了快速偏转反射镜的一个简化的激光系统的部分为等轴测图性质而部分为示意图性质的视图。
图2是图1的激光系统中所使用的快速偏转反射镜机械装置的部分为图解性质而部分为示意性质的视图。
图3是图1的激光系统中所使用的快速偏转反射镜机械装置的部分为剖视性质而部分为示意性质的视图。
图4是演示反射镜怎样弯曲能够影响激光光斑的位置的快速偏转反射镜的正面视图。
图5是借助根据本发明的快速偏转反射镜的移动而改进的示范性的直线切口形成外形的计算机模型。
图6是借助根据本发明的快速偏转反射镜的移动而改进的示范性的通路孔钻孔外形的计算机模型。
具体实施例方式
参见图1,本发明的激光系统10的一个示范性实施例包括Q开关的、二极管泵浦(DP)的固体激光器(SS)12,该激光器优选包含固态激射工作物质。但是,本领域技术人员将会理解,除了二极管之外的泵浦源,例如氪弧光灯,也是可运用的。泵浦二极管、弧光灯、或者其它常规的泵浦装置从电源接受能量(未单独示出),它们可以构成激光器12的一部分,或者可以被设置成独立的。
示范性的激光器12提供谐振产生的具有一个或者多个激光脉冲的激光输出14,所述激光脉冲主要具有TEM00空间模分布。优选的激光波长从大约150纳米(纳米)到大约2000纳米,包括发自Nd:YAG、Nd:YLF、Nd:YVO4、Nd:YAP、Yb:YAG或者Ti蓝宝石激光器64的1.3、1.064、或者1.047、1.03~1.05、0.75~0.85微米(μm)或者它们的二次、三次、四次或者五次谐波,但并不限于这些波长。这样的谐波波长可以包括例如大约为532纳米(倍频Nd:YAG激光器)、355纳米(三倍频Nd:YAG激光器)、266纳米(四倍频Nd:YAG激光器)、或者213纳米(五倍频Nd:YAG激光器)的波长,但并不限于这些波长。激光器12和谐波产生技术对于本领域技术人员来说是众所周知的。在Owen等人的美国专利第5593606号中详细地描述了一个示范性激光器12的细节。优选激光器12的例子包括由美国加利福尼亚州Mountain View的Lightwave Electronics(光波电子公司)销售的210型UV-3500激光器。本领域技术人员将会理解,发射其它合适波长的激光器是能够从市场上买到的并且是能够使用的,包括光纤激光器、或者Q开关的二氧化碳激光器。2002年12月12日公开的Dunsky等人的公开号为US2002/0185474 A1的美国专利公开了一种示范性的Q开关二氧化碳激光器。
参见图1,激光器输出14在受到光束定位系统40的一系列光束定向元件20(如工作台轴的定位镜)、快速偏转反射镜FSM(30)、和快速定位器32(如一对受电流计驱动的X轴和Y轴反射镜)引导之前,可以被多种公知的光学元件处理,包括沿着光路18设置的光束扩展器透镜元件16在内。最后,激光输出14在作为具有激光光斑48的激光系统输出光束46而被施加到工件上之前,先穿过诸如作为聚焦或焦阑扫描透镜的物镜42。
一种优选的光束定位系统40在Cutler等人的美国专利第5751585号中进行了详细描述,且该定位系统还可以包括在Cutler等人的美国专利第6430465B2号中描述的阿贝误差(ABBE error)校正装置。光束定位系统40优选采用一种移动工作台定位器,该定位器优选至少控制两个平台或者说工作台52和54,并且支撑定位元件20,以便将激光系统的输出光束46对准并聚焦到所需要的激光目标位置60上。在一个优选实施例中,移动工作台定位器是一种分裂轴系统,其中通常由线性电机移动的Y工作台52支撑并沿着轨道56移动工件50,X工作台54支撑并沿着轨道58移动快速定位器32和物镜42,在X和Y工作台之间的Z的尺寸是可调节的,并且光束导向元件20通过在激光器12和快速偏转反射镜30之间的任何次转向来调整光路18。典型的移动工作台定位器能够有500毫米/秒的速度和1.5g的加速度。为方便起见,可将快速定位器32以及一个或多个移动工作台52和/或54的组合称为主定位系统或者集成式的定位系统。
光束定位系统40允许在相同或不同的电路板或芯片封装上的各个目际位置60之间快速移动,以基于所提供的测试数据或者设计数据实现单独或者双重的加工操作。一个示范性的快速定位器能够有400毫米/秒或者500毫米/秒的速度以及300g或者500g的加速度,并且因此这些参数也是一个示范性集成定位系统的典型性能。一个包含很多上述的定位系统元件的优选激光系统10的例子是美国俄勒冈州波特兰市的电气科学工业公司生产的5320型激光系统或者该公司生产的其它该系列产品。然而本领域技术人员将会理解,可以是任取其一地采用具有用于工件定位的单一的X-Y工作台、及用于光束定位的固定光束位置和/或静止电流计的系统。
激光系统控制器62优选以本领域技术人员所熟知的方式使激光器12的启动同步于工作台52和54以及快速定位器32的移动。所示激光系统控制器62通常用于控制快速定位器32、工作台52和54、激光器12以及快速偏转反射镜控制器64。本领域技术人员将会理解,激光系统控制器62可以包括集成的或者独立的控制子系统,以对这些激光器元件中的任何一个或者全部进行控制和/或提供能量,并且这样的子系统可以被设置成相对于激光系统控制器62是远程的。激光控制器系统62还优选通过反射镜控制器64而直接或者间接地控制快速偏转反射镜30的运动,包括其方向、倾角或旋转以及速度或者频率,并且控制与激光器12或定位系统40的元件的任何同步。为了方便起见,快速偏转反射镜30与反射镜控制器64的组合可以被称之为辅助的或者非集成式的定位系统。
激光系统输出光束46的参数选择成便于在各种各样的金属、电介质和其它目标材料中充分地清洁、连续钻孔也就是形成通路孔,上述这些材料响应紫外光或者可见光可以显示出不同的光学吸收、烧蚀阈值或者其它特性。激光系统的输出的示范性参数包括在光斑区域上测量到的大于约120微焦(μJ)、优选为200μJ的平均能量密度;小于约50微米、并且优选是从约1微米到50微米、通常是从约20微米到30微米的光斑直径或者空间主光轴;大于约1千赫(kHz)、并且优选大于约5kHz、而最优选则甚至高于20kHz的重复率;波长优选介于大约150纳米到2000纳米之间、更优选介于大约在190到1325纳米之间、最优选则介于约266纳米和532纳米之间。选择激光系统输出光束46的优选参数,为的是力图避免由于使用瞬时脉冲宽度造成的一定的热损伤效果,其中该瞬时脉冲宽度小于约100纳秒(ns),并且优选的是从约0.1皮秒(ps)到100纳秒,而更优选的则是从约1到90纳秒甚至更短。本领域技术人员将会理解这些参数将会根据被处理的材料而变化并且能够被优化,并且不同的参数可以被用来处理不同的目标层。
激光系统的输出光束46优选在工件50上的光束位置60产生直径小于大约25至50微米的光斑区域48。虽然特别是在与激光系统10的描述有关的时候,光斑区域48和直径通常指的是1/e2尺寸,这些术语偶尔也会用来指光斑面积或是由单个脉冲所形成的孔的直径。本领域技术人员也将会理解,输出光束46的光斑区域48大致是圆形的,但是也可以被成形为大体上方形的。本领域技术人员还将会理解,如果需要用于特定的操作,特别是对于第一步处理来说,输出光束46能够被成像,或者是被截去其翼部和尾部。
图2示出了快速偏转反射镜(FSM)30的优选实施例,该反射镜被定位以便接收激光输出14,令其偏转而穿过快速定位器32,通过物镜42到达工件50上的目标位置60,以用于ECB通路孔钻孔、电路元件修整、或者其它微加工用途。快速偏转反射镜30优选作为有限偏转光束定位工作台的一部分而被实现,该工作台使用具有比快速定位器32更高的频率响应的电致伸缩调节器。快速偏转反射镜30被铁电陶瓷调节器(ferroelectric ceramic actuator)材料如铌酸铅镁(PMN)所偏转,调节器(actuator)22将电压转换成位移。铌酸铅镁(PMN)材料与更普通的压电调节器材料相似,但是具有小于百分之一的滞后现象、高机电转换效率,表现出宽的工作温度范围和加工温度范围,不需要永久极化,并且以小的电驱动电压提供了有用的机械有效性。
示范性的PMN调节器22对于40毫米长的PMN材圆柱体料具有大约20微米的有限位移,但是对于5毫米直径的圆柱体具有大约每微米210牛顿的非常高的刚度。快速偏转反射镜30通过弯曲部分连接到三个PMN调节器22上,这些PMN调节器具有排列成等边三角形的第一端,该等边三角形的中心对准快速偏转反射镜120的中心24。PMN调节器22的第二端机械连接到附着于X轴移动工作台54的安装座26上。三个PMN调节器22优选以三个自由度的构造来实现,该三个自由度的构造被用于以两个自由度的模式来倾斜和翻转快速偏转反射镜30。三个PMN调节器22优选形成一个PMN材料的中空圆柱体,这个PMN材料的中空圆柱体从电气上看被从圆周上分成三个活动区域。激活一个区域而使其伸展或者收缩,由此来翻转或者倾斜快速偏转反射镜30。
优选的是调节器三角形具有5毫米的边,使得快速偏转反射镜30能够被偏转大约±4毫弧度(“mRad”)的角度,该角度当被利用80毫米的物镜42投射到工件50上的时候,就被转换成激光输出14的±640微米的偏转。一个示范性的快速偏转反射镜30可以提供典型的行程限制范围,其限制图形尺寸最高达到激光光斑尺寸的约25或50倍;然而,快速偏转反射镜30的最大响应频率可以是一个约束更强的限制,其限制图形尺寸最高达到激光光斑尺寸的约15倍,并且通常达到激光光斑的5到10倍。快速偏转反射镜30以比快速定位器32的示范性的电流计驱动的X轴和Y轴反射镜更高的频率和加速度工作。非集成式定位系统的示范性的快速偏转反射镜30提供大于1000毫米/秒的速度,并且能够提供4000毫米/秒或者更高的速度,这是典型集成式定位系统速度的5到10倍。非集成式定位系统的示范性快速偏转反射镜30提供大于1000g的加速度,并且能够提供30000g或者更高的加速度,这是典型集成式定位系统的加速度的50到100倍。
详细地说,示范性的PMN调节器22具有大约20微法的电容、1.0欧姆的直流阻抗、在5kHZ时17欧姆的阻抗、并在75V驱动时流过超过3安培的电流。驱动快速偏转反射镜30的示范性PMN调节器22具有超过约5kHZ的大信号带宽,超过约8kHZ的小信号带宽,和用于偏转激光输出14的、具有±0.5微米定位分辨率的至少约4毫弧度的偏转角度。
本领域技术人员将会理解任何其它精密的高带宽调节器都能够被用于反射镜调节器22。图3是一个可选的快速偏转反射镜30与一个示范性反射镜控制器64的一些示范性控制电路70的部分为剖视性质而部分为示意性质的视图,其中该反射镜控制器64系用于反射镜调节器72A和72B(概括地称为反射镜调节器72),它们优选为压电式(PZT)器件,这些压电器件被用于造成在快速偏转反射镜30的角度上有微小变化,从而导致在激光输出光束46角度上有微小变化,进而引起在工件50的表面上的激光光斑48的位置60有微小变化。图4是快速偏转反射镜30的正面视图,演示反射镜弯曲能够怎样影响激光光斑48的位置60。
参见图3和图4,在一个使用PZT反射镜调节器72的示范性实施例中,大致矩形的快速偏转反射镜30的一角被固定在一个具有弯曲部分的基准结构上,该弯曲部分能够弯曲但是不能压缩或者伸展。快速偏转反射镜30的另外两个角被响应正弦波的压电式反射镜调节器72A和72B所驱动,从而将造成激光光斑48的光束位置(其叠加在由光束定位系统40的其它元件建立的目标位置60上)中的变化的小角度引入到光路18中。
在一个优选实施例中,正弦sin(a)信号74沿相对的方向驱动压电反射镜调节器72A和72B,以在一个方向上形成角度变化,而sin(a+90°)信号76则沿相同的方向以正弦驱动反射镜调节器72A和72B,从而产生与上述第一种角度变化呈90度的角度变化。激光输出14在接近中心的一点被反射出快速偏转反射镜30。这样在反射镜的移动所引入的小角度被扫描透镜42转换为位置变化之后,就导致在工件表面的圆周运动。
对于激光钻孔操作而言,优选的物镜焦距大约为50~100毫米,从快速偏转反射镜30到扫描透镜42的优选距离在设计约束条件范围内尽可能的小,并且当Z工作台(未示出)处于其标准聚焦高度时,优选小于约300毫米,更优选的则是小于100毫米。在优选的激光系统10中,快速偏转反射镜30被安装在X工作台54上的快速定位器32的上游,并取代了一些常规光束定位系统中的最后的转向镜(turnmirror)。在优选的实施例中,快速偏转反射镜30适合于方便地升级现有的激光器和定位系统40,如美国俄勒冈州波特兰市电气科学工业公司生产的5200型或5300型中所采用的,并且能够方便地与常规激光系统的X工作台54上的最后一级转向镜调换。本领域技术人员将会理解,除了X工作台54上之外,快速偏转反射镜30尚可被设置在光路18中的其它位置。
本领域技术人员将会理解,可以有选择地采用多种技术,以控制快速偏转反射镜30绕一枢轴点例如中心24在两个轴上移动。这些技术包括快速偏转反射镜30,该快速偏转反射镜使用弯曲机构和音圈调节器、压电式调节器(其依赖于压电变形、电致伸缩或PMN材料)、和使得反射镜的表面变形的电致伸缩或者压电式调节器。在Baker的美国专利第5946152号中描述了示范性的音圈调节的快速偏转反射镜30,且其适于以高频率工作。合适的音圈驱动的快速偏转反射镜30能够从美国科罗拉多州Broomfield市的Ball Aerospace Corporation和加利福尼亚州Irvine市的Newport Corporation购到。合适的压电调节器市则为德国Karlsruhe市的Physik Instrumente(“PI”)GmbH & Co.所制造的S-330型超快速压电翻转/倾斜平台。
在模拟激光光斑放大的应用中,激光控制器64命令集成式定位系统的工作台52和54以及快速定位器32遵循预定的工具路径,例如修整外形或者盲通路孔的钻孔外形,同时反射镜控制器64独立地使得快速偏转反射镜30以所需要的图形如小圆或者振动来移动激光系统输出光束46的激光光斑位置。这种叠加的、自由运动的光束移动或者振动,使激光系统输出光束46的能量分布于一个较大的区域上,并且有效地沿着工具路径造成了一个较宽的切口。有效的切口宽度通常等于图形尺寸加光斑直径。光束移动也使激光能量分布在一个较大的区域上,从而有效地增加能够在一段时间内以给定的平均能量来处理的面积。
因为反射镜控制器64传送给快速偏转反射镜30的命令不是与发送给集成式定位系统的工作台52和54以及快速定位器32的定位命令合为一体、而是与之叠加的,故可避免大量的复杂性和成本而获得大幅提高的功能和生产能力。然而,反射镜控制器64可以与激光控制器62配合,以便在特定的激光应用中或集成式定位系统的特定工具路径中实现激光系统输出光束46的特定的所需移动图形。快速偏转反射镜的有效光斑图形可以受到选择,使之具有一定图形尺寸,以获得例如用于修整操作的特定的切口宽度,和/或者受到选择,以便在诸如钻孔操作这样的时候给出特定的孔洞边缘质量。然而本领域技术人员将会理解,反射镜控制器64能够被使用者直接编程,并且不需要与激光控制器64配合,也不需要通过激光控制器64来控制。
已开发出一个计算机图形模型,用来显示如上所述的快速偏转反射镜30被压电调节器连续移动所导致的激光光斑48在工件表面上的单个位置。图5B是图5A的为快速偏转反射镜30的移动所改善的示范性直线型切口成形工具路径80的计算机模型。参见图5A和图5B(统称图5),各参数包括约18kHz的脉冲重复频率(PRF);约25μm的光斑尺寸;约50毫米/秒的直线速度(小的旋转圆形图案移动穿过工件表面的速率);约2kHz的旋转速率(圆形图案旋转的速率);约30μm的旋转性能(圆形图案的直径(到光束的中心));约10μm的内径(螺旋形图案的起始直径(到圆形图案的中心));约150μm的外径(螺旋形图案的终止直径(到圆形图案的中心));圆圈的数目大约是2个(螺旋形图案的旋转数目)。该模型显示,为了支持介于15到20kHz范围内的激光脉冲频率,需要1kHz到2.5kHz(每个旋转5到15个脉冲)的旋转速率用于实际的脉冲交叠。
再次参见图5,以反射镜增强的直线型外形82形成切口宽度84,该切口宽度比输出光束46的光斑直径86宽。这种技术允许以较少的次数形成比光斑直径86宽的切口,同时保持加工质量和其它使用聚焦输出光束46(也就是不用离焦光束来获得较宽光斑)的优点。此外,对于高重复率的应用来说,以反射镜增强的直线型外形82可以超出大多数快速定位器32的带宽能力,并且允许快速定位器32保留简单的定位移动指令,与之对照的是,子图形另外需要这些定位移动指令,以使其在反射镜增强的直线型外形82中实现子图形。
图6B是被快速偏转反射镜30的移动所增强的示范性通路孔形成旋转工具路径90(图6A)的计算机模型。参见图6A和图6B(统称图6),各参数包括约15kHz的脉冲重复频率(PRF);约15μm的光斑尺寸;约30毫米/秒的直线速度(小的旋转圆形图案移动穿过工件表面的速率);约1.5kHz的旋转速率(圆形图案的旋转速率);约20μm的旋转性能(圆形图案的直径(到光束的中心));约10μm的内径(螺旋形图案的起始直径(到圆形图案的中心));约150μm的外径(螺旋形图案的终止直径(到圆形图案的中心));圆圈的数目大约为2个(螺旋形图案的旋转数目)。该模型显示出为了支持介于15到20kHz范围内的激光脉冲频率,需要1kHz到2.5kHz(每个旋转5到15个脉冲)的旋转速率用于实际的脉冲交叠。
在一个使用Q开关的二氧化碳激光系统10和PMN快速偏转反射镜30的示范性实施例中,该二氧化碳激光系统10使用30kHz到40kHz的脉冲重复频率,其中每个通路孔20到30个脉冲。快速偏转反射镜30以1.0到1.5kHz的频率振动激光系统输出光束46,使其在钻孔时形成完整的旋转,并且钻孔时间小于0.6到1毫秒。
参见图6,通过沿螺旋形工具路径90顺序地将具有光斑面积86的激光系统输出光束46引导到周边上,而在重叠的邻接位置形成一个盲通路孔。光束46优选连续地移动通过每个位置,其速度足以使系统10提供必要数目的光束脉冲以在上述位置达到切削深度。随着光束46沿螺旋形工具路径90行进,每次光束46被移动到一个新的切削位置时,目标材料就被“一点一点切下”,从而形成一个尺寸持续增大的孔洞。该孔洞的最终形状通常是在光束46沿着圆形路径移动到达周边时得到的。
本领域技术人员将会注意到,以反射镜增强的通路孔外形92形成了比输出光束46的光斑直径86更大的切口宽度84,从而使最后所得到的通路孔的直径94远远大于切口宽度与光斑尺寸相同的螺旋形所形成的直径。本发明允许一系列具有给定重复率的脉冲光斑48作为一系列具有较低脉冲重复频率的较大直径激光脉冲光斑出现,从而没有与离焦有关的光束质量问题。通路孔直径或者切口宽度通常处于从25到300微米的范围,但是具有1毫米(mm)或者更大的直径或宽度的通路孔或者切口或许也是需要的。
一个可选用的用于形成盲通路孔的工具路径可以从中心开始,并且切削由切口宽度84所限定的半径递增的同心圆。随着形成通路孔的该同心圆在圆形路径上以离区域中心更大的距离移动,通路孔的整体直径就会增加。可选择的是,这一过程可以通过限定所需要的圆周开始并且向着中心来加工边缘。向外的螺旋形加工会比同心圆加工稍稍更为连续和更快;然而盲通路孔也能够以向内的螺旋形来形成。
本领域技术人员将会理解,无论是工件50或是加工输出光束46都可以相对于另一方的位置而被固定或者移动。在优选的实施例中,工件50和加工输出光束46二者同时被移动。在美国专利第5593606号中提出了在多种不同衬底之上形成的具有不同深度和直径的贯穿通路孔和盲通路孔的若干例子。不同的通路孔加工技术,包括其它的工具路径外形,也同样公开于Dunsky等人的美国专利第6407363 B2号中,本说明书将其结合引为参考文件。本领域技术人员将会理解,非圆形的通路孔也可通过类似的加工而被烧蚀。举例来说,这样的通路孔可以具有正方形、矩形、椭圆形、狭缝形或者其它表面形状。
本领域技术人员也将理解,集成式定位系统可以被指向单一的位置以加工一个小面积通路孔,非集成式快速偏转反射镜30则被用于形成一个直径比输出光束46的光斑直径48大的通路孔,而无需显著的作用时间,也无需为形成像工具路径90这样的工具路径而移动集成式定位系统的复杂性。此外,通路孔质量,包括边缘质量和底部均匀性,均能够被大幅提高,而当激光系统输出光束相对是高斯分布时尤其如此。
对于本领域技术人员来说,显而易见的是,不背离本发明的原理可以对上述实施例的细节做出很多更改。本发明的范围因此而仅应被所附权利要求所限定。
权利要求
1.一种以激光输出脉冲在工件上用激光加工出有效切口宽度的方法,每个所述激光脉冲在所述工件上所具有的激光光斑直径均小于所述有效切口宽度,所述方法包括从一主光束定位系统,以第一组限定的速度和加速度,将一激光光斑位置的主相对运动传递到所述工件上,该主光束定位系统设置从激光器到所述工件上的所述激光光斑位置的光束定位路径,所述主相对运动限定主加工路径;从沿着所述光束定位路径定位的一辅助光束定位系统,以显著高于第一组速度和加速度的第二组速度和加速度,将所述激光光斑位置的辅助相对运动传递到所述工件上,该辅助相对运动是叠加到所述主相对运动上的,并且包括垂直于所述主加工路径、具有图形尺寸的图形,该图形尺寸小于或者等于约15倍的所述激光光斑直径,所述的主相对运动和辅助相对运动配合而沿着所述主加工路径提供所述有效切口宽度,该有效切口宽度大致等于所述图形尺寸加所述光斑直径。
2.根据权利要求1的方法,其中所述第二组包括大于1000毫米/秒的速度以及大于1000g的加速度。
3.根据权利要求2的方法,其中所述第二组包括从1000毫米/秒到4000毫米/秒的速度以及从1000g到30000g的加速度。
4.根据权利要求1的方法,其中所述第一组包括小于500毫米/秒的速度以及小于500g的加速度。
5.根据权利要求1的方法,其中所述图形尺寸小于或者等于约10倍的所述激光光斑直径。
6.根据权利要求1的方法,其中所述辅助定位系统具有大于约5kHz的大信号带宽和大于约8kHz的小信号带宽。
7.根据权利要求1的方法,其中所述第二光束定位系统包括快速偏转反射镜。
8.根据权利要求7的方法,其中所述快速偏转反射镜包括PMN或者PZT调节的反射镜。
9.根据权利要求1的方法,其中所述主光束定位系统至少包括一个移动和快速定位器。
10.根据权利要求9的方法,其中所述快速定位器至少包括一个电流计驱动的反射镜。
11.根据权利要求9的方法,其中所述快速定位器是安装在移动工作台上的。
12.根据权利要求11的方法,其中所述主定位系统包括分裂轴定位系统。
13.根据权利要求1的方法,其进一步包括以所述激光输出脉冲来实施通路孔钻孔操作。
14.根据权利要求1的方法,其进一步包括以所述激光输出脉冲来实施激光修整操作。
15.一种以激光输出脉冲在工件上用激光加工出有效切口宽度的方法,每个所述激光脉冲在所述工件上所具有的激光光斑直径均小于所述有效切口宽度,所述方法包括从一移动工作台定位系统,将一激光光斑位置的与工作台相关的相对运动以移动工作台限定的速度和加速度传递到所述工件上;从一快速定位系统,以快速限定的速度和加速度,将所述激光光斑位置的快速相对运动传递到所述工件上,该快速定位系统具有比所述移动工作台定位系统高的加速能力;结合所述的移动工作台定位系统和快速定位系统,以第一组限定的速度和加速度,将所述激光光斑的主相对运动传递到所述工件上,所述主光束定位系统设置从激光器到所述工件上的所述激光光斑位置的光束定位路径,所述主相对运动限定主加工路径;从沿着所述光束定位路径定位的一快速偏转反射镜,以显著高于第一组速度和加速度的第二组速度和加速度,将所述激光光斑位置的辅助相对运动传递到所述工件上,该辅助相对运动是叠加到所述主相对移动上且不与之合为一体的,并且包括垂直于所述主加工路径、具有图形尺寸的图形,该图形尺寸等于或者小于约15倍的所述激光光斑直径,所述的主相对运动和辅助相对运动配合而沿着所述主加工路径提供所述有效切口宽度,该有效切口宽度大致等于所述图形尺寸加所述光斑直径。
16.根据权利要求15的方法,其中所述第二组包括大于1000毫米/秒的速度以及大于1000g的加速度。
17.根据权利要求16的方法,其中所述第二组包括从1000毫米/秒到4000毫米/秒的速度以及从1000g到30000g的加速度。
18.根据权利要求15的方法,其中所述快速限定的速度和加速度包括小于500毫米/秒的速度以及小于500g的加速度。
19.根据权利要求15的方法,其中所述快速偏转反射镜包括PMN或者PZT调节的反射镜。
20.根据权利要求15的方法,其中所述快速定位器至少包括电流计驱动的反射镜。
21.根据权利要求15的方法,其中所述主定位系统包括分裂轴定位系统。
22.根据权利要求15的方法,其进一步包括以激光输出脉冲来实施通路孔钻孔操作。
全文摘要
一种如PMN调节的反射镜这样的快速偏转反射镜(30),其设置在基于工作台的定位系统(40)的光束路径(18)中,用于以高速预定的图形绕标称目标位置(60)移动激光光束(46),以便从空间上分散开以高激光重复率产生的聚焦激光光斑(48)且借此形成具有大于聚焦激光光斑(48)尺寸的几何特征。一系列给定重复率的激光光斑(48)表现为一系列低脉冲频率的具有较大直径的激光光斑而没有与离焦相关的光束质量问题。
文档编号G02B26/10GK1612793SQ03801991
公开日2005年5月4日 申请日期2003年1月10日 优先权日2002年1月11日
发明者D·R·卡特勒 申请人:电子科学工业公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1