电光学装置及其制造方法,元件驱动装置及其制造方法,元件基板和电子设备的制作方法

文档序号:2764069阅读:509来源:国知局
专利名称:电光学装置及其制造方法,元件驱动装置及其制造方法,元件基板和电子设备的制作方法
技术领域
本发明涉及用于驱动多个被驱动元件的元件驱动装置和其制造方法,特别涉及将电光学元件用作为被驱动元件的电光学装置和其制造方法,该电光学元件用于将电作用变换成光作用。本发明涉及适用于元件驱动装置和电光学装置的元件基板,以及包括该电光学装置和元件驱动装置的电子设备。
背景技术
作为便携式电话机和PDA(个人数字助理)等各种电子设备的显示装置,提出了利用将电作用变换成光作用的电光学元件。这种显示装置的典型例子是作为电光学元件采用有机EL的有机EL显示装置、和将液晶用作为电光学元件的液晶显示装置。
这些显示装置包括对构成显示最小单位的每个象素的象素电路。该象素电路是用于控制提供给电光学元件的电流或者电压的电路。各个象素电路包含在硅基板上形成的驱动元件,如在专利文献1(特开平9-146477号公报的0013和0014段)中公开的。
为了提高这种显示装置的显示品位,希望象素电路的电特性在整个象素中是均匀的。但是,低温多晶硅在重结晶时容易发生在特性上的无序差异,并且也有发生结晶缺陷的情况。因此,在使用由低温多晶硅构成的薄膜晶体管的显示装置中,使象素电路的电特性在整个象素中均匀是极其困难的。特别是,由于为了显示图像的高精细化和大画面而增加象素数目及产生各个象素电路在特性上的无序差异的可能性变得更高,显示品位下降的问题变得更显著。

发明内容
本发明是鉴于上述问题提出的,其目的是在用于驱动诸如电光学元件之被驱动元件的电路中,抑制有源元件在特性上的无序差异,改善这种电路的性能和功能以及提高集成度。
为了解决上述问题,本发明的电光学装置具有元件层,其包含多个电光学元件;电子部件层,其包含具有用于驱动电光学元件的多个单位电路的元件驱动用IC芯片;和布线形成层,其位于所述元件层和所述电子部件层之间,包含将在所述元件驱动用IC芯片中所含的各单位电路与对应于该单位电路的电光学元件连接的布线。
该结构中,用于驱动电光学元件的多个单位电路作为IC芯片配置。IC芯片所含的有源元件与由低温多晶硅等构成的薄膜晶体管相比,其特性上的无序差异少。因此,即使为了显示图像的高精细化和大画面而增加了象素数目,也可抑制用于驱动电光学元件之单位电路的特性产生无序差异的可能性,由此提高了电光学装置的成品率。而且,与由低温多晶硅等构成的薄膜晶体管相比,由于用低电压驱动IC芯片所含的有源元件,因此可以降低电光学装置的耗电。
本发明的电光学元件将提供电流和施加电压的电作用变换成亮度和透过率变化的光作用,或者将光作用变换成电作用。这种电光学元件的典型例子是根据从单位电路供给的电流而在亮度上发光的有机EL元件和根据由单位电路施加的电压使取向(即光的透过率)变化的液晶。但是,本发明也适用于除此之外的使用电光学元件的装置。
在优选方式中,多个电光学元件的每一个被配置在平面内不同的位置上。例如,多个电光学元件被配置成在行方向和列方向的矩阵状态。
在更优选方式中,电子部件层具有分别包括多个单位电路的多个元件驱动用IC芯片;布线形成层具有将在各元件驱动用IC芯片中所含的单位电路的每一个与该单位电路对应的电光学元件进行连接的布线。
在更优选方式中,电子部件层包含用于在多个元件驱动用IC芯片中选择应该执行电光学元件之驱动的IC芯片的选择用IC芯片;选择用IC芯片经过在布线形成层中所含的布线与各元件驱动用IC芯片连接。因此,用于选择元件驱动用IC芯片的电路与由薄膜晶体管形成的结构相比,谋求了用于选择元件驱动用IC芯片的稳定动作。因此,在电光学装置的成品率提高的同时,减少了耗电。
在另一方式中,电子部件层包含数据供给用IC芯片,其用于将指示对电光学元件应提供的电流或者应施加的电压的数据信号输出到各元件驱动用IC芯片的单位电路;数据供给用IC芯片经过在布线形成层所含的布线与各元件驱动用IC芯片连接。依据该构成,将数据信号输出到单位电路的电路与由薄膜晶体管形成的结构相比,也谋求了用于将数据信号提供给元件驱动用IC芯片的动作稳定性和高速化。因此,在电光学装置的成品率提高的同时,减少了耗电。
进一步在另一方式中,电子部件层包含选择用IC芯片,其用于在多个元件驱动用IC芯片中选择应该执行电光学元件之驱动的IC芯片;数据供给用IC芯片,其用于将指示对各电光学元件应提供电流或者应施加电压的数据信号输出到各元件驱动用IC芯片的单位电路;和控制用IC芯片,其用于控制选择用IC芯片和数据供给用IC芯片的动作;选择用IC芯片和数据供给用IC芯片经过在布线形成层所含的布线与各元件驱动用IC芯片连接,控制用IC芯片经过在布线形成层所含的布线与选择用IC芯片以及数据供给用IC芯片连接。根据该结构,也可在提高电光学装置成品率的同时,减少耗电。
在本发明的优选方式中,多个元件驱动用IC芯片的每一个,被配置在与对应于该元件驱动用IC芯片所含的多个单位电路的多个电光学元件相对的位置上。根据该结构,由于可以与元件驱动用IC芯片的配置位置无关选定电光学元件的形式,例如,通过使用同种元件驱动用IC芯片,可得到对排列节距(pitch)不同的电光学元件的驱动。
在优选方式中,有关本发明的电光学装置具有遮光层,从多个元件驱动用IC芯片观察,其被设置在与布线形成层相反一侧,用于遮蔽光。根据这种形式,从电子部件层观察从配线形成层的相反侧入射的光由遮光层遮断。因此,可防止因光照射引起的元件驱动用IC芯片的误动作。
在另一优选方式中,有关本发明的电光学装置具有填充到各个元件驱动用IC芯片之间的填充层。根据这种结构,电子部件层中与布线形成层相对的面通过填充层被平坦化或者加强了。因此,防止布线形成层中所含布线的断线和短路,并通过简单工序形成具有良好特性的布线。在更优选方式中,填充层通过与元件驱动用IC芯片之热膨胀系数相近的材料形成。根据该方式,抑制了因元件驱动用IC芯片和填充层的热膨胀系数的不同而引起的热应力的产生。而且,填充层是由散热性强的材料形成。根据该方式,由于提高了整个电光学装置的热均匀性,抑制了因热引起的不正常状态。
元件驱动用IC芯片具有第一连接端子和第二连接端子,在该元件驱动用IC芯片中,该第一连接端子被设置在与布线形成层相对的端子形成面上且连接到电光学元件,第二连接端子被设置在端子形成面上且连接到电源线;在该方式下,第一连接端子中与端子形成面平行的面的面积是第二连接端子中与端子形成面平行的面的面积的1/6或以下。根据该方式,通过将探针接触第二连接端子来检查元件驱动用IC芯片的动作。另一方面,由于第一连接端子是第二连接端子之面积的1/6以下,与将整个连接端子假设为与第一连接端子相同大小的情况相比较,减少了元件驱动用IC芯片的端子形成面的面积。因此,在一个电光学装置中获得配置更多的元件驱动用IC芯片。具体地,第二连接端子的平面形状为长和宽是100μm~70μm大小的矩形,第一连接端子的平面形状为长和宽是30μm~10μm大小的矩形。在更优选方式中,第一连接端子中与端子形成面平行的面的面积设为第二连接端子中与端子形成面平行的面的面积的1/50以上。
有关本发明的电子设备,包括上述各方式的电光学装置。该电子设备中,抑制了用于驱动电光学元件的单位电路在特性上的无序差异。特别是,在将电光学装置用作为显示装置的电子设备中,显示品质被维持在很高的水平。
作为优选,电子设备包括具有发光型电光学装置的第一显示部;和具有非发光型电光学装置的第二显示部。其中发光型电光学装置具有其自身发光的电光学元件。发光型电光学装置的典型例子是将根据供给电流而在亮度上发光的有机EL元件用作为电光学元件的有机EL显示装置。另一方面,非发光型电光学装置具有其自身不发光的电光学元件。非发光型电光学装置的典型例子是将根据施加电压而改变透过率的液晶用作为电光学元件的液晶显示装置。在该电子设备中,从发光型电光学装置出射的光到达非发光型电光学装置后提供给图像显示。因此。没有必要另外设置照明装置来确保由非发光型电光学装置产生显示的可视性。或者,即使设置照明装置,通过该照明装置的出射光量也可降低。在该电子设备的优选方式中,为了使各个电光学装置的显示面构成特定角度的姿势,第一显示部和第二显示部以相互可移动方式连接。根据该方式,为了使第一显示部的发光有效地到达第二显示部,调整第一显示部和第二显示部之间的相对位置关系。
适用发明的装置不局限于包括电光学元件的电光学装置。即,本发明适用于包含多个被驱动元件的各种装置中。本发明的元件驱动装置具有元件层,其包含多个被驱动元件;电子部件层,其包含具有对被驱动元件进行驱动的多个单位电路的元件驱动用IC芯片;和布线形成层,其位于元件层和电子部件层之间,包含将元件驱动用IC芯片上所含的各单位电路与对应于该单位电路的被驱动元件连接的布线。通过该元件驱动装置,也可获得与本发明电光学装置同样的效果。
本发明也特定作为元件驱动装置所用的基板。即,本发明的元件基板包括电子部件层,其包含具有形成有连接端子的端子形成面的多个电子部件;和布线形成层,其层叠成与电子部件层中的端子形成面相对,并且具有与各电子部件的连接端子连接的多个布线;多个电子部件配置成使各个端子形成面位于大约相同的面内。根据该结构,由于按照使多个电子部件的端子形成面位于大约相同的面内来配置各电子部件,与各电子部件的连接端子上所连接的布线可以统一形成。
有关本发明的电光学装置可以通过下述第一到第三制造方法获得。
即,第一制造方法具有将具有用于驱动电光学元件的多个单位电路的元件驱动用IC芯片配置成使具有连接端子的端子形成面朝向一侧,并且形成包含该元件驱动用IC芯片的电子部件层的工序;在电子部件层中元件驱动用IC芯片的连接端子所朝向的面上形成布线形成层的工序,该布线形成层包含将元件驱动用IC芯片所含的各单位电路与对应于该单位电路的电光学元件连接的布线;和在从布线形成层观察的电子部件层的相反一侧上形成包含多个电光学元件的元件层的工序。根据通过该方法所获得的电光学装置,可以抑制用于驱动电光学元件的单位电路中在特性上的无序差异。
第二制造方法具有在基板的一面上,以使具有连接端子的端子形成面与基板面对的状态来配置具有驱动电光学装置的多个单位电路的元件驱动用IC芯片,并形成包含该元件驱动用IC芯片的电子部件层的工序;从电子部件层剥离基板的工序;在电子部件层中的基板被剥离的面上,形成布线形成层的工序,该布线形成层包含用于将元件驱动用IC芯片所含的各单位电路与对应于该单位电路的电光学元件连接的布线;和在从布线形成层观察的电子部件层的相反一侧上形成包含多个电光学元件的元件层的工序。
根据该制造方法,元件驱动用IC芯片的端子形成面通过基板被做在同一面内。换言之,电子部件层中应与布线形成面相对的面被平坦化。因此,布线形成层的形成变得容易,有效防止了布线的断线和短路。例如,构成布线形成层的布线层的膜厚的均匀性提高了,与这些布线层的形状相关的误差降低了。由此,电光学装置的成品率提高了。而且,由于元件驱动用IC芯片以使端子形成面相对基板的状态配置,这避免了在此后工序中连接端子的损伤。
在第二制造方法的优选方式中,在形成电子部件层的工序之前实施在基板的一面上形成剥离层的工序;在形成电子部件层的工序中,在从剥离层观察的基板的相反一侧上形成电子部件层;另一方面在剥离基板的工序中,以剥离层为界从电子部件层上剥离基板。根据该方式,通过介入剥离层而使得基板容易被剥离。
在更优选方式中,通过对剥离层提供剥离能量而剥离基板。具体地,通过诸如光的电磁波照射和电磁感应等给剥离层提供剥离能量。根据该方式,由于对剥离层可靠又短时间地提供剥离能量,电光学装置的生产率和成品率提高了。作为形成了剥离层的基板,如果使用透过剥离能量的材料,则剥离能量经过基板可提供给剥离层。
在第二制造方法的优选方式中,在形成电子部件层的工序之前实施在基板的一面上形成粘结层的工序;在形成电子部件层的工序中,元件驱动用IC芯片的端子形成面被粘结到粘结层。根据该方式,由于元件驱动用IC芯片配置到基板上时的冲击力和应力通过粘结层被缓和了,防止了在电光学装置的制造过程中元件驱动用IC芯片上发生不良。
在该方式下,当在布线形成层形成之前去除粘结层的时候,粘结层希望由对元件驱动用IC芯片的连接端子不产生影响的气体和液体或者通过光可去除的材料形成。如果这样,由于避免了制造过程中元件驱动用IC芯片连接端子的损伤,使连接端子和布线形成层的布线可靠地导通。
但是,在其它方式中,粘结层不去掉而被用作为布线形成层的基底。即,在该方式中,粘结层通过绝缘材料形成,另一方面,在形成布线形成层的工序中,在覆盖电子部件层的粘结层的上面形成布线形成层。在电子部件层的各IC芯片与布线形成层的各布线之间独立形成绝缘层的情况下,由于各IC芯片沉入绝缘层或者从IC芯片附近发现了粘结剂,因此担心布线形成层的平坦性被损坏。根据该方式,由于在覆盖电子部件层的粘结层的上面形成了布线形成层,解决了该问题。而且,由于省略了独立形成布线形成层的绝缘层的工序,实现了制造工序的简化和制造成本的降低。
第三制造方法具有将用于对电光学元件提供电流或者施加电压的电极形成在基板的一面上,并形成布线形成层的工序,该布线形成层包含用于将该电极和多个单位电路的每一个进行连接之布线;在从布线形成层观察的基板的相反一侧上形成电子部件层的工序,该电子部件层包含具有驱动电光学元件的多个单位电路的元件驱动用IC芯片;从布线形成层剥离基板的工序;和在从布线形成层观察的电子部件层的相反一侧上形成与电极接触的电光学元件并形成包含多个电光学元件的元件层的工序。
该制造方法中,由于电极形成在基板上,电极表面是平坦的,不受布线形成层和电子部件层的影响。因此,被设置成接触该电极的电光学元件的特性被均匀化。
在第三制造方法的优选方式中,在形成电子部件层的工序之前实施在基板的一面上形成剥离层的工序;在形成布线形成层的工序中,在从剥离层观察的基板的相反一侧上形成布线形成层;另一方面在剥离基板的工序中,以剥离层为界从布线形成层上剥离基板。根据该方式,通过介入剥离层,能可靠且容易地剥离基板。
在第二或者第三制造方法的优选方式中,在剥离基板之前实施将支持基板固定在从电子部件层观察的基板的相反一侧上的工序。根据该方式,由于电子部件层通过支持基板支持,制造过程中的处理变得容易。
在第二或者第三制造方法的另一优选方式中,在形成布线形成层的工序中,形成用于连接单位电路和电光学元件的布线,形成覆盖该布线且与该布线的一部分对应开口的绝缘层,在该绝缘层的开口处形成电极部;另一方面在形成电子部件层的工序中,将在元件驱动用IC芯片的连接端子上设置的突起电极粘结到电极部。根据该方式,在将元件驱动用IC芯片配置到布线形成层上的工序中,连接端子和布线将可靠和容易地导通。
在上述第一到第三制造方法的优选方式中,形成电子部件层的工序,包含配置分别包括多个单位电路的多个元件驱动用IC芯片的工序、和在各元件驱动用IC芯片之间形成填充层的工序。根据该方式,由于各元件驱动用IC芯片通过填充层固定,在配置元件驱动用IC芯片的工序中,即使IC芯片不是被焊接(bonding)而只是简单地配置到基板上,也能够防止IC芯片偏离期望的位置。因此,各IC芯片的配置可在极短的时间内完成。而且,在优选当时中,填充层由热膨胀系数与各IC芯片近似的材料或者散热性强的材料形成。
在另一方式中,形成电子部件层的工序,包含在多个元件驱动用IC芯片和填充层之间形成基底层的工序。根据该方式,由于在各IC芯片和填充层之间介入了基底层,即使因填充层变形等引起在电子部件层上产生应力,也可通过基底层减缓因该应力引起的歪斜。因此,在不歪斜的平坦面上形成布线形成层。而且,在如后述通过导电性材料设置遮光层的情况下,基底层承担起电绝缘布线形成层和遮光层的作用。
进一步,在另一方式中,形成电子部件层的工序,包含在从电子部件层观察与布线形成层相反一侧上形成遮断光的遮光层的工序。根据该方式,通过遮光层遮断了来自从电子部件层观察的布线形成层的相反侧或者侧面的向着各IC芯片的光。因此,防止了因光照射引起的元件驱动用IC芯片的误动作。在优选方式中,遮光层由具有导电性的材料形成。根据该方式,遮光层可作为接地线使用。因此,有效地降低了因电源阻抗引起的亮度下降和串扰。而且,根据通过高散热性材料来形成遮光层的形式,可抑制因电光学元件的发热引起的电光学元件在特性上的无序差异。
在上述第一到第三制造方法的优选方式中,在形成电子部件层的工序中,将分别包括多个单位电路的多个元件驱动用IC芯片配置在应该与多个电光学元件相对的位置上,该多个电光学元件与各元件驱动用IC芯片所含的多个单位电路对应。
上述第一到第三制造方法也同样适用于包括多个被驱动元件的元件驱动装置。
即,用于得到元件驱动装置的第一制造方法,具有将具有用于驱动被驱动元件的多个单位电路的元件驱动用IC芯片配置成使具有连接端子的端子形成面朝向一侧,并且形成包含该元件驱动用IC芯片的电子部件层的工序;在电子部件层中元件驱动用IC芯片的连接端子所朝向的面上形成布线形成层的工序,该布线形成层包含将元件驱动用IC芯片所含的各单位电路与对应于该单位电路的被驱动元件连接的布线;和在从布线形成层观察的电子部件层的相反一侧上形成包含多个被驱动元件的元件层的工序。
用于得到元件驱动装置的第二制造方法,具有在基板的一面上,以使具有连接端子的端子形成面与基板面对的状态来配置具有驱动被驱动元件的多个单位电路的元件驱动用IC芯片并形成包含该元件驱动用IC芯片的电子部件层的工序;从电子部件层剥离基板的工序;在电子部件层中的基板被剥离的面上,形成布线形成层的工序,该布线形成层包含用于将元件驱动用IC芯片所含的各单位电路与该单位电路对应的被驱动元件连接的布线;和在从布线形成层观察的电子部件层的相反一侧上形成包含多个被驱动元件的元件层的工序。
进一步,用于得到元件驱动装置的第三制造方法,具有将用于对被驱动元件提供电流或者施加电压的电极形成在基板的一面上并形成布线形成层的工序,该布线形成层包含用于将该电极和多个单位电路的每一个进行连接之布线;将电子部件层形成在从布线层观察的基板的相反一侧上的工序,该电子部件层包含具有用于驱动被驱动元件的多个单位电路的元件驱动用IC芯片;从布线形成层剥离基板的工序;和在从布线形成层观察的电子部件层的相反一侧上形成与电极接触的被驱动元件并形成包含多个被驱动元件的元件层的工序。
有关本发明的电光学装置的特征在于,具有多个电光学元件;多个元件驱动用IC芯片,其分别具有用于驱动电光学元件的多个单位电路;以及进行选择控制的控制电路,选择控制在该多个单位电路中依次选择1个或以上的单位电路,同时让所选择的1个或者以上的单位电路进行用于驱动电光学元件的动作;和选择电路,其在多个元件驱动用IC芯片中依次选择1个或以上的IC芯片,同时让所选择的IC芯片的控制电路进行选择控制。
在该结构中,用于驱动电光学元件的单位电路包含在IC芯片中。IC芯片包含的有源元件与由低温多晶硅构成的薄膜晶体管相比,在特性上的无序差异小。因此,即使为显示图像的高精细化和大画面而增加了电光学元件的数目,也抑制了用于驱动它的单位电路在特性上产生无序差异的可能性,由此提高了电光学装置的成品率。而且,由于IC芯片包含的有源元件与由低温多晶硅构成的薄膜晶体管相比可用低电压驱动,谋求了电光学装置功耗的降低。
但是,在选择电路直接选择各单位电路的现有技术结构下,需要从选择电路到多个单位电路之每一个的许多布线(扫描线)。另一方面,在本发明中,多个象素驱动用IC芯片的每一个包含多个单位电路,这些象素驱动用IC芯片被依次选择作为应该驱动电光学元件的IC芯片。因此,没有必要对每个单位电路设置用于选择的布线,与现有技术构成相比,布线的根数减少。例如,在布线数变为最少的结构中,对每个象素驱动用IC芯片,选择电路如果设置用于选择该象素驱动用IC芯片的一根布线就足够了。根据该结构,与从选择电路到多个单位电路之每一个的布线都是必要的现有技术结构相比,布线数显著地减少。
本发明的电光学元件将提供电流和施加电压之类的电作用变换成亮度和透过率变化之类的光作用,或者将光作用变换成电作用。这种电光学元件的典型例子是在与从单位电路供给的电流对应的亮度上发光的有机EL元件和与根据单位电路施加的电压来改变取向(即光的透过率)的液晶。但是,本发明也适用于除此之外的使用电光学元件的装置。在优选方式中,多个电光学元件的每一个都配置在平面内不同的位置上。例如,多个电光学元件以行方向和列方向配置成矩阵状态。
本发明的“用于驱动电光学元件的动作”系指除了对电光学元件提供电流和电压的操作之外,还包含在对电光学元件实际提供该电流和电压之前还将其保持在电容元件中的动作之概念。
在更具体的方式中,各元件驱动用IC芯片具有特定电路,其依次特定该元件驱动用IC芯片所含的1个或以上的单位电路;控制电路将通过特定电路特定的1个或以上的单位电路作为对象进行选择控制。根据该方式,尽管用少的布线数但却能通过控制电路可靠驱动期望的电光学元件。
在优选方式中,选择电路将时钟信号输出到所选择的元件驱动用IC芯片上;各元件驱动用IC芯片的特定电路与由选择电路提供的时钟信号同步来依次特定该元件驱动用IC芯片所含的1个或以上的单位电路。根据该结构,由于时钟信号被提供给所选择元件驱动用IC芯片,容易使由各元件驱动用IC芯片进行的电光学元件的驱动动作一致。
在更优选方式中,各单位电路具有保持电路,其保持与用于驱动电光学元件的驱动电流或者驱动电压对应的电荷;和维持电路,其维持由保持电路保持的电荷。根据该结构,恒定维持了由保持电路保持的电荷。在使用例如电容器作为保持电路的情况下,所保持的电荷由于泄露有可能损失。根据上述方式,由于通过保持电路保持的电荷被恒定维持,防止了与期望驱动电流或者驱动电压不同的电流或者电压被提供给电光学元件。
可是,各元件驱动用IC芯片可通过将探针接触其连接端子来进行动作检查。但是,在该情况下,需要让各连接端子达到探针可接触的足够大小。因此,在本发明的优选方式中,各元件驱动用IC芯片的控制电路将用于检查各单位电路操作的测试信号输出到该元件驱动用IC芯片所含单位电路上。根据该方式,通过提供测试信号来检查各单位电路的动作。因此,对于通过该测试信号来检查的电路的连接端子,没有必要达到需要探针接触的大小。即,由于元件驱动用IC芯片的一部或者全部的连接端子比接触探针需要的尺寸要小,所以减小了元件驱动用IC芯片的尺寸。
适用本发明的装置不局限于包括电光学元件的电光学装置。即,本发明适用于包含多个被驱动元件的各种装置。本发明的元件驱动装置,具有多个被驱动元件;多个元件驱动用IC芯片,其分别具有用于驱动被驱动元件的多个单位电路;和进行选择控制的控制电路,选择控制在该多个单位电路中依次选择1个或以上的单位电路,同时让所选择的1个或以上的单位电路进行用于驱动被驱动元件的动作;选择电路,其在多个元件驱动用IC芯片中依次选择1个或以上的IC芯片,同时让所选择的IC芯片的控制电路进行选择控制。依据该元件驱动装置,也可获得与上述本发明的电光学装置相同的效果。
本发明电光学装置的电子电路的第二特征在于,具有多个电光学元件,其分别通过由数据信号指定的驱动电流所驱动;和多个数据供给电路,其按一个或者多个电光学元件的每一个而设置并且包含第一数据供给电路和第二数据供给电路,分别包括基于参考电流而生成基准电流的基准电流供给电路、基于由基准电流供给电路生成的基准电流而输出与数据信号对应的电流值的数据信号输出电路;第一数据供给电路将为了该第一数据供给电路的基准电流供给电路生成基准电流而使用的参考电流输出到第二数据供给电路;另一方面第二数据供给电路的基准电流供给电路基于第一数据供给电路供给的参考电流来生成基准电流。
一般地,在包括用于分别输出数据信号的多个数据供给电路的电光学装置中,基于在各数据供给电路生成的参考电流而生成数据信号。但是,在该结构下,在构成各数据供给电路的有源元件等在特性上有无序差异时,参考电流的电流值会产生对每个数据供给电路为不同的情况。在这种情况下,由于基于参考电流所生成的数据信号的电流值产生了无序差异,即使假设给各电光学元件提供相等的驱动电流,仍然存在实际驱动电流对每个数据供给电路是不同的问题。例如,在将电光学装置用作为显示装置的情况下,因驱动电流的变化而使显示图像产生色斑。
为了解决该问题,在本发明的电光学装置中,第一数据供给电路的基准电流供给电路中所使用的参考电流被输出到第二数据供给电路,第二数据供给电路的基准电流供给电路基于从第一数据供给电路供给的参考电流而生成基准电流。即,在第一数据供给电路和第二数据供给电路中,基于共同的参考电流生成数据信号。因此,减少了关于从第一数据供给电路输出的数据信号和从第二数据供给电路输出的数据信号之电流值的误差。
在本发明优选方式中,第一数据供给电路输出的参考电流以时分方式向多个第二数据供给电路的每一个供给。根据该方式,多个第二数据供给电路中使用的参考电流与第一数据供给电路中使用的参考电流变为相等。
在该方式中,第一数据供给电路输出的参考电流经过电流供给线而向各第二数据供给电路供给,该电流供给线具有对于多个第二数据供给电路共通的部分。根据该结构,由于使用在多个第二数据供给电路中的共同布线,与第一数据供给电路和多个第二数据供给电路的每一个都个别连接的结构相比,布线数减少了。
在另一方式中,多个数据供给电路的每一个具有控制电路,用于切换是否向该数据供给电路的基准电流供给电路供给参考电流。根据该方式,对各数据供给电路的基准电流供给电路,可在由控制电路规定的任意时刻提供参考电流。而且,在该形式中,还采用各第二数据供给电路的控制电路在以从前级数据供给电路的控制电路所供给的使能信号为基础来转换可否对基准电流供给电路提供参考电流的同时,将使能信号输出到下级数据供给电路的控制电路的结构。例如,各第二数据供给电路的控制电路成为级联连接(纵向连接)。根据该结构,对各第二数据供给电路的基准电流供给电路,可根据使能信号依次提供参考电流。
在本发明的优选方式中,各数据供给电路包括保持参考电流的保持电路;各数据供给电路的基准电流供给电路根据保持电路所保持的参考电流来生成基准电流。由于在该方式中各数据供给电路包括保持电路,基准电流供给电路能够在任意时刻生成与该参考电流对应的基准电流并输出到数据信号输出电路。
可是,在数据信号输出期间和参考电流被提供给基准电流供给电路的期间重叠时,伴随着数据信号的输出,电源噪声的影响被提供给参考电流,从而在参考电流的电流值上产生误差。因此,在本发明的优选方式中,对各数据供给电路的基准电流供给电路之参考电流的供给是在该数据供给电路的数据信号输出电路输出数据信号期间以外的期间上进行的。据此,避免了在参考电流的电流值上产生误差。
在优选方式中,第一数据供给电路的构成和第二数据供给电路的构成相同。根据该方式,在配置数据供给电路时,没有必要区分第一数据供给电路和第二数据供给电路。因此,与将第一数据供给电路和第二数据供给电路作为不同构成的情况相比,在提高生产效率的同时,还降低了制造成本。
进一步,在本发明的优选方式中,设置了具有多个单位电路的元件驱动用IC芯片,其将与数据信号对应的驱动电流提供给电光学元件;各数据供给电路的数据信号输出电路将生成的数据信号输出到元件驱动用IC芯片的单位电路。根据该方式,由于用于驱动电光学元件的单位电路被包含在IC芯片中,抑制了单位电路在特性上的无序差异。
本发明的一个特征是适用于包含多个被驱动元件的各种装置。即,本发明的电光学装置,具有多个被驱动元件,其分别通过由数据信号指定的驱动电流所驱动;和多个数据供给电路,其按一个或者多个被驱动元件的每一个而设置并且包含第一数据供给电路和第二数据供给电路,分别包括基于参考电流而生成基准电流的基准电流供给电路、基于由基准电流供给电路生成的基准电流而输出与数据信号对应的电流值的数据信号输出电路;第一数据供给电路将为了该第一数据供给电路的基准电流供给电路生成基准电流而使用的参考电流输出到第一数据供给电路以外的第二数据供给电路;另一方面第二数据供给电路的基准电流供给电路根据由第一数据供给电路供给的参考电流来生成基准电流。依据该元件驱动装置,也可获得与本发明电光学装置相同的效果。
有关本发明的电子设备包括具有上述特征的电光学装置。根据该电子设备,抑制了电光学装置中有源元件在特性上的无序差异。特别是,在电光学装置被用作为显示装置的电子设备中,可将显示品质维持在高的水平。
作为优选,电子设备包括具有发光型电光学装置的第一显示部和具有非发光型电光学装置的第二显示部。其中发光型电光学装置具有其自身发光的电光学元件。发光型电光学装置的典型例子是将根据供给电流而在亮度上发光的有机EL元件用作为电光学元件的有机EL显示装置。另一方面,非发光型电光学装置具有其自身不发光的电光学元件。非发光型电光学装置的典型例子是将根据施加电压而改变透过率的液晶用作为电光学元件的液晶显示装置。该电子设备中,从发光型电光学装置出射的光到达非发光型电光学装置后提供给图像显示。因此。没有必要设置照明装置来确保由非发光型电光学装置产生显示的可视性。或者,即使设置照明装置,通过该照明装置的出射光量也可降低。在该电子设备的优选方式中,第一显示部和第二显示部通过介入各个边端部分而以相互旋转方式连接。根据该方式,为了使第一显示部的发光有效地到达第二显示部,调整第一显示部和第二显示部之间的相对位置关系。


图1是表示本发明实施方式的电光学装置结构的斜视图。
图2是表示电子部件层结构的平面图。
图3是表示象素驱动用IC芯片和有机EL元件之间的对应关系示意图。
图4是表示象素驱动用IC芯片的结构的方框图。
图5是表示扫描用IC芯片和象素驱动用IC芯片之间关系的方框图。
图6是用于说明扫描用IC芯片工作的时序图。
图7是表示象素电路的结构的电路图。
图8是用于说明象素电路的扫描的时序图。
图9是表示列数据变换用IC芯片的结构的方框图。
图10是表示基准电流供给电路的结构的电路图。
图11是表示设定期间内的操作的时序图。
图12是表示D/A变换电路的结构的方框图。
图13是表示D/A变换部的结构的电路图。
图14是表示通过第一制造方法得到的电光学装置的结构的截面图。
图15是表示象素驱动用IC芯片的焊盘形成面的结构示意图。
图16是表示电光学装置的结构的平面图。
图17是表示第一制造方法中基底层和金属层形成工序的示意图。
图18是表示同方法中IC芯片配置工序的示意图。
图19是表示同方法中填充层形成工序的示意图。
图20是表示同方法中第一绝缘层形成工序的示意图。
图21是表示同方法中第一布线层形成工序的示意图。
图22是表示同方法中第二绝缘层形成工序的示意图。
图23是表示同方法中金属膜和阳极材料膜形成工序的示意图。
图24是表示同方法中第二布线层和阳极层形成工序的示意图。
图25是表示同方法中第三绝缘层形成工序的示意图。
图26是表示同方法中树脂层形成工序的示意图。
图27是表示同方法中阳极层的一部分去除工序的示意图。
图28是表示同方法中导电层和阻挡层形成工序的示意图。
图29是表示同方法中导电层和阻挡层形成工序的示意图。
图30是表示同方法中阻挡层形成工序的示意图。
图31是表示同方法中EL层形成工序的示意图。
图32是表示同方法中阳极层形成工序的示意图。
图33是表示通过第二制造方法得到的电光学装置的结构的截面图。
图34是表示同方法中基板上光剥离层形成工序的示意图。
图35是表示同方法中金属层和粘结层形成工序的示意图。
图36是表示同方法中IC芯片配置工序的示意图。
图37是表示同方法中基底层和遮光层形成工序的示意图。
图38是表示同方法中支持基板粘贴工序的示意图。
图39是表示同方法中基板剥离状态的示意图。
图40是表示同方法其它例子中电源线形成工序的示意图。
图41是表示通过同方法其它例子获得的电光学装置的结构截面图。
图42是表示通过第三制造方法获得的电光学装置的结构截面图。
图43是表示同方法中光剥离层形成工序的示意图。
图44是表示同方法中绝缘层和导电层形成工序的示意图。
图45是表示同方法中第二布线层和阳极层形成工序的示意图。
图46是表示同方法中第二绝缘层形成工序的示意图。
图47是表示同方法中第一布线层形成工序的示意图。
图48是表示同方法中第一绝缘层形成工序的示意图。
图49是表示同方法中凸块形成工序的示意图。
图50是表示同方法中IC芯片配置工序的示意图。
图51是表示同方法中支持基板粘贴工序的示意图。
图52是表示同方法中基板剥离状态的示意图。
图53是表示作为电子设备一例的个人计算机构成的斜视图。
图54是表示作为电子设备一例的电子书籍构成的斜视图。
图中D-电光学装置,1-有机EL层(元件层),10-有机EL元件(电光学元件,被驱动元件),13-EL层,15-密封层,2-布线形成层,3-电子部件层,30-IC芯片,31-控制用IC芯片,33-扫描用IC芯片(选择用IC芯片),35-列数据变换用IC芯片(数据供给用IC芯片),37-象素驱动用IC芯片(元件驱动用IC芯片),371-象素解码器,374-象素计数器,377-象素电路(单位电路),CO-电容器,301,307-基底层,302-金属层,302a-安装部,302b-定位标记,304,305-填充层,306遮光层,42,308-凸块,6-支持基板,41-第一绝缘层,43-第一布线层,45-第二绝缘层,47-第二布线层,49-阳极层,50-第三绝缘层,52-贮格围堰层,54-导电层,56-阻挡层,58-阴极层,701、707、708、730-金属膜,702-阳极材料膜,705-树脂膜,710、720-基板,712、724-光剥离层,716-树脂膜,726-绝缘膜,P1-第一焊盘(第一连接端子),P2-第二焊盘(第二连接端子),YLk-扫描控制线组,LXD-数据控制线。
具体实施例方式
下面,参考附图,说明本发明的实施方式,下面所示方式只是表示本发明的一方式,其不限定本发明,在本发明范围内可任意变更。而且,在下面所示各图中,为了让各构成要素成为在图面上可认识的大小,因此各构成要素的尺寸和比率与实际的尺寸和比率适当有所差别。
<A电光学装置的结构>
首先,作为用于显示图像的装置,说明适用于本发明电光学装置的方式。图1是表示本发明实施方式电光学装置结构的斜视图。如图中所示,电光学装置D具有支持基板6、有机EL层1、布线形成层2和电子部件层3。该支持基板6是由玻璃、塑料、金属、陶瓷等构成的板状或者薄膜状的部件。电子部件层3被设置在支持基板的一面上。布线形成层2被设置在从电子部件层3看的支持基板6的相对侧,有机EL层1被设置在从布线形成层2看的支持基板6的相对侧。
有机EL层1包含多个有机EL元件10作为电光学元件。这些有机EL元件10按照行方向(X方向)和列方向(Y方向)被配置成矩阵形式。各有机EL元件10通过供给电流而被驱动,是据此进行发光的元件(被驱动元件)。各有机EL元件10发出的光向图1中的上方向(即与支持基板6的相反方向)射出。本实施方式中,设想在列方向配置了m个有机EL元件10,在行方向配置了n个有机EL元件10的情况。因此,象素数总共是“m×n”个。
电子部件层3包含用于驱动各有机EL元件10的多个电子部件。具体地,在电子部件层3上包含各种电子部件,如采用CMOS(ComplementaryMetal-Oxide Semiconductor互补金属氧化物半导体)型或者双极型晶体管的半导体集成电路(IC芯片)、电阻或者电容器等无源元件、TFT芯片、或者板状纸(paper)电池等。如图1所示,本实施方式中的电子部件层3包含控制用IC芯片31、多个扫描用IC芯片33、多个列数据变换用IC芯片35和多个象素驱动用IC芯片37作为电子部件。
另一方面,布线形成层2位于电子部件层3和有机EL层1之间。该布线形成层2包含多个布线。具体地,布线形成层2具有用于连接电子部件层3上所含电子部件之间的布线。如图1所示,布线形成层2包含多个扫描控制线组YL和多个数据线DL。各个扫描控制线组YL是将各个扫描用IC芯片33和多个象素驱动用IC芯片37进行电连接的布线。另一方面,各个数据线是将各个列数据变换用IC芯片35和多个象素驱动用IC芯片37进行电连接的布线。布线形成层2包含将电子部件层3上所含电子部件与有机EL层上所含有机EL元件10进行连接的布线。例如,布线形成层2包含将一个象素驱动用IC芯片37与多个有机EL元件10进行电连接的布线(图1中省略了图示)。
下面,参考图2,说明电子部件层3的具体构成。如图中所示,多个象素驱动用IC芯片37按照行方向(X方向)和列方向(Y方向)被配置成矩阵形式。在有机EL层1上所含的多个有机EL元件10中,对预定数的每个有机EL元件1 0设置各个象素驱动用IC芯片37。象素驱动用IC芯片37和有机EL元件10之间的对应关系如下述。
本实施方式中,将有机EL层1上所含共计“m×n”个有机EL元件10分成多个组(以后称为“元件组”)。具体地,如图3所示,在将行方向上并排n个有机EL元件10分成每组q个的同时,将列方向上并排m个有机EL元件10分成每组p个,由一个区域上有“p×q”个有机EL元件10来构成一个元件组。然后,对各个元件组的每个分配一个象素驱动用IC芯片37。即,如图3所示,各个象素驱动用IC芯片37按照相对于一个元件组有“p×q”个有机EL元件10来进行配置并承担起驱动这些有机EL元件10的任务。
如图2所示,多个扫描用IC芯片33沿着支持基板6的一个或者两个边缘按列方向并排配置。各个扫描用IC芯片具有选择电路,用于在多个象素驱动用IC芯片37之中轮流选择应该进行有机EL元件10之驱动的IC芯片。另一方面,多个列数据变换用IC芯片35沿着支持基板6的其它边缘按行方向并排配置。各个列数据变换用IC芯片35基于表示图像的数据(以后称为“图像数据”)Xd来控制各个有机EL元件10中流动的电流。图像数据Xd是指定各个有机EL元件10之亮度(等级)的数据。
另一方面,控制用IC芯片31被配置在多个扫描用IC芯片33的列和多个列数据变换用IC芯片35的行相交叉的部分(即支持基板6的角部分)上。该控制用IC芯片31统一控制各扫描用IC芯片33和各列数据变换用IC芯片35。具体地,控制用IC芯片31被连接到计算机系统等外部装置(图示省略),从该外部装置接收图像数据Xd和用于规定显示操作时序的控制信号(例如时钟信号)。控制用IC芯片31具有显示存储器31a。该显示存储器31a是用于临时存储由外部装置供给的图像数据Xd的装置。
控制用IC芯片31基于从外部装置供给的控制信号生成用于在多个扫描用IC芯片33上平均选择一个的信号(后述的复位信号RSET,时钟信号YSCL,和芯片选择时钟信号YECL),将这些信号提供给各扫描用IC芯片(参考图5)。控制用IC芯片31将显示存储器31a中存储的图像数据Xd提供给各列数据变换用IC芯片35(参考图9)。而且,控制用IC芯片3 1生成用于强制停止各象素驱动用IC芯片37工作的强制关断信号Doff,并将该信号通过介入在布线形成层2所含的布线来输出到各象素驱动用IC芯片37。
下面,说明有关象素驱动用IC芯片37、扫描用IC芯片33和列数据变换芯片35之每一个的构成和操作。而且,在下面,在说明了象素驱动用IC芯片37和扫描用IC芯片33的构成和操作之后,再说明列数据变换芯片35的构成和操作。
<象素驱动用IC芯片37的构成>
各象素驱动用IC芯片37包含用于驱动给其分配的多个有机EL元件10的电路。更具体地,如图4所示,各象素驱动用IC芯片37具有象素解码器371、象素计数器374和多个象素电路377。各象素电路377与一个元件组所属多个有机EL元件10的每一个以1对1的对应形式被配置成矩阵形式。因此,各象素驱动用IC芯片37包含共计“p×q”个象素电路377。各象素电路377是用于驱动一个有机EL元件10的电路。因此,通过一个象素驱动用IC芯片37,可驱动有机EL层1中所含“p×q”个有机EL元件10。
如图4所示,行方向并排的q个象素电路377通过介入一根字线WLi(i是满足1≤i≤m的整数)、一根保持控制信号线HLi和一根发光控制信号线GCLi而相互连接。各字线WLi、各保持控制信号线HLi和各发光控制信号线GCLi的一端连接到象素解码器371。在该构成之下,分别从象素解码器371向行方向并排的q个象素电路377,通过字线WLi提供选择信号XWi,通过保持信号线HLi提供保持控制信号XHi,以及通过发光控制信号线GCLi提供发光控制信号XGCi。另一方面,列方向并排的p个象素电路377通过一根数据线DLj(j是满足1≤j≤n的整数)而被连接到列数据变换用IC芯片35。
一个象素驱动用IC芯片37中所含的全部象素电路377经过共同测试信号线TSL被连接到象素解码器371。在该构成之下,从象素解码器371向各象素电路377通过测试信号线TSL同时提供测试信号TS。通过这,整个象素电路377同时进行操作测试。
<扫描用IC芯片33的构成>
下面,参考图5,说明扫描用IC芯片33的具体构成。而且,在下面,为了便于说明,将在行方向由并排的多个(“n/q”个)象素驱动用IC芯片37构成的组记为“象素驱动用IC芯片组”。
如图5所示,本实施方式中,对每两个(即2行部分)象素驱动用IC芯片组设置一个扫描用IC芯片33。各扫描用IC芯片33控制两个象素驱动用IC芯片组所属的多个(“2n/q”个)象素驱动用IC芯片37的操作。而且,在下面,为了便于说明,将扫描用IC芯片33的个数记为“r(=m/2p)”。在与一个扫描用IC芯片33对应的2个象素驱动用IC芯片组中,在将一部分象素驱动用IC芯片组记为“第一象素驱动用IC芯片组370a”的同时,将另一部分象素驱动用IC芯片组记为“第二象素驱动用IC芯片组370b”。
各扫描用IC芯片33通过介入布线形成层2上所含扫描控制线组YLk(k是满足1≤k≤r的整数),被连接到该扫描用IC芯片33所分配的两个象素驱动用IC芯片37上。各扫描控制线组YLk包含第一局部(local)时钟信号线LCak、第二局部(local)时钟信号线LCbk、和局部复位信号线LRS。更具体地,各扫描用IC芯片33通过介入第一局部时钟信号线LCak被连接到第一象素驱动用IC芯片组370a所属的多个象素驱动用IC芯片37上。同样,各扫描用IC芯片33通过介入第二局部时钟信号线LCbk被连接到第二象素驱动用IC芯片组370b所属的多个象素驱动用IC芯片37上。相邻的2个扫描用IC芯片33之间通过布线形成层2上所含布线被电连接。
在这里,图6是表示涉及各象素电路377扫描的信号波形的时序图。图中所示的复位信号RSET、时钟信号YSCL和芯片选择时钟信号YECL是从控制用IC芯片31提供给各扫描用IC芯片33的信号。其中的复位信号RSET是用于规定为了扫描整个“m×n”个有机EL元件10所需要时间(以后称为“数据写入期间”)之时间长度的信号,其在各数据写入期间的开始时刻上升到H电平。另一方面,时钟信号YSCL是具有相当于一个水平扫描期间长度之周期的信号。该水平扫描期间相当于一行所属n个象素电路377被同时选择的时间。芯片选择时钟信号YECL是用于在多个扫描用IC芯片33中选择实际上应该进行象素驱动用IC芯片37之控制的扫描用IC芯片33的信号。因此,芯片选择时钟信号YECL在一个数据写入期间内只有相当于扫描用IC芯片之数目的“r”次上升到H电平。
各扫描用IC芯片33通过该芯片选择时钟信号YECL选择后依次输出第一局部时钟信号SCKak和第二局部时钟信号SCKbk。第一局部时钟信号SCKak和第二局部时钟信号SCKbk是用于每行选择各象素驱动用IC芯片组所属的多个象素电路377的时钟信号。
更具体地,如图6所示,第k个扫描用IC芯片33首先对第一象素驱动用IC芯片组370a所属的多个象素驱动用IC芯片37输出第一局部时钟信号SCKak。该第一局部时钟信号SCKak是在相当于“p”个水平扫描期间的期间且以与时钟信号YSCL相同的周期进行电平变化的信号,“p”是在第一象素驱动用IC芯片组370a中在列方向并排的象素电路377的数目。通过芯片选择时钟信号YECL选择的扫描用IC芯片33在基于第一局部时钟信号SCKak而对p行象素电路377的选择结束时,对第二象素驱动用IC芯片组370b所属的多个象素驱动用IC芯片37输出第二局部时钟信号SCKbk。该第二局部时钟信号SCKbk是在相当于“p”个水平扫描期间的期间且以与时钟信号YSCL相同的周期进行电平变化的信号,“p”是在第二象素驱动用IC芯片组370b中在列方向并排的象素电路377的数目。第一局部时钟信号SCKak和第二局部时钟信号SCKbk是分别通过第一局部时钟信号线LCak和第二局部时钟信号线LCbk而传送的。
另一方面,各扫描用IC芯片33在基于第二局部时钟信号SCKbk而对p行象素电路377的选择结束时,如图6所示,下一级扫描用IC芯片33上所输出的使能信号EOk被翻转到H电平。该使能信号EOk是用于将根据扫描用IC芯片33所得的对2行象素驱动用IC芯片组选择完毕的信息通知下级扫描用IC芯片33的信号。被提供了H电平使能信号EOk的第(k+1)级扫描用IC芯片33根据与上述相同的程序而输出第一局部时钟信号SCKak+1和第二局部时钟信号SCKbk+1。
<象素电路377的构成>
下面,参考图7,说明作为单位电路的象素电路377的电构成。图7表示出位于第i行第j列的一个象素电路377。该构成对于所有象素电路377是共同的构成。
象素电路377由多个MOS晶体管和一个电容器C0构成。具体地,象素电路377具有一对开关晶体管Q1a和Q1b;一对读入晶体管Q2a和Q2b;电容器C0;发行控制晶体管Q3;测试晶体管Q8a和Q8b;模拟存储器部377a。其中晶体管Q1a、Q1b、Q2a、Q2b和Q3是p沟道型MOS晶体管,晶体管Q8a和Q8b是n沟道型MOS晶体管。晶体管Q2b是用于给有机EL元件10提供恒流的驱动晶体管。晶体管Q3是用于控制该恒流导通/截止的晶体管。
晶体管Q1a被连接到数据线DLj和晶体管Q1b,其栅极端子被连接到字线WLi。晶体管Q1b连接到电容C0的一端和晶体管Q1a,其栅极端子被连接到字线WLi。另一方面,电容C0的另一端连接到电源线L1。该电源线L1上施加了电源电压VDD。
晶体管Q2a和Q2b构成电流镜像电路。具体地,晶体管Q2a和Q2b的各个栅极端子连接到电容器C0的一端。一个晶体管Q2a连接晶体管Q1a和电源线L1之间。因此,在字线WLi上所提供的选择信号XWi演变成L电平时,晶体管Q1a和Q1b都变为导通状态。这样在晶体管Q1b变为导通状态时,晶体管Q2a就作为栅极端子和漏极端子被连接的二极管的功能。因此,根据数据线DLj之数据信号Dj的电流就流过称为电源线L1→晶体管Q2a→晶体管Q1a→数据线DLj的通路,与晶体管Q2a的栅极电压对应的电荷积蓄在电容器C0上。另一个晶体管Q2b被连接到晶体管Q3的源极端子和电源线L1上。晶体管Q2b与晶体管Q2a构成电流镜像电路,在电容器C0上积蓄的电荷即根据晶体管Q2b的栅极电压产生的电流流到晶体管Q3。
晶体管Q3的栅极端子被连接到发光控制信号线GCLi。晶体管Q3的漏极端子通过布线形成层2上所含布线而连接到有机EL元件10。在该结构之下,发光控制信号XGCi演变为L电平时晶体管Q3变为导通状态。此时,根据晶体管Q2b栅极电压的驱动电流Ie1通过晶体管Q2b和Q3而提供给有机EL元件10。通过该驱动电流Ie1的供给,有机EL元件10发光。而且,在本实施方式中,作为晶体管Q2a,Q2b和Q3虽然采用p型晶体管,但是,这些晶体管根据有机EL元件10和电源线L1之间的连接关系,也可合适地变为n型晶体管。
另一方面,模拟存储器部377a是将电容器C0所积蓄的电荷维持稳定的电路。具体地,模拟存储器部377a具有晶体管Q4a,Q4b,Q5,Q6和Q7。其中晶体管Q4a和Q4b是n沟道型MOS晶体管,晶体管Q5,Q6和Q7是p沟道型MOS晶体管。晶体管Q4a和Q4b构成电流镜像电路。同样,晶体管Q5和Q6构成电流镜像电路。
晶体管Q5连接到电源线L1和晶体管Q4a上,其栅极端子连接到电容器C0的一端。晶体管Q6连接到电源线L1和晶体管Q4b上,其栅极端子连接到晶体管Q7。该晶体管Q7连接到电容器C0的一端和晶体管Q6,其栅极端子连接到保持信号线HLi。因此,晶体管Q7在保持信号Xhi变为L电平时变为导通状态。
另一方面,晶体管Q4a连接到晶体管Q5和接地线上,其栅极端子连接到晶体管Q5。晶体管Q4b连接到晶体管Q6和接地线上,其栅极端子连接到晶体管Q5和晶体管Q4a的栅极端子上。
在该构成之下,模拟存储器部377a按如下工作。即,根据数据信号的电荷被积蓄在电容器C0上时,根据晶体管Q2b栅极电压的电流从晶体管Q5流到晶体管Q4a。这里,由于晶体管Q4a和Q4b构成等倍的电流镜像电路,与在晶体管Q4a上流动电流相等的电流被流到晶体管Q4b,而且该电流还流到晶体管Q6。然后,在该状态中的晶体管Q7变成导通状态时,晶体管Q6的栅极电压通过晶体管Q7被反馈到电容器C0。通过这,电容器C0上积蓄的电荷被维持稳定。而且,在其它的方式中,可以采用非易失性存储器电路代替模拟存储器部377a。模拟存储器部377a是为了迅速重新开启一旦熄灭后的显示的有效电路,该熄灭后的显示是为了降低功耗和程序热启动等,但是其在本发明中不是必须的。
下面,说明象素驱动用IC芯片37所含的象素计数器374和象素解码器371。图4所示象素计数器374是用于将一个象素驱动用IC芯片37中所含各行象素电路377作为选择对象而依次特定的装置。该象素计数器374上连接了局部复位信号线LRS、第一局部时钟信号线LCak或者第二局部时钟信号线LCbk。
详述之后,象素计数器374每次在由扫描用IC芯片33提供的第一局部时钟信号SCKak或者第二局部时钟信号SCKbk上升到H电平时都把计数值增加“1”。而且,象素计数器374每次在由扫描用IC芯片33提供的局部复位信号RS上升到H电平时都把计数值复位到“0”。因此,依据象素计数器374的计数值在一个数据写入期间中,从“0”在每个水平扫描期间内增加“1”,可获取到“p”的值。象素计数器374的计数值被输出到象素解码器371。
该象素解码器371是用于依次选择一个象素驱动用IC芯片37上所含各行象素电路377的装置。该象素解码器371连接了第一局部时钟信号线LCak或者第二局部时钟信号线LCbk。象素解码器371同时选择与象素计数器374的计数值相对应的行中所属的多个(q个)象素电路377。即,象素解码器371按如下所示控制选择信号XWi、保持控制信号XHi和发光控制信号XGCi的电平。
如图8所示,选择信号XWi是在数据写入期间的一个水平扫描期间内变成L电平的信号。即,选择信号XWi在数据写入期间中在第一局部时钟信号SCKak或者第二局部时钟信号SCKbk为第i个上升沿时翻转成L电平,为第(i+1)个上升沿时翻转成H电平。因此,选择信号XW1、XW2、...、XWp与第一局部时钟信号LCak或者第二局部时钟信号LCbk的上升沿同步依次翻转到L电平。保持控制信号XHi在选择信号XWi下降到L电平之后在仅仅经过规定时间的时刻就翻转到H电平,在经过相当于一个水平扫描期间的时间后翻转到L电平。而且,发光控制信号XGCi是将选择信号XWi的电平翻转的信号。因此,发光控制信号XGC1、XGC2、...、XGCp与第一局部时钟信号LCak或者第二局部时钟信号LCbk的上升沿同步依次翻转到H电平。
另一方面,如图7所示,晶体管Q8a和Q8b的栅极端子连接到测试信号线TSL。其中晶体管8a的漏极端子连接到晶体管Q3的漏极端子。在测试象素电路377工作的模式(测试模式)中,根据强制关断信号Doff使晶体管Q3变为截止状态,通过测试信号TS翻转成H电平使晶体管Q8a变为导通状态。通过这,有机EL元件10的阳极层经过晶体管Q8a被连接到接地线。晶体管8b的漏极端子连接到数据线DL。测试模式中的测试信号TS翻转成H电平后,晶体管Q8b变为导通状态。通过这,数据线DL经过晶体管Q8b被连接到接地线。此时,在晶体管Qa1和Qb1变为导通状态之后,晶体管Q2a的栅极电压被强制地变为接地电位。在该测试模式中,通过设置选择信号XWi和数据信号Dj或者保持信号XHi的规定电平,检查了象素电路377的泄漏(leak)电流和电容器C0的电位保持性等。在测试模式中,象素计数器374的计数值被设定为比“p”大的多个数值,并进行对这些数值的每个所分配内容的测试。而且,作为晶体管Q8a和Q8b,也可采用p沟道型晶体管。
下面,说明各个象素电路377的工作。在这里,特别着眼位于第i行第j列的一个象素电路377来说明其工作,但是,该工作是在整个象素电路377中共有的工作。
首先,从象素解码器371所提供的选择信号XWi在水平扫描期间的开始时刻翻转到L电平时,第i行所属全部象素电路377的晶体管Q1a和Q1b变为导通状态。其结果,与数据信号Dj对应的电流在晶体管Q2a上流过,与该电流对应的电荷积蓄在电容器C0上。另一方面,在水平扫描期间的开始时刻发光控制信号XGCi翻转到H电平时,晶体管Q3变为截止状态。因此,在电容器C0充电中没有在有机EL元件10上流动电流。在选择信号XWi翻转到L电平之后,在经过规定时间的时刻,保持控制信号XHi翻转到H电平,晶体管Q7变为截止状态。
接着,在水平扫描期间的结束时刻选择信号XWi翻转到H电平时,第i行所属全部象素电路377的晶体管Q1a和Q1b变为截止状态。另一方面,在水平扫描期间的结束时刻发光控制信号XGCi翻转到L电平时,第i行所属全部象素电路377的晶体管Q3变为导通状态。通过这,根据电容器C0上所保持电压的驱动电流Ie1经由晶体管Q2b和Q3而供给有机EL元件10。其结果,有机EL元件10以与驱动电流Ie1之大小对应的亮度发光。
在从水平扫描期间结束时刻开始仅仅延迟规定时间的时刻,保持控制信号XHi翻转到L电平时,第i行所属全部象素电路377的晶体管Q7变为导通状态。因此,晶体管Q2b的栅极电压通过模拟存储器部377a被维持恒定。
另一方面,如上述,在象素解码器371上被提供了来自控制用IC芯片3 1的强制关断信号Doff。该强制关断信号Doff翻转到H电平之后,象素解码器371将整个发光控制信号XGC1、XGC1、...、XGC1p翻转到H电平。通过这,象素驱动用IC芯片37内所有象素电路377中的晶体管Q3变为截止状态。因此,整个有机EL元件10根据强制关断信号Doff而停止发光。
<象素电路377的选择操作>
下面,详细说明按照以上所示结构而实现的象素电路377的选择操作。
首先,如图6所示,从控制用IC芯片31提供给各扫描用IC芯片33的复位信号RSET在整个规定期间成为H电平。各扫描用IC芯片33将该复位信号RSET的上升沿作为起端,将提供给下一级扫描用IC芯片33的使能信号EOk设定为L电平。而且,各扫描用IC芯片33在整个规定时间将第一象素驱动用IC芯片组370a和第二象素驱动用IC芯片组370b上所提供的局部复位信号RS翻转到H电平。其结果,各象素驱动用IC芯片组中所含象素计数器374将计数值复位到“0”。
另一方面,通过芯片选择时钟信号YECL在数据写入期间的开头翻转到H电平,选择了第一级扫描用IC芯片33。该扫描用IC芯片33基于由控制用IC芯片31提供的时钟信号YSCL而输出第一局部时钟信号SCKa1的时钟脉冲。该第一局部时钟信号SCKa1经过第一局部时钟信号线LCa1被提供给第一象素驱动用IC芯片组370a。
第一象素驱动用IC芯片组370a中所属象素电路377的象素计数器374将第一局部时钟信号LCa1之时钟脉冲的开头的上升沿作为起端使计数值从“0”增加到“1”。另一方面,象素解码器371在选择了与该计数值“1”对应的第一行象素电路377的同时,对与这些象素电路377对应的有机EL元件10进行用于流过根据数据信号Dj之电流的操作(以后称为“选择操作”)。
即,象素解码器371在一个水平扫描期间使与该计数值“1”对应的选择信号XW1翻转到L电平。其结果,第一行所属全部象素电路377的晶体管Q1a和Q2a变为导通状态。即,选择了第一行所属全部象素电路377。通过这,根据数据信号Dj之电流的电荷被充电到电容器C0。在正选择一行象素电路377的时间内,象素解码器371在通过将保持控制信号XH1设置为H电平而使晶体管成为截止状态的同时,通过将发光控制信号XGC1设置为H电平而使晶体管Q3成为截止状态。
另一方面,选择信号被翻转到L电平之后在经过一个水平扫描期间时,象素解码器371使选择信号XW1翻转到H电平。通过这,在第一行所属全部象素电路377中,晶体管Q1a和Q1b变为截止状态。而且,象素解码器371在从选择信号XW1上升沿开始被稍微延迟的时刻使保持控制信号XH1翻转到L电平。其结果,第一行所属象素电路377的晶体管Q7变为导通状态。象素解码器371与选择信号XW1上升沿同步使发光控制信号XGC1翻转到L电平。其结果,第一行所属象素电路377的晶体管Q3变为导通状态。
通过上述操作,在第一行所属全部象素电路377中,与电容器C0所保持电压对应的电流Ie1在晶体管Q2b的源极/漏极间流动。因此,有机EL元件10以与数据信号Dj对应的亮度(等级)而发光。
在如此结束了第一行象素电路377的选择操作之后,象素计数器374使计数值从“1”增加到“2”。然后,在第二次水平扫描期间内,将第一象素驱动用IC芯片组370a所属第二行象素电路377作为对象进行与上述相同的选择操作。此后,将直至第一象素驱动用IC芯片组370a所属第p行象素电路377进行同样的选择操作。即,每次在各水平扫描期间的开始时刻象素计数器374的计数值被仅仅增加“1”时,都对根据该计数值而特定的行的象素电路377进行选择操作。根据更一般的表述,当象素计数器374的计数值是“k”时,选择第一象素驱动用IC芯片组370a所属第k行的象素电路377,并且使与这些象素电路377对应的有机EL元件10以与数据信号Dj对应的亮度发光。
接着,在有关第一象素驱动用IC芯片组370a所属第p行的全部象素电路377的选择操作结束之后,第一级扫描用IC芯片33基于时钟信号YSCL输出第二局部时钟信号SCKb1的时钟脉冲。该第二局部时钟信号SCKb1经过第二局部时钟信号线LCb1被提供给第二象素驱动用IC芯片组370b。然后,在第二象素驱动用IC芯片组370b所属各象素驱动用IC芯片37中,重复与上述有关第一象素驱动用IC芯片组370a的同样的选择操作。即,第二象素驱动用IC芯片组370b所属象素电路377的各行在每个水平扫描期间都被选择,与这些象素电路377对应的有机EL元件10以与数据信号Dj对应的亮度发光。
另一方面,在有关第二象素驱动用IC芯片组370b所属第p行象素电路377的选择操作结束之后,第一级扫描用IC芯片33使第二级扫描用IC芯片33上所提供的使能信号EO1翻转到H电平。通过这,将与第二级扫描用IC芯片33对应的第一象素驱动用IC芯片组370a(第三行象素驱动用IC芯片37)以及第二象素驱动用IC芯片组370b(第四行象素驱动用IC芯片37)作为对象,依次进行上述的选择操作。以后同样,通过芯片选择时钟信号YECL和使能信号EO选择扫描用IC芯片33,并将与该选择扫描用IC芯片33对应的第一象素驱动用IC芯片组370a和第二象素驱动用IC芯片组370b作为对象依次进行同样的选择操作。根据更一般的表述,在通过芯片选择时钟信号YECL和使能信号EOk-1选择了第k级扫描用IC芯片33之后,首先,对第一象素驱动用IC芯片组370a(第(2k-1)行的象素驱动用IC芯片组)所属p行的象素电路377进行依次的选择操作。其结束之后,对与第k级扫描用IC芯片33对应的第二象素驱动用IC芯片组370b(第(2k)行的象素驱动用IC芯片组)所属p行的象素电路377进行依次的选择操作。以上操作的结果,显示了与由外部装置提供的图像数据Xd相对应的图像。
根据本实施方式的扫描用IC芯片33和象素驱动用IC芯片37,获得了以下的效果。
(1)用于依次选择各象素电路377的象素计数器374和象素解码器371被设置在象素驱动用IC芯片37中,各象素驱动用IC芯片37经过扫描控制线组YLk连接到扫描用IC芯片33。因此,对各行象素电路377的每行设置扫描控制线组YLk不是必要的。其结果,与对各行象素电路377的每行设置了扫描线的现有技术结构相比,扫描控制线组YLk的根数变少了,扫描控制线组YLk所占的空间减少了。另一方面,扫描控制线组YLk的根数变少,就意味着由与现有技术构成相同的空间可形成宽的布线。在该情况下,由于降低了布线的阻抗,即使在例如电光学装置D具有由多象素构成的大画面的情况下,也可用良好显示品位来实现高亮度的显示装置。而且,由于用来将驱动IC芯片连接到扫描用IC芯片33的焊盘(pad)数变少,象素驱动用IC芯片37的尺寸减小。
(2)由于通过测试信号TS进行各象素电路377的测试,象素驱动用IC芯片37中有机EL元件10所连接的焊盘(连接端子)能够做小。即,在通过将探针机械接触象素驱动用IC芯片37之焊盘而进行象素电路377的测试的时候,有必要将象素驱动用IC芯片37的焊盘与该探针接触做成非常大。与此相反,根据本实施方式,由于通过测试信号的供给而测试象素电路377,象素驱动用IC芯片37中在有机EL元件10所应该连接的焊盘上使其与探针接触不是必要的。因此,与探针的接触所需要的大小相比,象素驱动用IC芯片37的焊盘可以非常小。通过这,使象素驱动用IC芯片37的尺寸缩小,而且由于用于连接扫描用IC芯片33和各象素驱动用IC芯片37的布线数减少,从而实现更高分辨率。
图5例子表示了一个扫描用IC芯片33承担2行象素驱动用IC芯片37之控制的结构,但是,一个扫描用IC芯片33所分配的象素驱动用IC芯片37的数目不局限于此。
<列数据变换用IC芯片的构成>
下面,说明各列数据变换用IC芯片35的构成。如图2所示,在本实施方式中,按多列(这里假设共计“s”列)象素驱动用IC芯片37设置了一个列数据变换用IC芯片35。各列数据变换用IC芯片35对这些象素驱动用IC芯片37所含的象素电路377经过数据线DLj而提供数据信号Dj。
如图9所示,各列数据变换用IC芯片35具有使能控制电路351、第一锁存电路353、第二锁存电路354、D/A变换电路356和基准电流供给电路358。而且,在图9中,尽管只详细图示了第一级列数据变换用IC芯片35的构成,但是第二级以后的列数据变换用IC芯片35也是相同的构成。
各列数据变换用IC芯片35经过数据控制线LXD被连接到控制用IC芯片31。该数据控制线LXD包含使能信号线LXECL、图像数据信号线LXd、时钟信号线LXCL、基准电流控制线LBP和锁存脉冲信号线LLP。
其中使能信号线LXECL是用于从控制用IC芯片31对第一级列数据变换用IC芯片35的使能控制电路351提供使能控制信号XECL的布线。使能控制电路351基于使能控制信号XECL生成使能信号EN。该使能信号EN表示许可或者不许可第一锁存电路353和基准电流供给电路358的操作。通过使能控制电路351而生成的使能信号EN被输出到与门353a、353b和359的输入端子。
各列数据变换用IC芯片35的使能控制电路351对下一级列数据变换用IC芯片35的使能控制电路351进行级联连接。在该构成之下,第二级以后的列数据变换用IC芯片35的使能控制电路351分别接收来自前级列数据变换用IC芯片35的使能控制电路351的使能信号EN,并基于该信号生成使能信号EN。
第一锁存电路353上连接了与门353a的输出端子和与门353b的输出端子。其中与门353a的输入端子上经过图像数据信号线LXd被输入了来自控制用IC芯片31的图像数据Xd。即,与门353a将使能信号EN和图像数据Xd之间的逻辑与输出到第一锁存电路353。换言之,只是在使能信号EN为H电平期间,从控制用IC芯片31输出的图像数据Xd才经过与门353a被提供给第一锁存电路353。另一方面,在与门353b的输入端子上经过时钟信号线LXCL被输入了来自控制用IC芯片31的时钟信号XCL。即,与门353b将使能信号EN和时钟信号XCL之间的逻辑与输出到第一锁存电路353。换言之,只是在使能信号EN为H电平期间,从控制用IC芯片31输出的时钟信号XCL才经过与门353b被提供给第一锁存电路353。时钟信号XCL是所谓的点(dot)时钟。在上述构成之下,第一锁存电路353在使能信号EN为H电平期间,与时钟信号XCL同步而顺序保存图像数据Xd。另一方面,使能信号EN在对于“s”个象素电路377的图像数据Xd被提取到第一锁存电路353的时刻翻转到L电平。因此,在第一锁存电路353上,就获取了对于“s”个象素电路377的图像数据Xd。
第一锁存电路353的输出端子被连接到第二锁存电路354的输入端子。另一方面,第二锁存电路354的输出端子被连接到D/A变换电路356的输入端子。在第二锁存电路354上经过锁存脉冲信号线LLP从控制用IC芯片31输入了锁存脉冲信号LP。锁存脉冲信号LP是在水平扫描期间的开始时刻翻转到H电平的信号。第二锁存电路354在锁存脉冲信号LP的上升沿把第一锁存电路353上保持的“s”个象素电路377的图像数据Xd同时取入,和将该取入的图像数据Xd输出到D/A变换电路356。即通过第一锁存电路353和第二锁存电路354实行串行/并行变换。
D/A变换电路356是将与第二锁存电路354所输出图像数据对应的电流作为对“s”根数据线的数据信号Dj而输出的电路。即,D/A变换电路356将第二锁存电路354所输出的图像数据Xd变换成作为模拟信号的数据信号Dj,并将该数据信号Dj输出到数据线DLj。本实施方式中的D/A变换电路356基于基准电流供给电路358所提供的基准电流Ir将图像数据Xd变换成数据信号Dj。
如图9所示,在该基准电流供给电路358上,连接了与门359的输出端子。在该与门359的输入端子上,经过基准电流控制线LBP从控制用IC芯片31输入了基准电流写入信号BP。与门359运算使能信号EN和基准电流写入信号BP之间的逻辑与,并将其结果作为控制脉冲信号CP输出。换言之,只在使能信号EN为H电平期间,控制用IC芯片31所输出的基准电流写入信号BP经过与门359才作为控制脉冲信号CP提供给基准电流供给电路358。该基准电流写入信号BP是用于指示对基准电流供给电路358生成基准电流Ir的信号。而且,在本实施方式中,通过共同的使能信号EN控制是否许可根据第一锁存电路353而进行的图像数据Xd的取入操作和是否许可根据基准电流供给电路358而进行的基准电流Ir的生成操作。但是,也可采用通过别的信号来控制是否许可这些操作的结构。
图10是表示各列数据变换用IC芯片35中基准电流供给电路358的构成示意图。尽管图中只示出了第一级和第二级列数据变换用IC芯片35上所含基准电流供给电路358,但其它的列数据变换用IC芯片35的基准电流供给电路358也是相同的构成。以后,第一级列数据变换用IC芯片35上所含基准电流供给电路358仅表记为“第一级基准电流供给电路358”,第二级以后的多个列数据变换用IC芯片35上所含基准电流供给电路358的每一个都仅表记为“第二级以后的基准电流供给电路358”。
如图10所示,各基准电流供给电路358具有恒流源3581、电容器C1、和第一~第四开关装置SW1~SW4。而且,各基准电流供给电路358具有晶体管Tsw,T1,T2,T3,Tm。其中晶体管Tsw,T1,T2,Tm分别是n沟道型FET(Field Effect Transistor场效应晶体管)。另一方面,晶体管T3是p沟道型FET。
第二级以后的基准电流供给电路358的构成是与第一级基准电流供给电路358的构成相同。但是,在第二级以后的基准电流供给电路358和第一级基准电流供给电路358中,第四开关装置SW4的连接状态不同。即,第一级基准电流供给电路358中,晶体管Tsw的栅极端子和第四开关装置SW4上施加了高位侧的电源电位(VDD)。因此,第一级基准电流供给电路358中,晶体管Tsw变为常导通状态,另一方面,晶体管Tm的漏极端子和第一开关装置SW1的一端经过第四开关装置SW4而被常连接。与此相反,第二级以后的基准电流供给电路358中,晶体管Tsw的栅极端子和第四开关装置SW4上施加了低位侧的电源电位(接地电位)。因此,第二级以后的基准电流供给电路358中,晶体管Tsw变为常截止状态,另一方面,晶体管Tm的漏极端子和第一开关装置SW1的一端被常切断。因此,在第二级以后的基准电流供给电路358中,恒流源3581、晶体管T1和晶体管Tm不参与操作。
恒流源3581生成恒定的电流Io,将该恒定电流Io提供给晶体管Tsw的漏极端子。该晶体管Tsw的源极端子连接到晶体管T1的漏极端子。晶体管T1连接成二极管,其源极端子接地。晶体管T1的栅极端子连接到晶体管Tm的栅极端子。因此,晶体管T1和晶体管Tm构成电流镜像电路。即,与在晶体管T1上流动的恒定电流Io对应的参考电流Iref流到晶体管Tm。晶体管Tm的源极接地。
晶体管Tm的漏极端子经过第四开关装置SW4被连接到第一开关装置SW1的一端。第一开关装置SW1的另一端被连接到第二开关装置SW2的一端和晶体管T3的漏极端子上。该第二开关装置SW2的另一端连接到晶体管T3的栅极端子。电容器C1的一端连接到晶体管T3的栅极端子。电容器C1的另一端和晶体管T3的源极端子连接到电源线。
另一方面,晶体管T3的漏极端子连接到第三开关装置SW3的一端。第三开关装置SW3的另一端连接到晶体管T2的漏极端子。晶体管T2的源极端子接地。
第一开关装置SW1和第二开关装置SW2根据控制脉冲信号CP(CP1,CP2,...)而被切换成接通状态和断开状态的任何一种。更具体地,第一和第二开关装置SW1,SW2的每一个在控制脉冲信号CP为H电平时变成接通状态,而在控制脉冲信号CP为L电平时变成断开状态。
第三开关装置SW3根据控制翻转脉冲信号CSW(CSW1,CSW2,...)而被切换成接通状态和断开状态的任何一种。该控制翻转脉冲信号CSW是把控制脉冲信号CP的电平翻转之后被延迟的信号。即,对由延迟电路3586和或非门3585构成的门电路输入控制脉冲信号CP,其输出信号作为控制翻转脉冲信号CSW被提供给第三开关装置SW3。更具体地,如图11所示,控制脉冲信号CP为H电平时控制翻转脉冲信号CSW变为L电平。此时,第三开关装置SW3变为断开状态。另一方面,在控制脉冲信号CP翻转到L电平之后的稍微延迟时刻该控制翻转脉冲信号CSW变为H电平。此时,第三开关装置SW3变为接通状态。
在以上所示构成之下,在使能信号EN和基准电流写入信号BP都变成H电平之后,控制脉冲信号CP变成H电平,第一和第二开关装置SW1,SW2都变为接通状态。此时,在第一级电流供给电路358中,按照由恒流源3581所生成恒定电流而定大小的电流流过晶体管Tm、第一和第二开关装置SW1,SW2,对应于该电流的电荷积蓄在电容器C1上。另一方面,由于第三开关装置SW3变为断开状态,在第二晶体管T2上没有电流流过。
接着,在控制脉冲信号CP翻转到L电平之后,第一和第二开关装置SW1,SW2变为断开状态,第三开关装置SW3变为接通状态。其结果,在电容器C1上积蓄的电荷即与晶体管T3的栅极电压对应的基准电流Ir1流到晶体管T3。该基准电流Ir1被提供给晶体管T2。
另一方面,第一级基准电流供给电路358中的第一开关装置SW1的一端经过基准电流供给线Lr被连接到第二级以后的全部基准电流供给电路358中的第四开关装置SW4的一端。因此,在第一级基准电流供给电路358的第一和第二开关装置SW1,SW2变成断开状态之后,对第二级以后的全部基准电流供给电路358,通过基准电流供给线Lr供给参考电流Iref。然后,与通过该基准电流供给线Lr所供给的参考电流Iref相对应的电荷就被积蓄在第二级以后的全部基准电流供给电路358的电容器C1上。
这样,在本实施方式中,与从一个列数据变换用IC芯片35的恒流源3581所输出的恒电流Io成比例的参考电流Iref被提供给其它列数据变换用IC芯片35的基准电流供给电路358。因此,在整个列数据变换用IC芯片35中使用的基准电流Ir的大小变为相等。而且,代替图10所示电容器C1,也可采用具有保持基准电流Ir之功能的其它装置(例如为具有与电容器C1等价之功能的非易失性存储器)。
下面,参考图12和图13,说明D/A变换电路356的具体构成。而且,尽管在图12中示出了第一级列数据变换用IC芯片35的D/A变换电路356,但其它的列数据变换用IC芯片35的D/A变换电路356也是同样的构成。
如图12所示,各列数据变换用IC芯片35的D/A变换电路356具有相当于该列数据变换用IC芯片35所分配数据线之根数的“s”个D/A变换部356a。从基准电流供给电路358输出的电流Ir1被提供给这些“s”个D/A变换部356a的每一个。各D/A变换部356a从第二锁存电路354接收与一个象素电路377对应的图像数据Xd。然后,各D/A变换部356a将该图像数据变换成基于电流Ir1的数据信号Dj,将所得数据信号Dj输出到数据线XLj。而且,本实施方式中,图像数据Xd是6位数据。
图13是表示各D/A变换部356a构成的示意图。如图中所示,D/A变换部356a具有6个晶体管Trc1~Trc6和6个晶体管Ts1~Ts6。
晶体管Trc1~Trc6的栅极端子被连接到基准电流供给电路358中的晶体管T2的栅极端子。因此,晶体管Trc1~Trc6的每一个与晶体管T2同时构成电流镜像电路。根据该构成,晶体管Trc1~Trc6是作为分别输出规定电流值之恒流源的功能。本实施方式中,为了使晶体管Trc1~Trc6的输出电流比(Ia∶Ib∶Ic∶Id∶Ie∶If)变为1∶2∶4∶8∶16∶32,选定各晶体管Trc1~Trc6的大小。
晶体管Ts1~Ts6的漏极端子分别连接到晶体管Trc1~Trc6。晶体管Ts1~Ts6的源极端子连接到一根数据线XLj上。另一方面,从第二开关电路354输出的图像数据Xd的各个位分别被提供给晶体管Ts1~Ts6。具体地,图像数据Xd的最低位提供给晶体管Ts1,图像数据Xd的最高位提供给晶体管Ts6。根据该构成,晶体管Ts1~Ts6根据从第二锁存电路354提供的图像数据的各个位而被切换成接通状态或者截止状态的任何一个。
在上述构成之下,从晶体管Trc1~Trc6输出的电流被提供给根据晶体管Ts1~Ts6的状态而选择的数据线XLj。其结果,与图像数据Xd的内容对应的电流作为数据信号Dj流到数据线XLj。如从上述各晶体管Trc1~Trc6的输出电流比得知的,数据信号Dj的电流值可采用64种值。因此,有机EL元件10的亮度根据6位图像数据Xd而被控制成64等级。
<列数据变换用IC芯片35的操作>
下面,详细说明在上述所示结构之下进行的数据信号Dj的供给操作。如上述,在一个数据写入期间依次选择各象素电路377。然后,为了与象素电路377的扫描同步而在整个一帧(垂直扫描期间)中依次进行从列数据变换用IC芯片35对各象素电路377的数据信号Dj的供给。在本实施方式中,如图11所示,在各数据写入期间之中的期间上即各帧的一部分期间(以后称为“设定期间”)内依次进行各基准电流供给电路358中电容器C1的充电。而且,在将数据信号提供给象素电路377的期间以外的期间内进行图像的显示。即,在设定期间和数据写入期间的任何一个中也进行图像的显示。
首先,在设定期间开始后,在第一级列数据变换用IC芯片35所提供的基准电流写入信号BP和通过使能控制电路351生成的使能信号EN都翻转到H电平。在通过这而使控制脉冲信号CP1演变成H电平之后,第一级基准电流供给电路358中的第一和第二开关装置SW1,SW2变成接通状态。另一方面,如图11所示,随着控制脉冲信号CP1的电平翻转,控制翻转脉冲信号CSW1翻转到L电平。因此,第一级基准电流供给电路358中的第三开关装置SW3变为断开状态。其结果,与从恒流源3581供给的恒流Io对应的电荷被积蓄在第一级基准电流供给电路358的电容器C1上。
接着,如图11所示,控制脉冲信号CP1翻转到L电平。通过这,第一级基准电流供给电路358中的第一和第二开关装置SW1,SW2变为断开状态。此时,控制翻转脉冲信号CSW1翻转到H电平。因此,第一级基准电流供给电路358中的第三开关装置变为接通状态。其结果,第一级基准电流供给电路358中的电容器C1的充电结束。
接着,在第二级列数据变换用IC芯片35所提供的基准电流写入信号BP和通过其列数据变换用IC芯片35的使能控制电路351生成的使能信号EN都翻转到H电平。在通过这而使控制脉冲信号CP2翻转成H电平之后,第二级基准电流供给电路358中的第一和第二开关装置SW1,SW2变成接通状态。此时,控制翻转脉冲信号CSW2翻转成L电平,第二级基准电流供给电路358中的第三开关装置变为断开状态。其结果,与第一级列数据变换用IC芯片35中的恒流Io对应的参考电流Iref经过基准电流供给线Lr被提供给第二级列数据变换用IC芯片35。然后,与该参考电流Iref对应的电荷被充电到第二级列数据变换用IC芯片35的电容器C1上。
接着,如图11所示,控制脉冲信号CP2翻转到L电平,控制翻转脉冲信号CSW2翻转到H电平。通过这,第二级基准电流供给电路358中的第一和第二开关装置SW1,SW2变成断开状态,第三开关装置SW3变为接通状态。其结果,第二级基准电流供给电路358中的电容器C1的充电结束。
此后,在其它列数据变换用IC芯片35中也进行同样的操作。其结果,在设定期间的结束时刻,与由第一级基准电流供给电路358所提供参考电流Iref对应的电荷被积蓄在第二级以后的全部基准电流供给电路358的电容器C1上。即,第一级基准电流供给电路358所提供的参考电流Iref通过时分被顺序地拷贝到各基准电流供给电路358的电容器C1。本实施方式中尽管例示出对每帧设置一次设定期间的情况,但也可采用对多个帧设置一次设定期间的构成。或者,也可采用在D/A变换电路356输出数据信号Dj的间隙期间(相当于线顺序扫描的归线期间)给各基准电流供给电路358的电容器C1充电的结构。即,一次设定期间在多帧中被分散设置是可以的,在一帧期间内被分散设置也是可以的,但是,希望在设定期间内在归线期间进行电容器C1的充电。
另一方面,在接着设定期间的数据写入期间中,与各行象素电路377的扫描同步,通过列数据变换用IC芯片35来进行数据信号的输出。即,在各列数据变换用IC芯片35中,将与基准电流供给电路358电容器C1之电荷对应的基准电流Ir(Ir1,Ir2,...)作为基准值来生成数据信号Dj,并提供给该数据信号Dj现在所选择的象素电路377。有关扫描象素电路377的操作和伴随着的象素电路377的操作是与上述相同。
根据本实施方式的列数据变换用IC芯片35,获得了以下的效果。
(1)本实施方式中,第一级基准电流供给电路358对第二级以后的全部基准电流供给电路358提供参考电流Iref。然后,各基准电流供给电路358将与该参考电流Iref对应的基准电流Ir提供给D/A变换电路356。根据该构成,整个基准电流供给电路358中基准电流Ir的大小变为相同。因此,抑制了从各列数据变换用IC芯片输出的数据信号Dj的输出误差。其结果,在显示图像中,可防止在相当于列数据变换用IC芯片35之边界的部分上发生竖条纹的不当情况。
(2)本实施方式中,第一级列数据变换用IC芯片35和第二级以后的列数据变换用IC芯片35是相同的结构。因此,在制造电光学装置D的时候,没有必要区别第一级列数据变换用IC芯片35和第二级以后的列数据变换用IC芯片35。因此,虽说采用从第一级列数据变换用IC芯片35对其它列数据变换用IC芯片35输出参考电流Iref的结构,但与现有技术的电光学装置相比,其制造成本不会大幅度增加。
而且,作为将D/A变换电路356和基准电流供给电路358设置在象素驱动用IC芯片37中的结构也是可以的,通过该结构也可获得与上述同样的效果。
<B电光学装置的叠层构造和制造方法>
下面,说明本发明电光学装置D的叠层构造和其制造方法。在下面,分别例子示出了制造方法不同的3种电光学装置D,并说明了每个的叠层构造和制造方法。而且,在下面,在象素驱动用IC芯片37、控制用IC芯片31、扫描用IC芯片33和列数据变换用IC芯片35之每一个不特别区别的情况下,这些都被总称表记为“IC芯片30”。
<根据第一制造方法的叠层构造>
首先,参考图14,说明依据第一制造方法获得的电光学装置D的叠层构造。如图所示,电子部件层3包含基底层301、金属层302、IC芯片30和填充层304。图14所示的IC芯片30是象素驱动用IC芯片。
基底层301是覆盖整个支持基板6一个面的层,例如由氧化硅、氮化硅或者氧化氮化硅等绝缘性材料构成。该基底层301是用于防止由支持基板6溶出的杂质混入诸如象素驱动用IC芯片37等的电子部件中。
金属层302是设置在基底层301上面的层,由例如铜(Cu)和金(Au)等的金属形成。该金属层302包含安装部302a和定位标记302b。其中安装部302a是用于对支持基板6提高IC芯片30之密接性的同时还遮断从支持基板6侧入射的向着IC芯片30的光的层。因此,安装部302a被设置为与应配置IC芯片30的区域重叠。通过该安装部302a,防止了因光照射引起的IC芯片30的错误操作。另一方面,定位标记302b是用于将IC芯片30和支持基板6之间的相对位置调整到期望位置的标记。
IC芯片30具有作为连接端子的多个焊盘P。各IC芯片30以将焊盘P形成面(以后称为“焊盘形成面”)朝着与支持基板6之相对侧的状态被配置在安装部302a上。在该IC芯片30中的焊盘形成面之相对侧的面即根据在支持基板6上的安装步骤在相对着支持基板6的面(以后称为“基片面”)上设置了金属层30a。
图15是表示象素驱动用IC芯片37的焊盘形成面的平面图。如图所示,象素驱动用IC芯片37上所设置的多个焊盘P被区分为大小不同的第一焊盘P1和第二焊盘P2。其中第二焊盘P2是用于将象素驱动用IC芯片37连接到其它IC芯片(控制用IC芯片31、扫描用IC芯片33和列数据变换用IC芯片35)和电源线的端子。因为在检查象素驱动用IC芯片37时探针机械接触而使各第二焊盘P2做得非常大。具体地,各第二焊盘P2的平面形状是纵向和横向的长度都为70μm(微米)~100μm大小的矩形。另一方面,第一焊盘P1是用于将象素驱动用IC芯片37连接到有机EL元件10的端子。各第一焊盘P1比第二焊盘P2小。具体地,各第一焊盘的平面形状是纵向和横向的长度都为10μm~30μm大小的矩形。
根据上述,本实施方式的象素驱动用IC芯片37具有大小不同的2种焊盘P。因此,通过与全部焊盘P是和第二焊盘相同大小的情况相比较,能够将各IC芯片30中的焊盘形成面的面积做小。特别地,由于对一个电光学装置D设置了多个象素驱动用IC芯片37,各象素驱动用IC芯片37的尺寸的减少可有助于整体电光学装置D尺寸的减少。为了获得这种效果,希望将第一焊盘的面积做成第二焊盘面积的1/50~1/6。而且,控制用IC芯片31、扫描用IC芯片33和列数据变换用IC芯片35的焊盘是与上述第二焊盘相同的尺寸。但是,这些IC芯片的一部分或者全部的焊盘作为与上述第一焊盘相同的尺寸也是可以的。
如图14所示,填充层304是在各IC芯片30之间的区域设置的层。即,填充层304设置用于填补在支持基板6的表面(更具体地为基底层301的表面)和IC芯片30的焊盘形成面之间的段差。该填充层304由具有高散热性的材料形成。具体地,填充层304例如由铜(Cu)、镍(Ni)或者锡(Sn)等金属构成。通过这,提高了整个电光学装置D的热均匀性,消除了因热引起的不当情况。
接着,布线形成层2包含第一绝缘层41、第一布线层43、第二绝缘层45、第二布线层47、阳极层49、第三绝缘层50、贮格围堰(bank)层、导电层54、阻挡层56和阴极层58。其中第一绝缘层41、第二绝缘层45和第三绝缘层50由例如包含无机硅的材料、或者具有300℃以上抗热性的有机材料构成。这些绝缘层中至少第一绝缘层41由从聚芳醚类树脂(例如SiLK)、芳醚类树脂、芳香族聚合物、聚酰亚胺、加氟聚酰亚胺、氟树脂、苯并环丁烯、聚亚苯基类树脂、聚对亚苯基树脂之中选择的一种或者多种材料构成。另一方面,第二绝缘层45和第三绝缘层50由与第一绝缘层41同样的材料或者TEOS(四乙基氧化硅烷)/O2膜或者称为玻璃旋涂(spin on glass)膜(SOG)的SiO2膜构成。在优选方式中,第一绝缘层41和第二绝缘层45由低电导率的绝缘材料构成。根据这,可抑制布线之间的串扰。
第一绝缘层41是覆盖设置了IC芯片30和填充层304之整个支持基板6的层。该第一绝缘层41中,在与各IC芯片30的焊盘P重叠部分上设置了接触孔(contact hole)41a。各接触孔41a的开口大小是取决于即使在产生制造误差(IC芯片配置位置的误差和接触孔41a设置位置的误差)的情况下也使各IC芯片30的焊盘P经过接触孔41a而露出。如上述,IC芯片30的第一焊盘和第二焊盘的大小不同。因此,与第一焊盘对应的接触孔41a的开口的大小和与第二焊盘对应的接触孔41a的开口的大小不同。具体地,在第一焊盘P1的纵向和横向的长度都为16μm左右的情况下,希望与该焊盘P1对应的接触孔41a其开口的纵向和横向的长度都为4μm左右。另一方面,在第二焊盘P2的纵向和横向的长度都为80μm左右的情况下,希望与该焊盘P2对应的接触孔41a其开口的纵向和横向的长度都为60μm左右。
第一布线层43在设置于第一绝缘层41上面的同时还经过接触孔41a电连接到各IC芯片30的焊盘P。第一布线层43由例如铝和含铝合金等导电性高的金属构成。该第一布线层43包含阳极布线43a和阴极电源线43b。其中阳极布线43a连接到阳极层49。另一方面,阴极电源线43b连接到有机EL元件10的阴极层58上。第一布线层43包含用于将数据信号Dj从列数据变换用IC芯片35提供给象素电路377的数据线DL和用于将数据控制信号XD(参考图9)从控制用IC芯片31提供给列数据变换用IC芯片35的数据控制线LXD等。
第二绝缘层45设置为覆盖设置了第一布线层43的第一绝缘层41的表面。该第二绝缘层45中,在与第一布线层43一部重叠的部分上设置了接触孔45a。另一方面,第二布线层47在设置于第二绝缘层45上面的同时,通过接触孔45a与第一布线层43电导通。该第二布线层47由与第一布线层43相同的高导电性的金属构成。本实施方式的第二布线层47是由铝构成的层和由钛(Ti)构成的层的叠层结构。根据该结构,由于铝层由钛层覆盖,可避免由于作为阳极层49而使用的氧化物使铝层被氧化的情况。
该第二布线层47包含从扫描用IC芯片33到象素驱动用IC芯片37的扫描控制线组YL。而且,第二布线层47包含用于将强制关断信号Doff从控制用IC芯片31提供给象素驱动用IC芯片37的布线和用于将各种信号(复位信号RSET、时钟信号YSCL和芯片选择时钟信号YECL)从控制用IC芯片3 1提供给扫描用IC芯片33的布线。第二布线层47中连接列数据变换用IC芯片35和象素驱动用IC芯片37的布线与第一布线层43中连接扫描用IC芯片33和象素驱动用IC芯片37的布线以垂直形式形成。
施加高位侧之电源电位的电源线和施加低位侧之电源电位(接地电位)的电源线通过第一布线层43和第二布线层47的合适组合而形成。在这里,图16是表示电光学装置D结构的平面图。图中从XIVA-XIVB线看的截面图相当于图14。如图16所示,第一布线层43和第二布线层47构成的电源线L设置在矩阵形式并排的有机EL元件10的间隙中。因此,电源线L的平面形状是格子状的。
阳极层49设置在第二布线层47的表面上。该阳极层49包含阳极部49a和中间连接部49b。其中阳极部49a是形成在后述EL层13正下方的层。因此,阳极部49a被设置在与多个有机EL元件10对应的位置上且并排成矩阵形状。另一方面,中间连接部49b是用于连接阳极层58和第一布线层43的层。该中间连接部49b位于各有机EL元件10的间隙上。具体地,如图16所示,中间连接部49b设置在倾斜方向相互邻接的2个有机EL元件10的间隙中。因此,多个中间连接部49b成为并排的矩阵形状。但是,中间连接部49b可根据有机EL元件10的驱动所用的电流值而被合适地省略。
该阳极层49例如由氧化铟和氧化锡的化合物(ITO氧化铟锡)以及氧化铟和氧化锌的化合物(In2O3-ZnO)、或者金(Au)之类功函数大的导电材料构成。而且,由于从有机EL元件10发出的光被出射到阳极层49的相对侧,阳极层49没有必要具有透光性。
接着,第三绝缘层50设置为覆盖设置了第二布线层47和阳极层49的第二绝缘层45。该第三绝缘层50具有象素开口部50a和阴极接触部50b。其中象素开口部50a是阳极层49中与阳极部49a对应的开口部分。另一方面,阴极接触部50b是阳极层49中与中间连接部49b对应的开口部分。
贮格围堰(bank)层52是覆盖形成了阳极层49和第二布线层47之第二绝缘层45的表面的层。该贮格围堰层52例如由感光性的聚酰亚胺、丙烯、聚酰胺之类的有机树脂材料构成。贮格围堰层52是用于相互隔开邻接的有机EL元件10之间的层。因此,贮格围堰层52具有与有机EL元件10对应而开口的象素开口部52a。本实施方式中的贮格围堰层52具有用于将阴极层58导通到第二布线层47的阴极接触部52b。如图16所示,该阴极接触部52b是为了与中间连接部49b对应而开口的部分。
导电层54是用于将第二布线层47一部和阴极层58进行连接的层。具体地,导电层54通过介入阴极接触部52b和第三绝缘层50的阴极接触部50b从贮格围堰层52的表面到达第二布线层47的表面。该导电层54由铝合金等高导电性的金属形成。阻挡层56是用于防止导电层54氧化的层,其被设置为覆盖整个导电层54。该阻挡层56例如具有由钛构成的层和由金构成的层之叠层结构。
接着,阴极层58是设置在构成有机EL元件10之EL层13表面上的层。该阴极层58通过介入阻挡层56和导电层54而与第二布线层47导通。阴极层58具有将有机EL元件10所发的光透过的性质(透明性)。在优选方式中,阴极层58由功函数低的材料形成。具体地,阴极层58具有由氟化锂(LiF)和氟化钡构成的第一膜、由钙(Ca)构成的第二膜、由金构成的第三膜之叠层结构。其中第一膜和第二膜的材料希望从元素周期表中的II族或者III族所属金属和包含该金属的合金或者化合物之中选择。另一方面,第三膜是用于降低第一膜和第二膜之阻抗的膜。作为该第三膜的材料,除Au之外,还可采用Pt,Ni或者Pb。第三膜可由包含In、Zn或者Sn的氧化物形成。
有机EL层1包含EL层13和密封层15。其中EL层13由公知的EL材料构成。即,EL层13具有由空穴注入层、空穴传输层、发光层、电子传输层和电子注入层通过公知技术构成的叠层结构。该EL层13设置为居于布线形成层2所含阳极层49(阳极部49a)和阴极层58之间。在该构成之下,当电流在阳极层49和阴极层58之间流过之后,通过空穴和电子的复合而从EL层13中发出光。作为EL层13的材料,也能够使用无机EL材料和有机EL材料的任何一种。而且,对有机EL材料,有低分子材料和高分子材料。
密封层15是用于将EL层13和外部遮断的层。为了使从EL层13所发出的光出射到外部,密封层15具有透光性。该密封层15具有多个平坦树脂层151与多个阻挡层152相互叠层的结构。其中平坦树脂层151通过将丙烯类和乙烯列树脂单体或者树脂低聚体聚合硬化而形成。而且,阻挡层152由Al2O3和SiO2、氮化膜等(金属)氧化物构成。在该密封层15的上方贴保护材料的结构也是可以的。或者,贴保护材料代替图14所示密封层15的结构也是可以的。作为该保护材料,例如可以使用由玻璃和硬质塑料等构成的具有透光性的板状(或者薄膜形状)部材。
<第一制造方法>
下面,说明图14所示电光学装置D的制造方法。
首先,如图17所示,在支持基板6的一个面上形成基底层301。该基底层301例如通过根据等离子体CVD方法而沉积氧化硅树脂所获得。该基底层301的厚度为100nm(纳米)~300nm。接着,在基底层301的上面形成金属层302。即,首先,为了覆盖整个基底层301,通过溅射形成由铜和金等构成的金属膜。然后,对金属膜施加使用光刻技术的图案形成(patterning)处理和蚀刻(etching)处理。通过这,如图17所示,获得了包含安装部302a和定位标记302b的金属层302。
接着,如图18所示,以将焊盘形成面朝着支持基板6的相反侧的形式把各IC芯片30(这里为象素驱动用IC芯片37)配置在安装部302a上。该IC芯片30的配置使用安装精度为±5μm以内的高精度裸片安装机。而且,通过观察定位标记302b调整各IC芯片30和支持基板6之间的相对位置关系。
在各IC芯片30上预先实施以下所示的加工。即,在通过切割(dicing)来分割IC芯片30之前的晶圆(wafer)上,在相当于其基片面的面上贴上保护带(tape)(未图示)。该保护带由具有紫外线硬化性的材料构成。因此,在安装部302a所配置的各IC芯片30的焊盘形成面上贴上保护带。另一方面,晶圆中,在相当于各IC芯片30之焊盘形成面的面上实施研磨。通过该研磨,各IC芯片30成为适合于形成布线形成层2的厚度。具体地,IC芯片30的厚度为100μm以下(更优选的为25μm~30μm)。而且,在相当于焊盘形成面的面上形成金属层30a之后,切割晶片。而且,在其它形式中,代替金属层30a,贴上芯片焊接带(die bonding tape)。
接着,如图19所示,为了填补在支持基板6上配置的各IC芯片30的间隙,形成填充层304。该填充层304通过将IC芯片30用作为掩膜的电镀获得的。填充层304形成为比各IC芯片30薄。具体地,填充层304形成为比IC芯片30薄大约0.1μm~3μm。
此后,除去在各IC芯片30的基片面上所粘贴的保护带。具体地,首先,用紫外线照射IC芯片30的基片面。通过这,使保护带的粘接力下降。接着,通过将有机溶剂涂敷在IC芯片30的基片面上而完全除去保护带。
接着,如图20所示,为了覆盖设置了IC芯片30和填充层304的整个支持基板6而形成第一绝缘层41。即,首先,通过使用TEOS/O2的等离子体CVD方法,形成覆盖整个支持基板6的绝缘膜。该绝缘膜的厚度为400nm~900nm的程度。在通过该方法形成的绝缘膜的平坦度因形成布线而不够的情况下,通过CMP(化学机械研磨)方法而使绝缘膜平坦化。该绝缘膜也可通过绝缘材料的涂敷和烧制形成。即,将硅醇(Si(OH)4)溶解在酒精的溶液涂敷在支持基板6上,通过在400℃的温度上烘烤而获得绝缘膜。经过上述工序,各IC芯片30被模制在支持基板6上。
接着,如图20所示,通过去掉该绝缘膜中与IC芯片30的焊盘对应的部分而形成接触孔41a。这些接触孔41a通过使用光刻技术的图案形成处理和蚀刻处理而统一形成。通过以上工序,获得了第一绝缘膜41。而且,通过介入接触孔41a而使焊盘P的表面露出之后,该焊盘P表面上形成的氧化膜通过逆溅射去除。
接着,如图21所示,在第一绝缘层41的上面形成第一布线层43。即,覆盖第一绝缘层41来形成金属膜。该金属膜例如是通过溅射沉积铝合金而获得的。金属膜的厚度为300nm~500nm的程度。该金属膜经过接触孔41a而到达IC芯片30焊盘P表面。接着,对金属膜实施使用光刻技术的图案形成处理和蚀刻处理。通过这,如图21所示,获得了包含阳极布线43a和阴极电源线43b的第一布线层43。第一布线层43也可通过喷墨(ink jet)技术形成。即,将包含金属微粒的墨从喷墨头喷出到支持基板6上,通过热处理干燥该墨而获得第一布线层43。
接着,如图22所示,如第一布线层43覆盖被形成的第一绝缘层41的表面一样来形成第二绝缘层45。该第二绝缘层45通过与上述第一绝缘层41相同的方法被形成。即,首先,通过等离子体CVD方法或者溅射方法形成绝缘膜。该绝缘膜的厚度为500nm~900nm的程度。在该绝缘膜的平坦度由于形成阳极而不够的情况下,通过CMP方法而使表面平坦化。接着,在该绝缘膜中通过在与第一布线层43的一部相重叠的部分上统一形成接触孔45a而获得第二绝缘层45。在与阳极布线43a和阴极电源线43b一部相重叠的部分上形成该接触孔45a。
接着,如图23所示,成为第二布线层47的金属膜701被形成为覆盖整个第二绝缘层45。该金属膜701通过例如溅射和真空蒸镀法或者上述的喷墨方法形成。金属膜701例如具有在第二绝缘层45上面形成的第一膜和覆盖该第一膜的第二膜。其中第一膜通过例如铝合金被形成为300nm~500nm程度的厚度。另一方面,第二膜通过例如钛被形成为50nm~100nm程度的厚度。此后,如图2所示,形成覆盖金属膜701的阳极材料膜702。该阳极材料膜702通过例如溅射被形成为50nm到150nm程度的厚度。
接着,通过使用光刻技术的图案形成和蚀刻,选择地去掉阳极材料膜702和金属膜701的一部分。通过这,如图24所示,获得了第二布线层47和阳极层49。其中阳极层49具有成为位于EL层13正下方的阳极部49a和成为位于有机EL元件10间隙的中间连接部49b。
此后,如图25所示,形成第三绝缘层50。即,首先,通过等离子体CVD方法沉积氧化硅树脂为150nm~300nm程度的厚度。然后,在该氧化硅树脂膜中,通过根据光刻技术而选择地去掉与象素开口部50a和阴极接触部50b相当的区域而获得第三绝缘层50。在选择去掉氧化硅树脂时,也去掉氧化硅树脂中位于支持基板6周围附近的部分。
接着,如图26所示,形成成为贮格围堰层52的树脂膜705。具体地,通过涂敷感光性的聚酰亚胺、丙烯基、聚酰胺等有机材料并由加热来硬化该有机材料而获得树脂膜705。该树脂膜705的厚度是1.0μm~3.5μm的程度。为了遮断从EL层13发出的向着IC芯片的光,树脂膜705在完成状态是不透明的。此后,在树脂膜705施加使用光掩膜的图案形成处理和显影处理,并对阴极接触部52b开口。其结果,如图26所示,露出阴极层49的中间连接部49b。而且,在形成阴极连接部52b时,也去掉树脂膜705中位于支持基板6周围附近的部分。
接着,如图27所示,通过将树脂膜705作为掩膜进行蚀刻来去掉中间连接部49b的一部分。其结果,露出第二布线层47的阻挡层(Ti层)。此后,如图28所示,形成构成导电层54的金属膜707。该金属膜707是通过溅射沉积铝等金属而得到的。金属膜707的厚度为300nm~500nm的程度。接着,如图28所示,形成成为阻挡层56的金属膜708。该金属膜708是由钛构成的极薄的膜和由金构成的厚度为5nm~15nm程度的膜的叠层结构。该金属膜708通过例如溅射形成。接着,对金属膜707和金属膜708实施使用光掩膜的图案形成处理和蚀刻处理。通过这,如图29所示,获得导电层54和阻挡层56。而且,该工序之后,为了覆盖树脂膜705中阴极接触部52b之外的部分,设置黑色的无反射层也是可以的。该无反射层是光反射率低的层(即光吸收率高的层),例如由CrO3、MnO2、Mn2O3、NiO、Pr2O5等氧化物和包含碳粒子的树脂材料构成。
接着,对树脂膜705施加以导电层54作为掩膜的曝光和显影。结果,如图30所示,在树脂层705之中在阳极部49a的上方设置了象素部加工部52a。然后,通过烘烤树脂膜705来固定贮格围堰(bank)形状。通过以上工序得到贮格围堰层52。接着,对贮格围堰层52施加将四氟甲烷作为反应气体的等离子体处理后在该表面上引入疏液基。通过这,贮格围堰层52的表面呈现为疏液性。另一方面,由于在第三绝缘层50和阳极层49上没有引入疏液基,这些层的表面呈现出亲液性。
下面,如图31所示,在贮格围堰层52的象素开口部52a内形成EL层13。在EL层13由高分子材料形成的情况下,首先,作为空穴注入层涂敷例如PEDO(聚噻吩)/PSS或者PAni(聚苯胺)。接着,为了与该空穴注入层重叠,涂敷将诸如聚对亚苯基-1、2-亚乙烯基(polypara-phenylenevinylenePPV)类、聚乙烯基咔唑(polyvinylcarbazolePVK)类或者聚芴(polyfluorene)类等发光材料溶入溶剂中的溶液。如上述,第三绝缘层50和阳极层49的表面呈现亲液性,另一方面,贮格围堰层52的表面呈现为疏液性。因此,EL层13的液体有效地滞留在贮格围堰层52的象素开口部52a内。而且,在EL层13通过高分子材料形成的情况下,在其形成时,可使用喷墨法和印刷、旋涂法等简单方法。另一方面,在EL层13通过低分子材料形成的情况下,在其形成时,可利用使用屏蔽掩膜(shadow mask)的蒸镀法或者转印法等。对每个贮格围堰层52的象素开口部52a,如果形成了用于发出三基色之任何一种光的EL层13,则可彩色显示。或者,在发白色光的EL层13的上方形成彩色滤光器也是可以的。当然,作为只发出单色光的结构也是可以的。
下面,如图32所示,形成阴极层58覆盖整个贮格围堰层52和EL层13。即,由多腔室方式(cluster tool方式)的成膜装置在真空中进行连续蒸镀。结果,形成了阴极层58,其具有由极薄的BaF和LiF等碱金属氟化膜、约10nm~20nm的Ca膜和约2nm~15nm的Au膜构成的叠层结构。而且,该阴极层58的形成是在由耐热性低的有机材料形成了EL层13之后进行的。因此,希望阴极层58尽可能在低温环境中成膜。
此后,如图14所示,形成包含平坦化树脂层151和阻挡层152的密封层15。具体地,首先,在真空中喷雾丙烯基类和乙烯基类等树脂的单体或者低聚体,对阴极层58用树脂进行涂敷。接着,对该树脂层照射紫外线。通过这聚合硬化树脂层后获得上述平坦的树脂层151。然后,通过各种成膜法在平坦化树脂层151的表面上形成Al2O3和SiO2之类金属氧化物的薄膜,获得阻挡层152。该成膜可使用真空蒸镀法和溅射法,或者离子电镀法之类的各种成膜法。本实施方式中,该平坦化树脂层151和阻挡层152历经多次而形成。结果,如图14所示,获得了多个平坦化树脂层151和多个阻挡层152相互层叠的密封层15。此后,在作为最上层的阻挡层152的表面上粘贴保护材料。通过上述工序制成电光学装置D。
根据第一制造方法,能够获得以下的效果。
(1)由于通过将电子部件层3、布线形成层2和有机EL层1共计3层依次层叠而获得电光学装置D,实现了制造工艺的简单化和制造成本的降低。而且,由于各层是没有间隙的层叠结构,因此可获得非常薄(厚度1mm(毫米))的轻的电光学装置。
(2)包含用于驱动有机EL元件10之象素电路377的象素驱动用IC芯片37设置在电子部件层3上,另一方面,有机EL元件10设置在位于电子部件层3上方的有机EL层1上。因此,在选定应该配置有机EL元件10的位置时,不必要考虑应该配置象素电路377的空间。即,不受到由象素电路377导致的限制,从而能够提高开口率。
(3)由于在位于电子部件层3和有机EL层1之间的布线形成层2上统一形成了各种布线,与在电子部件层3或者有机EL层1上包含这些布线的情况相比较,能够提高布局(layout)设计的自由度。
(4)第一绝缘层41的接触孔41a通过光刻技术统一形成,为了填补该接触孔41a而统一形成第一布线层43。因此,即使IC芯片30的第一焊盘P1是纵向16μm×横向16μm的微小尺寸,各第一焊盘P1和第一布线层43也可统一可靠连接。由于即使焊盘P的数目多也使与布线之间的连接所需要的时间不变,谋求了生产效率的提高和布线的高密度化。
<第二制造方法的层叠结构>
下面,参考图33,说明通过第二制造方法得到的电光学装置D的层叠结构。图中所示各部中,与第一制造方法的电光学装置D相同的部分采用与图14各部共同的符号。电光学装置D的平面构成是如图16所示。图33所示电光学装置D除了电子部件层3的结构之外,具有与图14所示电光学装置D的相同结构。
如图33所示,该电光学装置D的电子部件层3包含填充层305、遮光层306、基底层307和IC芯片(在这里为象素驱动用IC芯片37)。其中填充层305为了填补各IC芯片30的间隙在支持基板6的整个面上设置。填充层305由具有高散热性的材料形成。通过这,提高了整个电光学装置D的热均匀性并能够抑制因热引起的不当情况的发生。填充层305由热膨胀系数与IC芯片30近似的材料形成。因此,抑制了填充层305和IC芯片30之间因线膨胀系数的不同引起的热应力的发生。具体地,填充层305由混入硅石填充物(silica filler)的耐热性树脂材料、低熔点玻璃、氧化物或者诸如铜的金属构成。
遮光层306设置在填充层305的上面以便覆盖包含配置了IC芯片30之区域的支持基板6整个面。该遮光层306是用于遮断从支持基板6入射向着IC芯片30的光,例如由铝和铜等金属构成。通过该遮光层306,防止了因光的照射引起的IC芯片的误动作。而且,在填充层306由遮光性的导电材料构成的情况下,可省略该遮光层306。
另一方面,基底层307设置在遮光层306的上面以便覆盖支持基板6整个面。该基底层307是用于形成布线形成层2的构成基底的层,例如由氧化硅树脂构成。通过该基底层307,减缓了伴随填充层305的变形而产生的应力。各IC芯片30以将基片面朝向支持基板6的形式被配置在基底层307的上面。通过基底层307防止了从支持基板6或者填充层305而对IC芯片30浸入杂质。基底层307还承担了将布线形成层2所含布线和遮光层42进行电绝缘的任务。
<第二制造方法>
下面,说明图33所示电光学装置D的制造方法。
首先,如图34所示,在整个基板710上形成光剥离层712。该基板710是具有透光性的板状部材,例如由玻璃等构成。另一方面,光剥离层712通过例如由等离子体CVD法沉积非晶硅而获得。
接着,如图35所示,在该光剥离层712的表面上形成金属层714。该金属层714通过例如由溅射等方法沉积铝而获得。此后,对金属层714实施使用光掩膜的图案形成处理和蚀刻处理。通过这,形成用于调整各IC芯片30之位置的定位标记。
接着,如图35所示,形成树脂膜716以便覆盖光剥离层712。该树脂膜716在后面的工序中是构成第一绝缘层41的层,由耐热性的有机材料构成。树脂膜716通过旋涂和涂敷等方法形成。在该阶段,树脂膜716处于半聚合状态,具有粘接性。树脂膜716的厚度是0.1μm~5μm的程度。
接着,如图36所示,在树脂膜716的规定位置上配置各IC芯片30。此时,各IC芯片30以将焊盘形成面朝向基板710的形式被配置在树脂膜716的上面。因此,防止了在后续工序中焊盘P的损伤。通过观察金属层714的定位标记来调整各IC芯片30和基板710之间的相对位置关系。该IC芯片30的配置中使用了安装精度为±5μm以内的高精度裸片安装机。全部的IC芯片30被配置之后,烘烤树脂膜716而使之完全聚合。通过这,提高树脂膜716和各IC芯片30之间的粘接性。
接着,如图37所示,形成基底层307以覆盖配置了IC芯片30的整个基板710。该基底层307例如通过由等离子体CVD方法沉积SiO2来获得。基底层307的厚度是100nm~500nm的程度。接着,如图37所示,形成遮光层306以覆盖整个基底层307。该遮光层306通过由溅射方法沉积例如铜和铝等金属而获得。
而且,如图38所示,填充硬质树脂以便填补各IC芯片30的间隙。该硬质树脂例如是混入了硅石填充物的耐热性树脂材料和低熔点玻璃。接着,通过介入该硬质树脂,在IC芯片30的基片面上粘贴支持基板6。此时,IC芯片30被用作为用于调整支持基板6和基板710之间间隔的隔离体(spacer)。此后,通过由加热来固化硬质树脂而获得填充层305。
接着,如图38所示,作为紫外光的受激准分子激光器(excimer laser)的光R从基板71一侧照射。通过这炸裂光剥离层712。即,光剥离层712所含的氢被气化,该层上产生裂缝。在该状态下,经过光剥离层712而剥离基板710。接着,通过蚀刻液而去掉金属层714和光剥离层712。该蚀刻液溶解了金属层714和光剥离层712,另一方面,其又是对树脂膜716不产生任何影响的液体。
此后,如图39所示,将支持基板6上下翻转以便使IC芯片30的配置面朝向上方。通过这,形成图33所示电光学装置D的电子部件层3。在通过该制造方法得到的电子部件层3中,各IC芯片30的焊盘形成面和基底层307的表面几乎位于相同的面内。此后,在树脂膜716上实施图案形成处理和蚀刻处理而获得第一绝缘层41。以后的制造工序与从图20到图32所示的第一制造方法相同。
根据第二制造方法得到下面的效果。
(1)由于通过填充层305填补各IC芯片30的间隙,不必要为了与各IC芯片30的表面一致而平坦化填充层305。因此,实现了制造工序的简单化。而且,与第一制造方法相比,由于不必要使IC芯片30薄,使各IC芯片30的处理变得容易。因此,能够降低在制造工序中产生不良IC芯片30的可能性。
(2)由于在将各IC芯片30的焊盘P朝向基板710的状态下形成基底层307和填充层305,所以在这些层形成时避免了焊盘P的损伤。因此,防止了各IC芯片30和第一布线层43之间的不良电连接。结果,电光学装置D的特性被维持在高的水平,而且能够提高成品率。
(3)由于各IC芯片30通过基底层307和填充层305固定,没有必要将各IC芯片30紧贴在基板710上之后进行固定。即,由于只将各IC芯片30简单配置即可完毕,短缩了各IC芯片30的安装所需要的时间。
(4)由于布线形成层2被层叠在露出焊盘P的电子部件层3上,例如IC芯片30的焊盘P和布线形成层2的布线通过照相(photography)技术能够被统一连接。因此,不必要设置用于连接各IC芯片30的焊盘P和布线的凸块(bump)等。结果,实现了制造工序的简化和制造时间的缩短。
(5)由于构成第一绝缘层41的树脂膜716被用作为用来粘结各IC芯片30的层,与对绝缘层41另外设置粘结层的方法相比,制造工序简化了。但是,也可采用对第一绝缘层41另外设置粘结层的方法。即,代替图35中的树脂膜716,可采用设置用于粘结各IC芯片的粘结层并在基板710剥离后去掉该粘结层的方法。这种情况下,粘结层除去后形成第一绝缘层41。
可是,高位侧和低位侧电源电位施加电源线可在与第一布线层43和第二布线层47的形成工序之外的工序上形或。例如,如以下所示,第二制造方法中,在各IC芯片30配置工序之前可进行电源线形成工序。
首先,如图36所示,在各IC芯片30配置之前,在树脂膜716上面形成电源线309。在图40中,用虚线示出在后工序中在树脂膜716上配置的各IC芯片30的外形。电源线309被形成在应该配置各IC芯片30区域之外的区域中与金属层714的定位标记不重叠的位置上。
具体地,首先,由铝和铜之类导电性材料构成的导电层被形成在树脂膜716上面。该导电层通过例如非电解电镀、溅射或者喷墨技术形成。接着,对该导电层实施图案形成处理和蚀刻处理后获得图40所示电源线309。此后,与图36所示工序相同把各IC芯片30配置在树脂膜716上面,接着,形成遮光层306和基底层307以覆盖电源线309和IC芯片30。以后的工序与上述相同。而且,在其它例子中,电源线309形成工序可在各IC芯片30被配置在树脂膜716上面之后进行。而且,在上述第一制造方法和以下所示的第三制造方法中也可通过同样的程序形成电源线309。
图41是表示通过该制造方法获得的电光学装置D的叠层结构。如图所示,该电光学装置D中,电源线309位于基底层307和第一绝缘层41之间。该电源线309通过介入在第一绝缘层41上设置的接触孔41a而被连接到第一布线层43。
<第三制造方法的层叠结构>
下面,参考图42,说明根据第三制造方法获得的电光学装置D的层叠结构。图中所示各部中与第一制造方法的电光学装置D相同的部分给出了与图14各部共同的符号。电光学装置D的平面构成是按图16所示方式。
如图42所示,在通过第三制造方法获得的电光学装置D中,在IC芯片30的焊盘P上形成了凸块(bump)(突起电极)308。该凸块308由例如铟(In)或者金(Au)等金属构成。凸块308连接到凸块42。该凸块42通过介入在第一绝缘层41上开口的接触孔41a而被连接到第一布线层43。凸块42与凸块308相同由例如铟和金等金属构成。
<第三制造方法>
下面,说明图42所示电光学装置D的制造方法。
首先,如图43所示,形成绝缘层722以覆盖基板720整个面。该基板720是具有透光性的板状部材,例如由玻璃等构成。另一方面,绝缘层722通过例如由等离子体CVD法沉积SiO2而获得。而且,在该绝缘层722的平坦度不够的情况下可通过CMP法进行平坦化处理。接着,如图43所示,在该绝缘层722的整个面上形成光剥离层724。该光剥离层724通过例如由等离子体CVD方法沉积非晶硅而获得。
接着,如图44所示,在整个光剥离层724上形成绝缘膜726。该绝缘膜726通过由等离子体CVD法沉积SiO2而获得。绝缘膜726是构成图42所示第三绝缘层50的层。此后,如图44所示,构成阳极层49的导电膜728被形成在绝缘膜726上面。该导电膜728由例如ITO等功函数大的导电材料通过溅射沉积而获得。而且,如图44所示,构成第二布线层47的金属膜730形成为覆盖导电膜728。该金属膜730通过在由钛等构成的层表面上层叠由铝等构成的层而获得的。金属膜730的形成使用了例如溅射方法。接着,如图45所示,通过在导电膜728和金属膜730上实施使用光掩膜的图案形成处理和蚀刻处理而获得图42所示的阳极层49和第二布线层47。
下面,如图46所示,形成第二绝缘层45。该第二绝缘层45是在由SiO2等构成的绝缘层被形成为覆盖阳极层49和第二布线层47之后通过实施使用光掩膜的图案形成处理和蚀刻处理而获得的。接着,如图47所示形成第一布线层43。该第一布线层43是通过对由溅射形成的铝等金属层实施图案形成处理和蚀刻处理而获得的。
此后,如图48所示,形成第一绝缘层41。即,首先,SiO2等绝缘膜被形成覆盖第一布线层43。然后,该绝缘膜中应该与IC芯片30的焊盘P相对的部分在通过图案形成处理和蚀刻处理而被去掉后获得第一绝缘层41。接着,如图49所示,在第一布线层43中应该与IC芯片的凸块308相对的部分上形成凸块42。该凸块42通过例如发射(lift-off)法被形成为从0.5μm到5μm的厚度。凸块42由铟和金等金属构成。在凸块42由铟形成的情况下,其表面由金等金属覆盖。通过这,防止了凸块42的氧化。
另一方面,在各IC芯片30的焊盘P上形成凸块308。该凸块308由铟和金等金属构成。凸块308的厚度是2μm~10μm的程度。此后,如图50所示,各IC芯片30以将其凸块308相对着第一布线层43上的凸块42之状态被配置在第一绝缘层41上。各IC芯片的配置使用了安装精度为±5μm以内的高精度裸片安装机。接着,瞬间加热凸块42和凸块308。通过这,将凸块42和凸块308粘合。
接着,如图51所示,填充树脂材料以填补各IC芯片30的间隙。该树脂材料含有碳粒子且具有遮光性。此后,如图51所示,在IC芯片30的基片面上粘贴支持基板。而且,通过硬化IC芯片30间所填充的树脂材料而获得填充层305。
接着,如图51所示,作为紫外光的受激准分子激光器(excimer laser)的光R从基板720一侧照射。通过这炸裂光剥离层724,如图52所示,经过光剥离层724而剥离基板720。绝缘膜726上残留的非晶硅通过蚀刻处理去掉。
此后,在绝缘膜726上实施使用光掩膜的图案形成处理和蚀刻处理,获得如图42所示的第三绝缘层50。此后的制造工序是与从图26到图32所示的第一制造方法相同。
根据第三制造方法,获得以下的效果。
如果根据上述第一和第二制造方法在电子部件层3和各布线层以及各绝缘层形成之后而形成阳极层49,则存在因这些层的级差导致阳极层49表面平坦度降低的可能性。与此相反,根据第三制造方法,由于构成阳极层49的导电膜728比其它要素部分更先形成在平坦基板720上,阳极层49的表面平坦度被维持在极高的水平。通过这,由于保证了有机EL元件10厚度的均匀性,发光亮度在整个显示面上是均匀的。而且,除了在包含有源元件的IC芯片30被使用于电光学装置D中的情况之外,第三制造方法还同样适用于由低温多晶硅(polysilicon)等形成的有源元件被使用于电光学装置D中的情况。
<C电子设备>
下面,说明本发明的电子设备。
<个人计算机>
图53是表示作为本发明电子设备一例的个人计算机的构成斜视图。如图中所示,个人计算机81包括安装了键盘811的主体部812和安装了上述电光学装置D的显示部814。
该构成中,具有涉及图像显示之各种功能的IC芯片被包含在电子部件层3上。作为这种IC芯片,例如,具有安装了显示缓冲存储器和CPU的IC芯片或者安装了根据MPEG(Motion Picture Experts Group移动图像专家组)和MP3(MPEG Audio Layer-3MPEG音频层-3)等数据扩展功能的IC芯片等。而且,在电光学装置D的显示面被用作为触摸屏的情况下,可将包括与其输入有关之功能的IC芯片包含在电子部件层3上。
<电子书籍>
图54是表示作为本发明电子设备一例的电子书籍之构成斜视图。如图中所示,电子书籍83具有主体部830、第一显示部831和第二显示部832。其中主体部830包括接受使用者之操作的键盘。第一显示部831包括上述电光学装置D,即用于通过有机EL元件10的发光而显示图像的电光学装置D。另一方面,第二显示部832包括用于通过多个象素而显示图像的电光学装置D’。但是,第二显示部832的象素自身是不发光的。具体地,电泳显示器、反射型LCD(液晶显示器)、调色剂(toner)显示器、扭曲板(twist board)显示器等非发光型显示器被用作为第二显示部832的电光学装置D’。
第一显示部831通过介入合页被安装在主体部830的周边。因此,第一显示部831能以主体部830的周边作为轴旋转。另一方面,通过在第一显示部831中的在与主体部830的相对侧周边上插入合页来安装第二显示部832。因此,第二显示部832能以第一显示部831的周边作为轴旋转。
在该结构之下,通过使有机EL元件10发光而由第一显示部831进行显示。另一方面,在通过第二显示部832进行显示的情况下,第一显示部831的有机EL元件10几乎以相同的亮度发光。从第一显示部831发出的光在第二显示部832的显示面上反射后由观察者观察。即,第一显示部831其自身不仅作为显示装置的功能,而且在通过第二显示部832显示图像时还作为照明装置(所谓前光(front light))的功能。根据该结构,尽管第二显示部832是非发光型显示器,也没有必要单独设置用于确保其显示亮度的照明装置。结果,可以让第一显示部831和第二显示部832的厚度合计在约2mm以下,其比使用纸的书籍要薄和轻的多,实现了高功能的电子书籍。
而且,本发明可适用的电子设备不局限于图53和图54所示的设备。即,对其它诸如便携式电话机、游戏机、电子纸、摄像机、数字照相机、汽车导航装置、汽车立体音响、驾驶操作面板、打印机、扫描器、电视机、视频播放机、寻呼机、电子笔记本、计算器、文字处理机等具有显示图像之功能的各种设备可适用本发明。
<D变形例>
以上所示的形式只不过是例示,对这些形式可增加各种变形。变形例如下所述。
(1)尽管例示出象素驱动用IC芯片37、扫描用IC芯片33、列数据变换用IC芯片35和控制用IC芯片31被配置在一个支持基板6上的结构,但作为将扫描用IC芯片33、列数据变换用IC芯片35和控制用IC芯片31的一部或全部配置在其它基板上的结构也是可以的。而且,将扫描用IC芯片33、列数据变换用IC芯片35和控制用IC芯片31的一部或全部作为一个IC芯片的结构也是可以的。
(2)如作为电子设备例子的个人计算机中所示,通过将本发明适用于各种电子设备,实现了系统化和集成化的元件基板和封装(package)。即,在该元件基板中,具有各种有源元件和无源元件的电子部件层根据具有连接到各电子部件连接端子之布线的布线形成层而密封。作为电子部件层所含有源元件的例子,具有用于实现各种功能的IC芯片(CMOS型和双极型)、存储器或者化合物半导体之类的各种部件。另一方面,作为电子部件层所含无源元件的例子,具有电阻、电容器或者电感之类的各种芯片部件。根据该元件基板,由于各种电子部件被系统化和集成化,谋求了电子设备的小型化、轻量化和高性能化。
(3)本发明还可适用于使用EL元件之装置以外的电光学装置。即,只要是具备将电作用变换成光作用的电光学元件的装置,则可适用本发明。作为这种电光学装置,具有使用液晶的液晶显示装置;使用包含着色液体和在该液体中所分散白色粒子的微胶囊(micro capsule)的电泳显示装置;使用对极性不同的每个区域以不同颜色分别涂敷的扭曲板的扭曲板显示器;使用黑色调色剂的调色剂显示器;使用荧光粉的场致发射显示器;使用LED(发光二极管)的LED显示器;使用氦和氖等高压气体的等离子体显示板(PDP)等。
本发明的电光学装置不局限于用于显示图像的装置,例如本发明也可适用于使用有机EL、ELD或者场致发射元件(FED)的图像形成装置和电子照相装置的光学引擎(engine)部分。在这种装置中,与图像数据对应的光被照射到感光鼓(drum)等的感光体上,调色剂被吸附到由此形成的潜像上。然后,该调色剂被转印到格式纸等记录材料上。本发明的电光学装置也可适用于用来将与图像数据对应的光照射到感光体上的装置。即,该情况下的电光学装置包括用于将光分别照射感光体的发光元件(电光学元件)和用于将各发光元件单独驱动的驱动电路。更优选的方式中,采用适合于A4尺寸和A3尺寸之类的各种记录材料宽度的线(line)曝光结构。根据本发明的电光学装置,可实现高性能薄型印刷装置和复合机。
本发明还可适用于使用CCD(电荷耦合器件)等电光学元件的电光学装置,该CCD输出与照射光量对应的电流或者电压。该电光学装置被使用作为例如数字摄像机中的光传感器阵列装置(摄像装置)。通过在设置CCD以代替上述实施方式之电光学装置D的有机EL元件,同时还将用于把CCD输出的模拟信号变换成数字信号的A/D变换器设置成代替D/A变换电路356来实现这种光传感器阵列装置。而且,在其它形式中,作为显示装置使用的电光学装置和作为光传感器阵列使用的电光学装置被组合成一体。根据该装置,根据通过光传感器阵列装置检测的周围亮度,可自动调整显示装置的发光亮度。
本发明还可适用于包括电光学元件以外元件的装置。即,本发明还适用于元件驱动装置,其包括在平面内不同位置上分别配置的(例如配置成矩阵形式)多个被驱动元件和用于驱动各被驱动元件的单位电路。例如,代替本发明电光学装置的电光学元件(例如上述光传感器阵列的CCD),如果将用于检测压力和静电的元件用作为被驱动元件,则可实现用于检测使用者之操作的装置。该元件驱动装置在各种电子设备中可被使用作为例如触摸屏和薄型键盘等输入装置。
通过以上说明,根据本发明,抑制了在用于驱动电光学元件等被驱动元件的电路中有源元件在特性上的无序差异。
权利要求
1.一种电光学装置,其特征在于,具有元件层,其包含多个电光学元件;电子部件层,其包含具有用于驱动电光学元件的多个单位电路的元件驱动用IC芯片;和布线形成层,其位于所述元件层和所述电子部件层之间,包含将在所述元件驱动用IC芯片中所含的各单位电路与对应于该单位电路的电光学元件连接的布线。
2.根据权利要求1所述的电光学装置,其特征在于,所述电子部件层具有分别包括多个单位电路的多个元件驱动用IC芯片;所述布线形成层具有将在所述各元件驱动用IC芯片中所含的单位电路的每一个与该单位电路对应的电光学元件进行连接的布线。
3.根据权利要求2所述的电光学装置,其特征在于,所述电子部件层包含用于在所述多个元件驱动用IC芯片中选择应该执行所述电光学元件之驱动的IC芯片的选择用IC芯片;所述选择用IC芯片经过在所述布线形成层中所含的布线与所述各元件驱动用IC芯片连接。
4.根据权利要求2或3所述的电光学装置,其特征在于,所述电子部件层包含数据供给用IC芯片,其用于将指示对所述电光学元件应提供的电流或者应施加的电压的数据信号输出到所述各元件驱动用IC芯片的单位电路;所述数据供给用IC芯片经过在所述布线形成层所含的布线与所述各元件驱动用IC芯片连接。
5.根据权利要求2所述的电光学装置,其特征在于,所述电子部件层包含选择用IC芯片,其用于在所述多个元件驱动用IC芯片中选择应该执行所述电光学元件之驱动的IC芯片;数据供给用IC芯片,其用于将指示对所述各电光学元件应提供电流或者应施加电压的数据信号输出到所述各元件驱动用IC芯片的单位电路;和控制用IC芯片,其用于控制所述选择用IC芯片和所述数据供给用IC芯片的动作;所述选择用IC芯片和所述数据供给用IC芯片经过在所述布线形成层所含的布线与所述各元件驱动用IC芯片连接,所述控制用IC芯片经过在所述布线形成层所含的布线与所述选择用IC芯片以及所述数据供给用IC芯片连接。
6.根据权利要求2所述的电光学装置,其特征在于,所述多个元件驱动用IC芯片的每一个,被配置在与对应于该元件驱动用IC芯片所含的多个单位电路的多个电光学元件相对的位置上。
7.根据权利要求2所述的电光学装置,其特征在于,具有遮光层,从所述多个元件驱动用IC芯片观察,其被设置在与所述布线形成层相反一侧,用于遮蔽光。
8.根据权利要求2所述的电光学装置,其特征在于,具有填充到所述各个元件驱动用IC芯片之间的填充层。
9.根据权利要求1所述的电光学装置,其特征在于,所述电光学元件是根据从所述单位电路供给的电流而发光的EL元件。
10.根据权利要求1所述的电光学装置,其特征在于,所述元件驱动用IC芯片具有第一连接端子和第二连接端子,在该元件驱动用IC芯片中,该第一连接端子被设置在与布线形成层相对的端子形成面上且连接到所述电光学元件,第二连接端子被设置在所述端子形成面上且连接到电源线;所述第一连接端子中与所述端子形成面平行的面的面积是所述第二连接端子中与所述端子形成面平行的面的面积的1/6或以下。
11.一种电子设备,其特征在于,包括权利要求1~10中任一项所述的电光学装置。
12.一种电子设备,其特征在于,包括具有发光型电光学装置的第一显示部;和具有非发光型电光学装置的第二显示部;所述第一显示部和所述第二显示部连接成可相互移动,以便使各个电光学装置的显示面成特定角度的姿势。
13.一种元件驱动装置,其特征在于,具有元件层,其包含多个被驱动元件;电子部件层,其包含具有对被驱动元件进行驱动的多个单位电路的元件驱动用IC芯片;和布线形成层,其位于所述元件层和所述电子部件层之间,包含将所述元件驱动用IC芯片上所含的各单位电路与对应于该单位电路的被驱动元件连接的布线。
14.一种元件基板,其特征在于,包括电子部件层,其包含具有形成有连接端子的端子形成面的多个电子部件;和布线形成层,其层叠成与所述电子部件层中的所述端子形成面相对,并且具有与所述各电子部件的连接端子连接的多个布线;所述多个电子部件配置成使各个端子形成面位于大约相同的面内。
15.一种电光学装置的制造方法,在用于制造具有多个电光学元件的电光学装置的方法中,其特征在于,具有将具有用于驱动电光学元件的多个单位电路的元件驱动用IC芯片配置成使具有连接端子的端子形成面朝向一侧,并且形成包含该元件驱动用IC芯片的电子部件层的工序;在所述电子部件层中所述元件驱动用IC芯片的连接端子所朝向的面上形成布线形成层的工序,该布线形成层包含将所述元件驱动用IC芯片所含的各单位电路与对应于该单位电路的电光学元件连接的布线;和在从所述布线形成层观察的所述电子部件层的相反一侧上形成包含所述多个电光学元件的元件层的工序。
16.一种电光学装置的制造方法,在用于制造具有多个电光学元件的电光学装置的方法中,其特征在于,具有在基板的一面上,以使具有连接端子的端子形成面与基板面对的状态来配置具有驱动电光学装置的多个单位电路的元件驱动用IC芯片,并形成包含该元件驱动用IC芯片的电子部件层的工序;从电子部件层剥离所述基板的工序;在所述电子部件层中的所述基板被剥离的面上,形成布线形成层的工序,该布线形成层包含用于将所述元件驱动用IC芯片所含的各单位电路与对应于该单位电路的电光学元件连接的布线;和在从所述布线形成层观察的所述电子部件层的相反一侧上形成包含所述多个电光学元件的元件层的工序。
17.根据权利要求16所述的电光学装置的制造方法,其特征在于,具有在形成所述电子部件层的工序之前在所述基板的一面上形成剥离层的工序;在形成所述电子部件层的工序中,在从所述剥离层观察的所述基板的相反一侧上形成所述电子部件层;另一方面在剥离所述基板的工序中,以所述剥离层为界从电子部件层上剥离所述基板。
18.根据权利要求16所述的电光学装置的制造方法,其特征在于,具有在形成所述电子部件层的工序之前在所述基板的一面上形成粘结层的工序;在形成所述电子部件层的工序中,所述元件驱动用IC芯片的所述端子形成面被粘结到所述粘结层。
19.根据权利要求18所述的电光学装置的制造方法,其特征在于,所述粘结层由绝缘材料构成;在形成所述布线形成层的工序中,在覆盖所述电子部件层的所述粘结层面上形成所述布线形成层。
20.一种电光学装置的制造方法,在用于制造具有多个电光学元件的电光学装置的方法中,其特征在于,具有将用于对所述电光学元件提供电流或者施加电压的电极形成在基板的一面上,并形成布线形成层的工序,该布线形成层包含用于将该电极和多个所述单位电路的每一个进行连接之布线;在从所述布线形成层观察的所述基板的相反一侧上形成电子部件层的工序,该电子部件层包含具有驱动电光学元件的多个单位电路的元件驱动用IC芯片;从所述布线形成层剥离所述基板的工序;和在从所述布线形成层观察的所述电子部件层的相反一侧上形成与所述电极接触的电光学元件并形成包含多个电光学元件的元件层的工序。
21.根据权利要求20所述的电光学装置的制造方法,其特征在于,具有在形成所述电子部件层的工序之前在所述基板的一面上形成剥离层的工序;在形成所述布线形成层的工序中,在从所述剥离层观察的所述基板的相反一侧上形成所述布线形成层;另一方面在剥离所述基板的工序中,以所述剥离层为界从所述布线形成层上剥离所述基板。
22.根据权利要求16或者20所述的电光学装置的制造方法,其特征在于,具有在剥离所述基板之前,将支持基板固定在从所述电子部件层观察的所述基板的相反一侧上的工序。
23.根据权利要求16或者20所述的电光学装置的制造方法,其特征在于,在形成所述布线形成层的工序中,形成用于连接所述单位电路和所述电光学元件的布线,形成覆盖该布线且与该布线的一部分对应开口的绝缘层,在该绝缘层的开口处形成电极部;另一方面在形成所述电子部件层的工序中,将在所述元件驱动用IC芯片的连接端子上设置的突起电极粘结到所述电极部。
24.根据权利要求15、16或20中任一项所述的电光学装置的制造方法,其特征在于,形成所述电子部件层的工序,包含配置分别包括多个单位电路的多个元件驱动用IC芯片的工序、和在各元件驱动用IC芯片之间形成填充层的工序。
25.根据权利要求24所述的电光学装置的制造方法,其特征在于,形成所述电子部件层的工序,包含在所述多个元件驱动用IC芯片和所述填充层之间形成基底层的工序。
26.根据权利要求15、16或20中任一项所述的电光学装置的制造方法,其特征在于,形成所述电子部件层的工序,包含在从所述电子部件层观察与所述布线形成层相反一侧上形成遮断光的遮光层的工序。
27.根据权利要求26所述的电光学装置的制造方法,其特征在于,所述遮光层由具有导电性的材料形成。
28.根据权利要求15、16或20中任一项所述的电光学装置的制造方法,其特征在于,在形成所述电子部件层的工序中,将分别包括多个端子电路的多个元件驱动用IC芯片配置在应该与多个电光学元件相对的位置上,该多个电光学元件与各元件驱动用IC芯片所含的多个单位电路对应。
29.一种元件驱动装置的制造方法,在用于制造具有多个被驱动元件的元件驱动装置的方法中,其特征在于,具有将具有用于驱动被驱动元件的多个单位电路的元件驱动用IC芯片配置成使具有连接端子的端子形成面朝向一侧,并且形成包含该元件驱动用IC芯片的电子部件层的工序;在所述电子部件层中所述元件驱动用IC芯片的连接端子所朝向的面上形成布线形成层的工序,该布线形成层包含将所述元件驱动用IC芯片所含的各单位电路与对应于该单位电路的被驱动元件连接的布线;和在从所述布线形成层观察的所述电子部件层的相反一侧上形成包含所述多个被驱动元件的元件层的工序。
30.一种元件驱动装置的制造方法,在用于制造具有多个被驱动元件的元件驱动装置的方法中,其特征在于,具有在基板的一面上,以使具有连接端子的端子形成面与基板面对的状态来配置具有驱动被驱动元件的多个单位电路的元件驱动用IC芯片并形成包含该元件驱动用IC芯片的电子部件层的工序;从电子部件层剥离所述基板的工序;在所述电子部件层中的所述基板被剥离的面上,形成布线形成层的工序,该布线形成层包含用于将所述元件驱动用IC芯片所含的各单位电路与该单位电路对应的被驱动元件连接的布线;和在从所述布线形成层观察的所述电子部件层的相反一侧上形成包含所述多个被驱动元件的元件层的工序。
31.一种元件驱动装置的制造方法,在用于制造具有多个被驱动元件的元件驱动装置的方法中,其特征在于,具有将用于对所述被驱动元件提供电流或者施加电压的电极形成在基板的一面上并形成布线形成层的工序,该布线形成层包含用于将该电极和多个所述单位电路的每一个进行连接之布线;将电子部件层形成在从所述布线形成层观察的所述基板的相反一侧上的工序,该电子部件层包含具有用于驱动被驱动元件的多个单位电路的元件驱动用IC芯片;从所述布线形成层剥离所述基板的工序;和在从所述布线形成层观察的所述电子部件层的相反一侧上形成与所述电极接触的被驱动元件并形成包含多个被驱动元件的元件层的工序。
32.一种电光学装置,其特征在于,具有多个电光学元件;多个元件驱动用IC芯片,其分别具有用于驱动电光学元件的多个单位电路;以及进行选择控制的控制电路,所述选择控制在该多个单位电路中依次选择1个或以上的单位电路,同时让所选择的1个或者以上的单位电路进行用于驱动电光学元件的动作;和选择电路,其在所述多个元件驱动用IC芯片中依次选择1个或以上的IC芯片,同时让所选择的IC芯片的控制电路进行所述选择控制。
33.根据权利要求32所述的电光学装置,其特征在于,所述各元件驱动用IC芯片具有特定电路,其依次特定该元件驱动用IC芯片所含的1个或以上的单位电路;所述控制电路将通过所述特定电路特定的1个或以上的单位电路作为对象进行所述选择控制。
34.根据权利要求33所述的电光学装置,其特征在于,所述选择电路将时钟信号输出到所选择的元件驱动用IC芯片上;所述各元件驱动用IC芯片的所述特定电路与由所述选择电路提供的时钟信号同步来依次特定该元件驱动用IC芯片所含的1个或以上的单位电路。
35.根据权利要求32所述的电光学装置,其特征在于,所述各单位电路具有保持电路,其保持与用于驱动电光学元件的驱动电流或者驱动电压对应的电荷;和维持电路,其维持由所述保持电路保持的电荷。
36.根据权利要求32所述的电光学装置,其特征在于,所述控制电路将用于检查所述各单位电路的动作的测试信号输出到该各单位电路。
37.一种电光学装置的驱动电路,在用于驱动具有多个电光学元件的电光学装置的电路中,其特征在于,具有选择电路,其在具有用于驱动电光学元件的多个单位电路、和进行选择控制的控制电路的多个元件驱动用IC芯片中,依次选择1个或以上的IC芯片,同时让所选择的IC芯片的控制电路进行所述选择控制,所述选择控制在该多个单位电路中依次选择1个或以上的单位电路,同时让所选择的1个或以上的单位电路进行用于驱动电光学元件的动作。
38.一种元件驱动装置,其特征在于,具有多个被驱动元件;多个元件驱动用IC芯片,其分别具有用于驱动被驱动元件的多个单位电路;和进行选择控制的控制电路,所述选择控制在该多个单位电路中依次选择1个或以上的单位电路,同时让所选择的1个或以上的单位电路进行用于驱动被驱动元件的动作;选择电路,其在所述多个元件驱动用IC芯片中依次选择1个或以上的IC芯片,同时让所选择的IC芯片的控制电路进行所述选择控制。
39.一种电光学装置,具有多个电光学元件,其分别通过由数据信号指定的驱动电流所驱动;和多个数据供给电路,其按一个或者多个电光学元件的每一个而设置并且包含第一数据供给电路和第二数据供给电路,分别包括基于参考电流而生成基准电流的基准电流供给电路、基于由所述基准电流供给电路生成的基准电流而输出与所述数据信号对应的电流值的数据信号输出电路;所述第一数据供给电路将为了该第一数据供给电路的基准电流供给电路生成基准电流而使用的所述参考电流输出到所述第二数据供给电路;另一方面所述第二数据供给电路的基准电流供给电路基于所述第一数据供给电路供给的所述参考电流来生成所述基准电流。
40.根据权利要求39所述的电光学装置,其特征在于,所述第一数据供给电路输出的所述参考电流以时分方式向多个所述第二数据供给电路的每一个供给。
41.根据权利要求40所述的电光学装置,其特征在于,所述第一数据供给电路输出的所述参考电流经过电流供给线而向各第二数据供给电路供给,该电流供给线具有对于所述多个第二数据供给电路共通的部分。
42.根据权利要求40所述的电光学装置,其特征在于,所述多个数据供给电路的每一个具有控制电路,用于切换是否向该数据供给电路的基准电流供给电路供给所述参考电流。
43.根据权利要求42所述的电光学装置,其特征在于,所述各第二数据供给电路的控制电路根据从前级数据供给电路的控制电路所供给的使能信号,切换是否对所述基准电流供给电路提供所述参考电流,同时将使能信号输出到后级数据供给电路的控制电路。
44.根据权利要求39所述的电光学装置,其特征在于,所述各数据供给电路包括保持所述参考电流的保持电路;所述各数据供给电路的基准电流供给电路根据所述保持电路所保持的参考电流来生成基准电流。
45.根据权利要求44所述的电光学装置,其特征在于,对所述各数据供给电路的基准电流供给电路之参考电流的供给是在该数据供给电路的数据信号输出电路输出数据信号期间以外的期间内进行的。
46.根据权利要求39所述的电光学装置,其特征在于,所述第一数据供给电路的构成和所述第二数据供给电路的构成相同。
47.根据权利要求39所述的电光学装置,其特征在于,包括元件驱动用IC芯片,其具有将与所述数据信号对应的驱动电流提供给所述电光学元件的多个单位电路;所述各数据供给电路的数据信号输出电路将生成的数据信号输出到所述元件驱动用IC芯片的单位电路。
48.一种元件驱动装置,其特征在于,具有多个被驱动元件,其分别通过由数据信号指定的驱动电流所驱动;和多个数据供给电路,其按一个或者多个被驱动元件的每一个而设置并且包含第一数据供给电路和第二数据供给电路,分别包括基于参考电流而生成基准电流的基准电流供给电路、基于由所述基准电流供给电路生成的基准电流而输出与所述数据信号对应的电流值的数据信号输出电路;所述第一数据供给电路将为了该第一数据供给电路的基准电流供给电路生成基准电流而使用的所述参考电流输出到所述第一数据供给电路以外的第二数据供给电路;另一方面所述第二数据供给电路的基准电流供给电路根据由所述第一数据供给电路供给的所述参考电流来生成所述基准电流。
49.一种电子设备,其特征在于,包括权利要求32~36和权利要求39~47中任一项所述的电光学装置。
全文摘要
为了抑制在驱动电光学元件等被驱动元件的电路中有源元件在特性上的无序差异,电光学装置(D)具有元件层、布线形成层(2)和电子部件层(3)。元件层(1)具有在平面内不同位置上分别配置的多个有机EL元件(10)。电子部件层(3)具有象素驱动用IC芯片(37)。该象素驱动用IC芯片(37)包含用于分别驱动不同有机EL元件(10)的多个象素电路(377)。布线形成层(2)位于元件层(1)和电子部件层(3)之间。该布线形成层(2)具有用于连接象素驱动用IC芯片(37)所含各象素电路(377)和与该象素电路(377)对应的有机EL元件(10)的布线。
文档编号G02F1/1345GK1602509SQ0380172
公开日2005年3月30日 申请日期2003年5月29日 优先权日2002年5月29日
发明者今村阳一 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1