视角可切换的液晶显示装置及视角切换方法与流程

文档序号:13985159
视角可切换的液晶显示装置及视角切换方法与流程

本发明涉及液晶显示的技术领域,特别是涉及一种视角可切换的液晶显示装置及视角切换方法。



背景技术:

液晶显示装置(liquid crystal display,LCD)具有画质好、体积小、重量轻、低驱动电压、低功耗、无辐射和制造成本相对较低的优点,在平板显示领域占主导地位。

现在液晶显示装置逐渐向着宽视角方向发展,如采用面内切换模式(IPS)或边缘场开关模式(FFS)的液晶显示装置均可以实现较宽的视角。然而,当今社会人们越来越注重保护自己的隐私,有很多事情并不喜欢拿出来和人分享。在公共场合,总希望自己在看手机或者浏览电脑的时候内容是保密的。因此,单一视角模式的显示器已经不能满足使用者的需求。除了宽视角的需求之外,在需要防窥的场合下,也需要能够将显示装置切换或者调整到窄视角模式。

为了实现液晶显示装置的宽窄视角切换,有一种方式是利用彩色滤光片基板一侧的视角控制电极给液晶分子施加一个垂直电场,以实现窄视角模式。请参图1与图2,液晶显示装置包括第一基板11、第二基板12和位于第一基板11与第二基板12之间的液晶层13,第一基板11上设有视角控制电极111。如图1所示,在宽视角显示时,第一基板11上的视角控制电极111不给电压,视角控制电极111与第二基板12上的公共电极(图未示)之间的电位差为零,液晶显示装置实现宽视角显示。如图2所示,当需要窄视角显示时,第一基板11上的视角控制电极111给电压,使视角控制电极111与第二基板12上的公共电极之间存在较大的电位差,液晶层13中的液晶分子在水平旋转的同时因为垂直方向的电场(如图中箭头E所示)而翘起,液晶显示装置因为漏光而对比度降低,最终实现窄视角显示。

液晶显示装置在正常显示时,一般由时序控制器(timing controller)对扫描驱动电路(gate driver)和源极驱动电路(source driver)进行驱动控制。现在成熟已量产的时序控制器,都是输入端的画面数据为多少输入频率,输出端的画面显示则为多少刷新频率,无法对画面刷新频率进行控制。上述的视角切换方案中,当使用常规60Hz的刷新频率时,显示面板会出现显示不均(mura)、影像残留(image sticking)以及闪烁(flicker)等问题。



技术实现要素:

本发明的目的在于提供一种视角可切换的液晶显示装置以及视角切换方法,可以实现不同场合的宽窄视角切换,并且解决显示面板出现显示不均、影像残留以及闪烁等问题。

本发明实施例提供一种视角可切换的液晶显示装置,包括显示面板,该显示面板包括第一基板、与该第一基板相对设置的第二基板以及位于该第一基板与该第二基板之间的液晶层,该第一基板上设有视角控制电极,该第二基板上设有公共电极和像素电极,该显示面板可在宽视角模式与窄视角模式之间切换,该液晶显示装置还包括显示控制模块和电压输出模块,在宽视角模式下,该显示面板的画面刷新频率与画面数据输入至该显示控制模块的数据输入频率相同,该电压输出模块向该视角控制电极输出直流电压;在窄视角模式下,该显示面板的画面刷新频率为画面数据输入至该显示控制模块的数据输入频率的两倍或四倍,该电压输出模块向该视角控制电极输出周期性的交流电压。

进一步地,该液晶显示装置设有视角切换按键,用于供用户向该液晶显示装置发出视角切换信号。

进一步地,在窄视角模式下,该电压输出模块向该视角控制电极输出的交流电压波形围绕输出至该公共电极的直流公共电压上下波动。

进一步地,在窄视角模式下,该电压输出模块向该视角控制电极输出的交流电压波形的周期与每帧画面的显示周期相等。

进一步地,在宽视角模式下,该数据输入频率和该画面刷新频率均为60Hz。

进一步地,在窄视角模式下,该数据输入频率为60Hz,该画面刷新频率为120Hz或240Hz。

进一步地,在窄视角模式下,该像素电极上的电压极性每两帧或每四帧画面反转一次。

进一步地,该液晶显示装置还包括存储器,用于暂存输入至该显示控制模块的每一帧画面数据。

进一步地,该液晶层内的液晶分子为正性液晶分子,在初始状态下,该正性液晶分子处于平躺姿态且该显示面板处在宽视角模式;当向该视角控制电极输出交流电压时,该正性液晶分子从平躺姿态偏转至倾斜姿态且该显示面板从宽视角模式切换至窄视角模式。

本发明实施例还提供一种液晶显示装置的视角切换方法,该液晶显示装置包括显示面板,该显示面板包括第一基板、与该第一基板相对设置的第二基板及位于该第一基板与该第二基板之间的液晶层,该第一基板上设有视角控制电极,该第二基板上设有公共电极和像素电极,该显示面板可在宽视角模式与窄视角模式之间切换,该液晶显示装置还包括显示控制模块和电压输出模块,该视角切换方法包括:

该显示控制模块接收用户输入的视角切换信号,并根据该视角切换信号判断该显示面板切换至宽视角模式还是窄视角模式;

当该显示面板切换至宽视角模式,该显示控制模块控制该显示面板的画面刷新频率与画面数据输入至该显示控制模块的数据输入频率相同,并控制该电压输出模块向该视角控制电极输出直流电压;

当该显示面板切换至窄视角模式,该显示控制模块控制该显示面板的画面刷新频率转换为画面数据输入至该显示控制模块的数据输入频率的两倍或四倍,并控制该电压输出模块向该视角控制电极输出周期性的交流电压。

进一步地,该液晶显示装置设有视角切换按键,该视角切换信号由用户通过该视角切换按键向该液晶显示装置发出。

进一步地,在窄视角模式下,该电压输出模块向该视角控制电极输出的交流电压波形围绕输出至该公共电极的直流公共电压上下波动。

进一步地,在窄视角模式下,该电压输出模块向该视角控制电极输出的交流电压波形的周期与每帧画面的显示周期相等。

进一步地,在宽视角模式下,该数据输入频率和该画面刷新频率均为60Hz。

进一步地,在窄视角模式下,该数据输入频率为60Hz,该画面刷新频率为120Hz或240Hz。

进一步地,在窄视角模式下,该像素电极上的电压极性每两帧或每四帧画面反转一次。

进一步地,该显示控制模块控制该显示面板的画面刷新频率转换为画面数据输入至该显示控制模块的数据输入频率的两倍或四倍,具体包括:先利用存储器将输入至该显示控制模块的每帧画面数据进行暂存,然后控制该显示面板利用刷新两次或四次画面对输入的每帧画面数据进行显示。

进一步地,该液晶层内的液晶分子为正性液晶分子,在初始状态下,该正性液晶分子处于平躺姿态且该显示面板处在宽视角模式;当向该视角控制电极输出交流电压时,该正性液晶分子从平躺姿态偏转至倾斜姿态且该显示面板从宽视角模式切换至窄视角模式。

本发明实施例提供的视角可切换的液晶显示装置及视角切换方法,通过在第一基板上设置用于控制视角的视角控制电极,当接收到用户切换至窄视角的指令时,向视角控制电极上施加周期性的交流电压,以切换至窄视角模式。同时,把输出端的画面刷新频率转换为输入端的数据输入频率的两倍或四倍,从图像处理器每输入一帧的画面数据至显示控制模块,显示面板利用刷新两次或四次画面进行显示,使施加在液晶上的电场变换频率变快,这样在视角控制电极与公共电极之间存在偏压的情况下,液晶也不易被极化,可以有效减轻显示不均、影像残留和闪烁等问题。本发明实施例可在不同场合实现宽视角与窄视角之间的自由轻松切换,具有较强的操作灵活性和方便性,达到集娱乐视频与隐私保密于一体的多功能液晶显示装置。

附图概述

图1为其中一种液晶显示装置在宽视角时的结构示意图。

图2为图1中液晶显示装置在窄视角时的结构示意图。

图3为本发明第一实施例中液晶显示装置在宽视角时的结构示意图。

图4为图3中液晶显示装置在窄视角时的结构示意图。

图5为图3中液晶显示装置的第二基板的电路示意图。

图6a至图6b为图3中液晶显示装置的平面结构示意图。

图7为图3中液晶显示装置的电路模块示意图。

图8为图3中液晶显示装置在宽窄视角切换时的工作流程图。

图9为图3中液晶显示装置在宽视角时画面刷新频率与数据输入频率之间的对应关系示意图。

图10为图3中液晶显示装置在窄视角时画面刷新频率与数据输入频率之间的对应关系示意图。

图11为图3中液晶显示装置在窄视角时视角控制电极上的交流电压波形以及像素电极上的数据信号极性反转示意图。

图12a至图12d为本发明其他实例中在窄视角时施加在视角控制电极上的交流电压波形示意图。

本发明的较佳实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。

[第一实施例]

图3为本发明第一实施例中液晶显示装置在宽视角时的结构示意图,图4为图3中液晶显示装置在窄视角时的结构示意图,请参图3与图4,该液晶显示装置包括显示面板20,该显示面板20包括第一基板21、与第一基板21相对设置的第二基板22及位于第一基板21与第二基板22之间的液晶层23。其中,第一基板21为彩色滤光片基板,第二基板22为薄膜晶体管阵列基板。

一般情况下,当用户从不同的视角观看液晶显示装置的屏幕时,图像的对比度会随着视角的增加而减小。传统的扭曲向列型(Twisted Nematic,TN)的液晶显示装置,公共电极和像素电极分别形成在上下两个不同的基板上,液晶分子在一个与基板垂直的平面内旋转。然而,TN型液晶显示装置的视角比较窄。为实现宽视角,采用水平电场的平面内切换型(In-Plane Switching,IPS)和采用边缘电场的边缘电场切换型(Fringe Field Switching,FFS)的液晶显示装置正成为市场主流。针对IPS型或FFS型的液晶显示装置,公共电极和像素电极是形成在同一基板(即薄膜晶体管阵列基板)上,液晶分子在与基板大致平行的平面内旋转从而获得更广的视角。

本实施例提供的液晶显示装置适用于平面内切换型(IPS)、边缘电场切换型(FFS)等模式的液晶显示装置,公共电极和像素电极均形成在同一基板(即薄膜晶体管阵列基板)上,在公共电极和像素电极之间施加显示用的电场时,液晶分子在与基板大致平行的平面内旋转以获得较广的视角。本实施例中,以边缘电场切换型(FFS)为例对该液晶显示装置进行说明。

第一基板21在背向液晶层23的一侧设有第一偏光片211,第二基板22在背向液晶层23的一侧设有第二偏光片221,第一偏光片211与第二偏光片221的透光轴方向相互垂直。

第一基板21在朝向液晶层23的一侧设有色阻层212、黑矩阵(BM)213、平坦层214和视角控制电极215。本实施例中,色阻层212和黑矩阵213错开设置且形成在第一基板21朝向液晶层23一侧的表面上,色阻层212例如包括红色(R)、绿色(G)、蓝色(B)三种颜色的色阻材料,平坦层214覆盖色阻层212和黑矩阵213,视角控制电极215形成在平坦层214上。应当理解,第一基板21上各个膜层的结构和顺序可以根据需要进行适当调整。

图5为图3中液晶显示装置的第二基板的电路示意图,请结合图5,本实施例中,第二基板22在朝向液晶层23的一侧设有扫描线222、数据线223、薄膜晶体管(TFT)224、公共电极225(common electrode)、绝缘层226和像素电极227(pixel electrode)。公共电极225与像素电极227之间通过绝缘层226间隔开且相互绝缘。应当理解,本实施例中,在第一基板21和第二基板22上仅示意了与本发明相关的膜层结构,对不相关的膜层结构则进行了省略。

如图5所示,多条扫描线222与多条数据线223相互交叉限定形成多个子像素SP(sub-pixel)。子像素SP例如为红色(R)、绿色(G)或蓝色(B)子像素,多个相邻的子像素SP构成一个显示像素(pixel),例如一个显示像素可包括红色(R)、绿色(G)和蓝色(B)三个子像素SP。每个子像素SP内设有像素电极227和薄膜晶体管(TFT)224,薄膜晶体管224位于扫描线222与数据线223交叉的位置附近。每个薄膜晶体管224包括栅极、源极及漏极(图未标),其中栅极电连接对应的扫描线222,源极电连接对应的数据线223,漏极电连接对应的像素电极227。

本实施例中,像素电极227位于公共电极225上方,即像素电极227相较于公共电极225更靠近液晶层23,像素电极227与公共电极225之间间隔设有绝缘层226,但不限于此。在其他实施例中,像素电极227也可以位于公共电极225下方,即公共电极225相较于像素电极227更靠近液晶层23。另外,当采用平面内切换型(IPS)模式的液晶显示装置时,公共电极225和像素电极227还可以位于同一层中且相互绝缘,此时在每个子像素SP内,公共电极225和像素电极227可分别制成具有多个电极条的结构且相互插入配合。

如图3至图5,视角控制电极215、公共电极225与像素电极227可以采用ITO(氧化铟锡)、IZO(氧化铟锌)等透明导电材质制成。视角控制电极215可以是整面电极,或者为图案化的电极结构。公共电极225可以是整面电极。位于每个子像素SP内的像素电极227可以为图案化的条状电极结构。

液晶分子一般分为正性液晶分子和负性液晶分子。本实施例中,液晶层23中的液晶分子为正性液晶分子,正性液晶分子具备响应快的优点。在初始状态(即显示面板20未施加任何电压的情形)下,液晶层23内的正性液晶分子呈现与基板21、22平行的平躺姿态,正性液晶分子的长轴方向与基板21、22的表面基本平行(如图3)。在实际应用中,液晶层23内的正性液晶分子与基板21、22之间可以具有很小的初始预倾角,该初始预倾角的范围可为大于或等于0度且小于或等于5度,即:0°≦θ≦5°。

视角控制电极215用于控制该液晶显示装置进行视角切换。如图3和图4所示,通过在视角控制电极215上施加电压,可以在视角控制电极215与公共电极225之间产生电压差(即偏压),使该液晶显示装置在宽视角模式与窄视角模式之间切换。

请参图3,当在视角控制电极215与公共电极225之间未施加偏压或者施加很小偏压(如小于0.5V)时,液晶层23中的液晶分子的倾斜角度几乎不发生变化,仍为平躺姿态,液晶分子为传统的面内电场驱动方式,由位于同一基板(即第二基板22)上的像素电极227与公共电极225之间形成的面内电场驱动液晶分子在与基板21、22平行的平面内旋转,液晶分子在较强的面内电场作用下实现宽视角模式。

请参图4,当在视角控制电极215与公共电极225之间施加较大的偏压时,会在两个基板21、22之间形成垂直电场(如图中箭头E所示),由于正性液晶分子在电场作用下将沿着平行于电场线的方向旋转,正性液晶分子在该垂直电场作用下将发生偏转,使液晶分子与基板21、22之间的倾斜角度增大。由于液晶分子发生了偏转,使得在该显示面板20的屏幕斜视方向上,穿过液晶分子的光线由于相位延迟与上下偏光片211、221不匹配,出现了漏光现象,导致从该显示面板20的斜视方向上观看屏幕时,屏幕上的对比度降低而影响观看效果,使视角减小,从而实现窄视角模式。

图6a至图6b为图3中液晶显示装置的平面结构示意图,请参图6a至图6b,该液晶显示装置设有视角切换按键50,用于供用户向该液晶显示装置发出视角切换信号。视角切换按键50可以是实体按键(如图6a所示),也可为软件控制或者应用程序(APP)来实现切换功能(如图6b所示,通过滑动条设置视角大小)。在正常情况下,该液晶显示装置处在宽视角模式下,视角控制电极215与公共电极225之间不施加偏压或施加很小的偏压(如小于0.5V)。当有防窥需求而需要切换至窄视角模式时,用户可以通过操作该视角切换按键50发出视角切换信号,在视角控制电极215与公共电极225之间施加一定大小(如2V~7V)的偏压,从而切换至窄视角模式。当不需要窄视角显示时,用户可以通过再次操作该视角切换按键50,撤销施加在视角控制电极215与公共电极225之间的偏压,从而返回至宽视角模式。从而,本发明实施例提供的视角可切换的液晶显示装置具有较强的操作灵活性和方便性。

图7为图3中液晶显示装置的电路模块示意图,请参图7,该液晶显示装置还包括栅极驱动电路31、源极驱动电路32、显示控制模块33和电压输出模块34。栅极驱动电路31与各条扫描线222相连,源极驱动电路32与各条数据线223相连。显示控制模块33可以是时序控制器(Timing Controller,T-CON)或专用集成电路(Application Specific Integrated Circuits,ASIC)等。显示控制模块33用于控制显示面板20实现画面显示。具体地,显示控制模块33接收来自图像处理器(Graphic Processing Unit,GPU)40的画面数据并进行处理后,生成栅极控制信号并输出至栅极驱动电路31,以及生成源极控制信号并输出至源极驱动电路32,栅极驱动电路31根据显示控制模块33输出的栅极控制信号生成扫描信号以控制与扫描线222相连的薄膜晶体管224开启或关闭;数据驱动电路32根据显示控制模块33输出的源极控制信号生成驱动液晶所需的数据信号,并通过数据线223和打开的薄膜晶体管224向对应的像素电极227输出数据信号。

显示面板20在一帧(frame)画面的显示过程中,显示控制模块33控制栅极驱动电路31依次向各条扫描线222送出扫描信号,依序将每一行TFT 224打开;在每一行TFT 224打开时,显示控制模块33控制源极驱动电路32通过各条数据线223送出数据信号,以将一整行的各子像素SP充电到各自所需的电压。当完成对所有扫描线222的扫描和对所有子像素SP的充电时,即实现一帧画面的刷新显示。目前常用的画面刷新频率为60Hz(即面板在显示时,每秒刷新60次画面)。

为了实现宽窄视角切换,显示控制模块33还控制电压输出模块34向第一基板21上的视角控制电极215输出直流电压或交流电压。电压输出模块34具体可以为数模转换电路,用于把数字信号转换成模拟的信号波形。

图8为图3中液晶显示装置在宽窄视角切换时的工作流程图,请结合图7与图8,用户通过视角切换按键50向该液晶显示装置发出视角切换信号,显示控制模块33接收该视角切换信号,并根据该视角切换信号判断该液晶显示装置是工作在宽视角模式还是窄视角模式。本实施例中,设定通过视角切换按键50发出切换至窄视角模式的指令时,该视角切换信号对应为高电平;通过视角切换按键50发出切换至宽视角模式的指令时,该视角切换信号对应为低电平。因此,显示控制模块33通过判断该视角切换信号的高低电平变化,即可得知用户是否发出视角切换指令。

显示面板20默认处在宽视角模式下,此时视角切换信号对应为低电平。在宽视角模式下,显示面板20的画面刷新频率与画面数据从图像处理器40输入至显示控制模块33的数据输入频率相同,即从图像处理器40每输入一帧的画面数据至显示控制模块33,显示面板20利用刷新一次画面进行显示。例如,画面数据从图像处理器40输入至显示控制模块33的频率为60Hz,则画面数据输出至显示面板20进行显示时,显示控制模块33控制显示面板20的画面刷新频率也为60Hz。而且在宽视角模式下,电压输出模块34向视角控制电极215输出直流电压,此时视角控制电极215与公共电极225之间不存在偏压或存在很小的偏压(如小于0.5V)。另外,无论是在宽视角模式还是窄视角模式下,在公共电极225上施加的电压均为直流公共电压(DC Vcom)。

图9为图3中液晶显示装置在宽视角时画面刷新频率与数据输入频率之间的对应关系示意图,在宽视角模式下,画面刷新频率与数据输入频率相同,从图像处理器40输入至显示控制模块33的每一帧画面数据,显示控制模块33控制显示面板20进行同步显示。优选地,在宽视角模式下,输入端的数据输入频率和输出端的画面刷新频率均为60Hz。例如,从图像处理器40分别输入第m帧画面数据(在屏幕上显示“A”)、第m+1帧画面数据(在屏幕上显示“B”)和第m+2帧画面数据(在屏幕上显示“C”)至显示控制模块33时,显示面板20分别在第n帧画面、第n+1帧画面和第n+2帧画面在屏幕上显示“A”、“B”和“C”。

当显示控制模块33接收到高电平的视角切换信号时,判断为用户通过视角切换按键50发出了切换至窄视角模式的指令,显示控制模块33控制显示面板20从宽视角模式切换至窄视角模式。在窄视角模式下,显示面板20的画面刷新频率为画面数据从图像处理器40输入至显示控制模块33的数据输入频率的两倍或四倍,即从图像处理器40每输入一帧的画面数据至显示控制模块33,显示面板20利用刷新两次或四次画面进行显示。例如,画面数据从图像处理器40输入至显示控制模块33的频率为60Hz,则画面数据输出至显示面板20进行显示时,显示控制模块33控制显示面板20的画面刷新频率转换为120Hz或240Hz。而且在窄视角模式下,电压输出模块34向视角控制电极215输出用于控制视角切换的周期性的交流电压,施加在视角控制电极215上的交流电压围绕输出至公共电极225上的直流公共电压(DC Vcom)上下波动,由于视角控制电极215与公共电极225之间存在偏压,显示面板20处在窄视角模式。

图10为图3中液晶显示装置在窄视角时画面刷新频率与数据输入频率之间的对应关系示意图,在窄视角模式下,画面刷新频率为数据输入频率的两倍或四倍。优选地,在窄视角模式下,输入端的数据输入频率为60Hz,输出端的画面刷新频率为120Hz或240Hz。为了实现数据输入频率与画面刷新频率之间的转换,该液晶显示装置还包括存储器35(参图7),存储器35用于暂存从图像处理器40输入至显示控制模块33的每一帧画面数据。电压输出模块34和存储器35可以设置在显示控制模块33外部或设置在显示控制模块33内部。从图像处理器40输入至显示控制模块33的每一帧画面数据,显示控制模块33会将其暂存在存储器35中,通过数据复制实现画面的异步显示。在此,以画面刷新频率为数据输入频率的两倍为例进行说明,例如,从图像处理器40分别输入第m帧画面数据(在屏幕上显示“A”)、第m+1帧画面数据(在屏幕上显示“B”)和第m+2帧画面数据(在屏幕上显示“C”)至显示控制模块33时,显示面板20在第n帧画面和第n+1帧画面在屏幕上显示“A”,在第n+2帧画面和第n+3帧画面在屏幕上显示“B”,在第n+4帧画面和第n+5帧画面在屏幕上显示“C”,即从图像处理器40输入至显示控制模块33的每帧画面数据,先利用存储器35将每帧画面数据进行暂存,然后显示面板20利用刷新两次画面对输入的每帧画面数据进行显示。可以理解地,当画面刷新频率为数据输入频率的四倍时,则显示面板20利用刷新四次画面对输入的每帧画面数据进行显示。

图11为图3中液晶显示装置在窄视角时视角控制电极上的交流电压波形以及像素电极上的数据信号极性反转示意图,在窄视角模式下,电压输出模块34向视角控制电极215输出周期性的交流电压,使该液晶显示装置从宽视角模式切换至窄视角模式。该交流电压的波形可以为方波、梯形波、正弦波、三角波或者锯齿波等,图中示意为方波。而且,施加在视角控制电极215上的交流电压围绕输出至公共电极225上的直流公共电压(DC Vcom)上下波动。电压输出模块34可以任意调整输出至视角控制电极215上的交流波形的振幅和频率,而且电压输出模块34的输出可以很容易与显示控制模块33的信号做同步处理,这样当画面刷新频率变化时,电压输出模块34可以即时调整输出至视角控制电极215上的电压波形、振幅和频率等。如图11所示,每帧画面的显示周期为T1,施加在视角控制电极215上的周期性交流电压的周期为T2,其中T2与T1相等,即施加在视角控制电极215上的交流电压每一帧画面反转一次。

显示面板在正常显示时,为了避免液晶极化,施加于像素电极的电压相对于公共电极而交替翻转,即像素电极的电压在正极性及负极性之间来回变化,称之为反转驱动。当像素电极的电压高于公共电极的电压时,称之为正极性(+),当像素电极的电压低于公共电极的电压时,称之为负极性(-)。本实施例中,因为在窄视角模式下,输入端的数据输入频率转换为输出端的画面刷新频率以倍频(两倍或四倍)输出,因此会导致功耗上升。为减少功耗的产生,本实施例中改变像素电极上的电压极性反转方式,现有的像素电极上的电压极性是每帧(frame)反转一次,本实施例中在窄视角模式下,当输入端的数据输入频率为60Hz,输出端的画面刷新频率为120Hz时,像素电极227上的电压极性每两帧画面反转一次(如图11所示)。反转驱动可采用帧反转驱动(frame inversion)、行反转驱动(row inversion)、列反转驱动(column inversion)及点反转驱动(dot inversion),图中以点反转驱动为例示意。另外,在窄视角模式下,当输入端的数据输入频率为60Hz,输出端的画面刷新频率为240Hz时,像素电极227上的电压极性每四帧或每两帧画面反转一次。

图12a至图12d为本发明其他实例中在窄视角时施加在视角控制电极上的交流电压波形示意图,请参图12a至图12d,向视角控制电极215输出的交流电压波形可以为梯形波(图12a)、正弦波(图12b)、三角波(图12c)或者锯齿波(图12d)。

另外,在相邻的两帧画面之间还可以设有空白时间段(blanking time)T3,空白时间段T3是相邻帧画面中的过渡时间段,在空白时间段T3内向视角控制电极215输出的交流电压和波形可以不做要求。

如图3所示,为了给第一基板21上的视角控制电极215施加电压,视角控制电极215在周边非显示区域可通过导电胶80从第一基板21导通至第二基板22,由电压输出模块34提供电压至第二基板22上,再由第二基板22通过导电胶80将电压施加在第一基板21的视角控制电极215上。

现有技术中,无论在宽视角模式还是窄视角模式,显示面板均采用60Hz的画面刷新频率。在窄视角模式下,由于在视角控制电极与公共电极之间存在较大的偏压,施加在液晶上的垂直电场较大,会使液晶极化。而且在视角控制电极上施加的是周期性变换的交流电压,由于视角控制电极一般采用ITO制成,其电阻较大,导致显示面板从上到下每小段受到的电场不一样,液晶的极化程度也不一样,当像素电极做极性反转时,正极性和负极性下液晶的扭角就有差异,反应出来就是显示面板在显示时会分为横向的几段区域,每段区域亮度有些微差异,导致画面显示不均(mura)、影像残留(image sticking)以及闪烁(flicker)等问题。本实施例中,显示面板在从宽视角模式切换至窄视角模式时,把输出端的画面刷新频率转换为输入端的数据输入频率的两倍或四倍,从图像处理器每输入一帧的画面数据至显示控制模块,显示面板利用刷新两次或四次画面进行显示,使施加在液晶上的电场变换频率变快,这样在视角控制电极与公共电极之间存在偏压的情况下,液晶也不易被极化,可以有效减轻显示不均、影像残留和闪烁等问题。

[第二实施例]

本发明第二实施例还提供一种液晶显示装置的视角切换方法,用于对上述视角可切换的液晶显示装置进行视角切换控制,该视角切换方法包括:

显示控制模块33接收用户输入的视角切换信号,并根据该视角切换信号判断该显示面板20切换至宽视角模式还是窄视角模式;

当该显示面板20切换至宽视角模式,显示控制模块33控制该显示面板20的画面刷新频率与画面数据输入至显示控制模块33的数据输入频率相同,并控制电压输出模块34向视角控制电极215输出直流电压;

当该显示面板20切换至窄视角模式,显示控制模块33控制该显示面板20的画面刷新频率转换为画面数据输入至显示控制模块33的数据输入频率的两倍或四倍,并控制电压输出模块34向视角控制电极215输出周期性的交流电压。

具体地,该液晶显示装置设有视角切换按键50,该视角切换信号由用户通过该视角切换按键50向该液晶显示装置发出。

具体地,在窄视角模式下,向公共电极225输出直流公共电压,电压输出模块34向视角控制电极215输出的交流电压波形围绕该直流公共电压上下波动。

具体地,在窄视角模式下,电压输出模块34向视角控制电极215输出的交流电压波形的周期T2与每帧画面的显示周期T1相等。

具体地,在宽视角模式下,该数据输入频率和该画面刷新频率均为60Hz。

具体地,在窄视角模式下,该数据输入频率为60Hz,该画面刷新频率为120Hz或240Hz。

具体地,在窄视角模式下,像素电极227上的电压极性每两帧或每四帧画面反转一次。

具体地,显示控制模块33控制该显示面板20的画面刷新频率转换为画面数据输入至显示控制模块33的数据输入频率的两倍或四倍,具体包括:先利用存储器35将输入至显示控制模块33的每帧画面数据进行暂存,然后控制该显示面板20利用刷新两次或四次画面对输入的每帧画面数据进行显示。

具体地,液晶层23内的液晶分子为正性液晶分子,在初始状态下,该正性液晶分子处于平躺姿态且该显示面板20处在宽视角模式;当向视角控制电极215输出交流电压时,该正性液晶分子从平躺姿态偏转至倾斜姿态且该显示面板20从宽视角模式切换至窄视角模式。

本实施例的视角切换方法与上述实施例中的液晶显示装置属于同一个构思,该视角切换方法的更多内容还可以参见上述关于该液晶显示装置的描述,在此不再赘述。

本发明实施例提供的视角可切换的液晶显示装置及视角切换方法,通过在第一基板上设置用于控制视角的视角控制电极,当接收到用户切换至窄视角的指令时,向视角控制电极上施加周期性的交流电压,以切换至窄视角模式。同时,把输出端的画面刷新频率转换为输入端的数据输入频率的两倍或四倍,从图像处理器每输入一帧的画面数据至显示控制模块,显示面板利用刷新两次或四次画面进行显示,使施加在液晶上的电场变换频率变快,这样在视角控制电极与公共电极之间存在偏压的情况下,液晶不易被极化,可以有效减轻显示不均、影像残留和闪烁等问题。本发明实施例可在不同场合实现宽视角与窄视角之间的自由轻松切换,具有较强的操作灵活性和方便性,达到集娱乐视频与隐私保密于一体的多功能液晶显示装置。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

工业实用性

本发明实施例中,通过在第一基板上设置用于控制视角的视角控制电极,当接收到用户切换至窄视角的指令时,向视角控制电极上施加周期性的交流电压,以切换至窄视角模式。同时,把输出端的画面刷新频率转换为输入端的数据输入频率的两倍或四倍,从图像处理器每输入一帧的画面数据至显示控制模块,显示面板利用刷新两次或四次画面进行显示,使施加在液晶上的电场变换频率变快,这样在视角控制电极与公共电极之间存在偏压的情况下,液晶不易被极化,可以有效减轻显示不均、影像残留和闪烁等问题。本发明实施例可在不同场合实现宽视角与窄视角之间的自由轻松切换,具有较强的操作灵活性和方便性,达到集娱乐视频与隐私保密于一体的多功能液晶显示装置。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1