液体透镜控制电路的制作方法

文档序号:19751494发布日期:2020-01-21 19:35阅读:208来源:国知局
液体透镜控制电路的制作方法

实施方式涉及液体透镜、包括液体透镜的摄像机模块以及光学装置。更具体地,实施方式涉及摄像机模块和光学装置,摄像机模块和光学装置包括液体透镜控制模块、液体透镜控制装置或液体透镜控制电路,以控制使得能够使用电能来调整焦距的液体透镜。



背景技术:

使用便携式设备的人们要求具有高分辨率、体积小并且具有各种摄像功能的光学装置。各种摄像功能的示例可以包括自动对焦(af)功能、手抖动补偿或光学图像稳定(ois)功能等。

可以通过直接移动组合的多个透镜来实现上述摄像功能。然而,在透镜的数目增加的情况下,光学装置的尺寸可能会增加。af功能和ois功能是通过沿光轴或在垂直于光轴的方向上移动或倾斜若干透镜模块来执行的,这些透镜模块被固定到透镜支架以与光轴对准,并且独立的透镜移动装置用于移动透镜模块。然而,透镜移动装置消耗大量功率并且使总体厚度增加。因此,对被配置成电调整两种液体之间的界面的曲率以执行af功能和ois功能的液体透镜进行了研究。



技术实现要素:

技术问题

实施方式可以在包括使得能够使用电能来调整焦距的液体透镜的摄像机模块中提供用于通过顺序地或逐渐地向多个单独电极提供用于驱动液体透镜的电压来稳定液体透镜中的界面移动的装置和方法。

另外,实施方式可以缩短在通过将电能顺序地施加到液体透镜的多个单独电极来控制界面的过程中由于界面的自由且灵活的移动导致的直到液体透镜中的界面稳定所需的时间,从而缩短包括液体透镜的摄像机模块或光学装置的焦点移动所需的操作时间。

另外,实施方式可以在包括使得能够使用电能来调整焦距的液体透镜的摄像机模块中提供用于通过控制用于驱动液体透镜的电压脉冲并且将电压脉冲提供给多个单独电极来稳定液体透镜中的界面移动的装置和方法。

另外,实施方式可以提供用于通过根据液体透镜的状态(例如,根据屈光度是否改变)调整驱动电压的脉冲周期以控制被施加到液体透镜的脉冲型驱动电压来提高液体透镜的操作速度的装置和方法。

另外,实施方式可以提供用于通过在控制液体透镜的同时调整驱动电压的脉冲周期来减小切换电路的负载并且因此减小液体透镜的控制电路的功耗的装置和方法。

然而,本公开内容要实现的目的不限于以上提及的目的,并且本领域技术人员根据以下描述将清楚地理解本文中未提及的其他目的。

技术方案

在一个实施方式中,液体透镜的控制电路可以包括:液体透镜,其包括公共电极和多个单独电极;电压生成器,其被配置成向液体透镜中的多个单独电极和公共电极提供电压;以及控制器,其被配置成控制时序,以将电压顺序地提供给多个单独电极中的每一个单独电极。

另外,多个单独电极可以包括第一单独电极、第二单独电极、第三单独电极和第四单独电极。控制器可以在将电压施加到第一单独电极之后将电压施加到第二单独电极,可以在将电压施加到第二单独电极之后将电压施加到第三单独电极,并且可以在将电压施加到第三单独电极之后将电压施加到第四单独电极。

另外,第一单独电极和第二单独电极可以被设置在相对于液体透镜的中心部彼此对称的位置。

另外,控制器可以以预定时间间隔将电压顺序地施加到多个单独电极中的每一个单独电极。

另外,时序可以是电压的周期的整数倍。

另外,控制器可以按从高电压到低电压的顺序将电压施加到第一单独电极至第四单独电极。

在另一实施方式中,液体透镜的控制电路可以包括:液体透镜,其包括公共电极和多个单独电极;电压生成器,其被配置成控制输入电压的大小并且生成输出电压;以及电压周期控制器,其被配置成使用电压生成器的输出电压来控制被提供给公共电极和多个单独电极的电压的周期。

另外,当被施加到公共电极或多个单独电极中的至少之一的电压改变时,电压的周期可以包括周期从预定的第一周期切换到第二周期的部分,第二周期短于第一周期。

另外,电压的周期可以包括在执行切换到第二周期的部分之后的执行切换到第一周期的部分。

另外,在电压的周期为第二周期的部分中的电压的幅度可以包括第一幅度和第二幅度,第一幅度和第二幅度彼此不同。

另外,在执行切换到第二周期的部分之后的执行切换到第一周期的部分中的幅度可以在第一幅度与第二幅度之间。

另外,被施加到多个单独电极中的任一个单独电极的电压的幅度与被施加到公共电极的电压的幅度可以彼此对应。

在另一实施方式中,液体透镜的控制电路可以包括:液体透镜,其包括公共电极和多个单独电极;以及电压生成器,其被配置成生成用于驱动液体透镜的驱动电压。当在公共电极与多个单独电极中之一之间施加的驱动电压的幅度从第一幅度变为第二幅度时,驱动电压可以包括驱动电压的幅度增加的第一部分以及驱动电压的幅度减小的第二部分,并且第二幅度可以在第一部分中的最大幅度与第二部分中的最小幅度之间。

另外,第一部分和第二部分中的电压的周期可以短于以第一幅度和第二幅度施加的驱动电压的周期。

另外,当第一幅度小于第二幅度时,第一部分中的最大幅度可以是第二幅度的130%以上,并且第二部分中的最小幅度可以是第二幅度的85%以下。

在再一实施方式中,液体透镜的控制电路可以包括:液体透镜,其包括公共电极和多个单独电极;以及电压生成器,其被配置成生成用于驱动液体透镜的驱动电压。当在公共电极与多个单独电极中之一之间施加的驱动电压的vrms值从第一vrms值变为第二vrms值时,驱动电压可以包括驱动电压的占空比改变的第一部分以及具有与第一部分中的占空比不同的占空比的第二部分,并且第一部分或第二部分中的至少之一中的占空比可以大于具有第二vrms值的部分中的占空比。

另外,当第二vrms值大于第一vrms值时,具有第二vrms值的部分中的占空比可以小于第一部分中的占空比。

另外,当第二vrms值大于第一vrms值时,具有第二vrms值的部分中的占空比可以大于具有第一vrms值的部分中的占空比。

另外,当第一vrms值大于第二vrms值时,具有第二vrms值的部分中的占空比可以大于第一部分中的占空比。

另外,当第二vrms值小于第一vrms值时,具有第二vrms值的部分中的占空比可以小于具有第一vrms值的部分中的占空比。

另外,驱动电压的脉冲的高度和周期可以是均匀的。

另外,第一部分可以具有第三vrms值,第二部分可以具有第四vrms值,并且vrms值可以满足以下要求:第三vrms值>第二vrms值>第四vrms值>第一vrms值。

另外,第一部分可以具有第三vrms值,第二部分可以具有第四vrms值,并且vrms值可以满足以下要求:第一vrms值>第四vrms值>第二vrms值>第三vrms值。

另外,当被施加到公共电极或多个单独电极中的至少之一的电压改变时,驱动电压的周期可以包括其中周期从预定的第一周期切换到第二周期的部分,第二周期短于第一周期。

另外,第三vrms值可以是第二vrms值的130%以下,并且第四vrms值可以是第二vrms值的85%以下。

另外,驱动电压的脉冲的宽度或周期可以改变。

然而,本公开内容的以上方面仅为本公开内容的示例性实施方式的一部分,并且本领域技术人员可以根据本公开内容的以下详细描述来设计和理解基于本公开内容的技术特征的各种实施方式。

有益效果

下面将描述根据实施方式的装置的效果。

实施方式可以通过将驱动电压顺序地施加到使得能够调整焦距的液体透镜来减小由于液体透镜的焦点的突然移动而引起的副作用。

另外,实施方式可以通过对液体透镜的控制来实现界面的更稳定和快速的移动,从而使得可以将液体透镜安装在时常经历大的移动的摄像机模块或光学装置中。

另外,实施方式可以通过控制使得能够调整焦距的液体透镜的驱动电压的脉冲周期和脉冲幅度并且通过将驱动电压施加到多个单独电极来实现界面的根据液体透镜的焦点的突然移动的更快速和稳定的移动。

另外,实施方式可以通过控制使得能够调整焦距的液体透镜的驱动电压的脉冲的占空比并且通过在驱动电压改变时向多个单独电极施加过冲电压和下冲电压来实现界面的根据液体透镜的焦点的突然移动的更快速和稳定的移动。

然而,通过本公开内容能够达到的效果不限于以上提及的效果,并且本领域技术人员根据以下描述将清楚地理解本文中未提及的其他效果。

附图说明

图1是示出摄像机模块的示例的图。

图2是示例性地示出摄像机模块中包括的透镜组件的截面图。

图3(a)和图3(b)分别是其焦距响应于驱动电压而被调整的液体透镜的立体图和等效电路。

图4是示例性地示出液体透镜的截面图。

图5(a)和图5(b)是用于说明液体透镜的透镜校正方法的图。

图6(a)至图6(c)是用于说明液体透镜中的界面的改变的图。

图7(a)和图7(b)是用于说明液体透镜中的界面的移动的图。

图8是根据第一实施方式的液体透镜的控制电路的框图。

图9(a)和图9(b)是用于说明通过根据第一实施方式的液体透镜的控制电路施加到液体透镜的驱动电压的波形图。

图10(a)和图10(b)是用于说明响应于配备有液体透镜的便携式设备的移动将驱动电压施加到液体透镜的过程的图。

图11是用于说明通过提供过冲电压来控制液体透镜的方法的图。

图12是根据第二实施方式的液体透镜的控制电路的框图。

图13是用于说明根据第二实施方式的驱动液体透镜的方法的波形图。

图14(a)和图14(b)是用于说明根据第二实施方式的通过提供过冲电压的液体透镜的第一控制方法的波形图。

图15(a)和图15(b)是用于说明根据第二实施方式的通过提供过冲电压的液体透镜的第二控制方法的波形图。

图16是根据第三实施方式的液体透镜的控制电路的框图。

图17a和图17b是用于说明根据第三实施方式的驱动液体透镜的方法的波形图。

图18(a)和图18(b)是用于说明根据第三实施方式的控制液体透镜的驱动电压的方法的波形图。

具体实施方式

现在将详细参照优选实施方式,其示例在附图中示出。尽管本公开内容易于有各种修改和替选形式,但是在附图中以示例方式示出了其具体实施方式。然而,本公开内容不应当被解释为限于本文阐述的实施方式,而正相反,本公开内容涵盖落入实施方式的精神和范围内的所有修改、等同物和替选物。

可以理解,尽管本文中可以使用术语“第一”、“第二”等来描述各种元件,但是这些元件不受这些术语的限制。这些术语通常仅用于将一个元件与另一元件区分。另外,考虑到实施方式的构造和操作而被特别定义的术语仅用于描述实施方式,而不限定实施方式的范围。

在实施方式的以下描述中,将理解,当每个元件被称为在另一元件“上”或“下”时,该元件可以“直接”在另一元件上或下或者可以是“间接地”形成,从而也存在中间元件。另外,当元件被称为“上”或“下”时,可以包括基于该元件的“在元件下”以及“在元件上”。

另外,诸如“上/上部/上方”和“下/下部/下方”的关系术语仅用于将一个主题或元件与另一主题或元件区分,而不必要求或不必涉及这些主题或元件之间的任何物理或逻辑关系或序列。

图1是示例性地示出摄像机装置(或摄像机模块)的图。

如图1所示,摄像机模块可以包括透镜组件22和图像传感器26。摄像机模块还可以包括控制电路24。

透镜组件22可以包括液体透镜,液体透镜的焦距响应于施加到其的电压而被调整。透镜组件22可以包括多个透镜,多个透镜包括第一透镜(或液体透镜),第一透镜的焦距响应于施加在公共端子与多个单独端子之间的驱动电压而被调整。

控制电路24可以将驱动电压提供给第一透镜。

图像传感器26可以与透镜组件22对准,并且可以将透射穿过透镜组件22的光转换为电信号。

参照图1,摄像机模块可以包括在单个印刷电路板(pcb)上形成的控制电路24和图像传感器26,以及包括多个透镜的透镜组件22。然而,这仅是一个示例,并且不限制实施方式的范围。控制电路24可以根据摄像机模块所需的规格来不同地配置。特别地,在被施加到液体透镜的电压的大小减小的情况下,可以将控制电路24实现为单个芯片。因此,可以进一步减小在便携式设备中安装的摄像机模块的尺寸。

图2是示例性地示出摄像机装置(或摄像机模块)中包括的透镜组件22的截面图。

如图2所示,透镜组件22可以包括第一透镜单元100、第二透镜单元200、液体透镜单元300、透镜支架400和连接单元500。

连接单元500可以将图像传感器26与液体透镜彼此电连接,并且可以包括将在后面描述的板、线或线缆。透镜组件22的所示结构仅为一个示例,并且可以根据摄像机模块所需的规格来改变透镜组件22的结构。例如,在图2中示出的实施方式中,液体透镜单元300被设置在第一透镜单元100与第二透镜单元200之间。然而,在另一实施方式中,液体透镜单元300可以被设置在第一透镜单元100上(或者在第一透镜单元100的前表面上),并且可以省略第一透镜单元100或第二透镜单元200中的至少之一。特别地,在被施加到透镜组件22的操作电压的大小减小的情况下,可以将控制电路24实现为单个芯片。因此,可以进一步减小在便携式设备中安装的摄像机装置的尺寸。

仍然参照图2,第一透镜单元100被设置在透镜组件22的前侧,并且接收从透镜组件22的外部入射的光。第一透镜单元100可以包括至少一个透镜,或者两个或更多个透镜可以沿中心轴线pl对准以形成光学系统。

可以将第一透镜单元100和第二透镜单元200安装在透镜支架400中。这里,可以在透镜支架400中形成多个通孔,并且第一透镜单元100和第二透镜单元200可以被设置在多个通孔中的相应通孔中。此外,可以将液体透镜单元300插入到透镜支架400中的、第一透镜单元100与第二透镜单元200之间的空间中。

同时,第一透镜单元100可以包括固体透镜110。固体透镜110可以突出到透镜支架400的外部并且可以暴露于外部。由于固体透镜110暴露于外部,因此透镜的表面可能损坏。如果透镜的表面损坏,则摄像机模块捕获到的图像质量可能降低。为了防止对固体透镜110的表面的损坏或者使对固体透镜110的表面的损坏最小化,可以应用放置盖玻璃的方法、形成涂层的方法或者使用耐磨材料形成固体透镜100的方法来防止对表面的损坏。

第二透镜单元200可以被设置在第一透镜单元100和液体透镜单元300的后部,并且从外部入射在第一透镜单元100上的光可以穿过液体透镜单元300,并且可以入射在第二透镜单元200上。第二透镜单元200可以与第一透镜单元100间隔开,并且可以被设置在形成在透镜支架400中的通孔中。

第二透镜单元200可以包括至少一个透镜,并且在包括两个或更多个透镜时,这些透镜可以沿中心轴pl对准以形成光学系统。

同时,液体透镜单元300可以被设置在第一透镜单元100与第二透镜单元200之间,并且可以插入到在透镜支架400中形成的插入孔410中。插入孔410可以形成为使得透镜支架400的侧表面的一部分是开口的。即,液体透镜单元300可以通过在透镜支架400的侧表面中形成的插入孔410被插入且被设置在透镜支架400中。可以使液体透镜单元300与第一透镜单元100和第二透镜单元200一起沿中心轴pl对准。

液体透镜单元300可以包括透镜区域310。透镜区域310可以是穿过第一透镜单元100的光穿透的区域,并且透镜区域可以在其至少一部分中包含液体。在示例中,可以将两种液体(即,导电液体和非导电液体)一起设置在透镜区域310中,并且在导电液体与非导电液体之间可以形成界面而不彼此混合。导电液体与非导电液体之间的界面可以由于通过连接单元500施加到其的驱动电压而变形,由此可以改变液体透镜的界面的曲率或液体透镜的焦距。当界面的变形及其曲率的改变被控制时,液体透镜单元300以及包括液体透镜单元300的摄像机模块可以执行自动对焦功能、手抖动补偿功能等。

图3(a)和图3(b)是用于说明其焦距响应于驱动电压而被调整的液体透镜的图。具体地,图3(a)示出了透镜组件22(参照图2)中包括的第一透镜28(或液体透镜),并且图3(b)示出了第一透镜28的等效电路。

首先,参照图3(a),其焦距响应于驱动电压而被调整的液体透镜28可以通过单独端子l1、l2、l3和l4接收电压,这些端子以距彼此相同的角度间隔被设置在四个不同的方向上。单独端子可以相对于液体透镜28的中心轴以距彼此相同的角度间隔被设置,并且可以包括四个单独端子。四个单独端子可以分别被设置在液体透镜28的四个角处。在通过单独端子l1、l2、l3和l4施加电压时,被设置在透镜区域310中的导电液体与非导电液体之间的界面可能会由于驱动电压而变形,驱动电压是由被施加到单独端子的电压与被施加到将在后面描述的公共端子c0的电压之间的相互作用形成的。

另外,参照图3(b),液体透镜28可以由多个电容器30构成,每个电容器的一侧接收来自各自不同的单独端子l1、l2、l3和l4中的相应一个单独端子的操作电压,并且每个电容器的另一侧均连接到公共端子c0。这里,等效电路中包括的多个电容器30可以具有大约几十皮法(pf)至200皮法的低电容。在本说明书中,液体透镜28的上述端子可以被称为电极区段或子电极。

图4是示例性地示出液体透镜28的截面图。

如图4所示,液体透镜28可以包括液体、第一板114和电极。液体透镜28中包括的液体122和124可以包括导电液体和非导电液体。第一板114可以包括其中设置有导电液体和非导电液体的腔150或孔。腔150可以包括倾斜表面。电极132和134可以被设置在第一板114上。即,电极132和134可以被设置在第一板114的上部或下部中的至少之一上。液体透镜28还可以包括第二板112,第二板112可以被设置在电极132和134上(例如,在电极的上部或下部上)。另外,液体透镜28还可以包括可以被设置在电极132和134上(例如,在电极的下部或上部上)的第三板116。

如图4所示,液体透镜28的一个实施方式可以包括由两种不同的液体122和124形成的界面130。另外,连接单元500可以包括用于向液体透镜28提供电压的至少一个板142和144。液体透镜28的角可以比液体透镜28的中心部薄。第二板112可以被设置在液体透镜28的上表面上,并且第三板116可以被设置在液体透镜28的下表面上。然而,可以不将第二板112或第三板116设置在液体透镜28的角的上表面或下表面的一部分上,并且因此液体透镜28的角可以比液体透镜28的中心部薄。可以使电极暴露在液体透镜28的角的上表面或下表面上。

液体透镜28可以包括两种不同的液体,即,导电液体122和非导电液体124,并且可以通过改变被提供给液体透镜28的驱动电压来调整由两种液体形成的界面130的曲率和形状。被提供给液体透镜28的驱动电压可以通过连接单元500传送。连接单元500可以包括第一板142或第二板144中的至少之一。在连接单元500包括第一板142和第二板144的情况下,第二板144可以用于将电压传送到单独端子中的每一个,并且第一板142可以用于将电压传送到公共端子。单独端子的数目可以是四个,并且第二板144可以将电压传送到四个单独端子中的每一个。通过第二板144和第一板142提供的电压可以被施加到被设置或暴露在液体透镜28的各个角处的多个电极134和132。

另外,液体透镜28可以包括第三板116和第二板112,并且还可以包括第一板114,第三板116和第二板112包括透明材料,第一板114被布置在第三板116与第二板112之间并且包括具有预定倾斜表面的开口区域。

另外,液体透镜28可以包括由第三板116、第二板112和第一板114中的开口区域限定的腔150。这里,腔150可以填充有具有不同特性的两种液体122和124(例如,导电液体和非导电液体),并且可以在具有不同特性的两种液体122与124之间形成界面130。

另外,液体透镜28中包括的两种液体122和124中的至少之一可以是导电的,并且液体透镜28可以包括被设置在第一板114上和下的两个电极132和134。第一板114可以包括倾斜表面,并且还可以包括在倾斜表面上设置的绝缘层118。导电液体可以与绝缘层118接触。这里,绝缘层118可以覆盖两个电极132和134中之一(例如,第二电极134),并且可以覆盖或暴露两个电极132和134中的另一电极(例如,第一电极132)的一部分,使得电能被施加到导电液体(例如,122)。这里,第一电极132可以包括至少一个电极区段(例如,图3(b)中的c0),并且第二电极134可以包括两个或更多个电极区段(例如,图3中的l1、l2、l3和l4)。在示例中,第二电极134可以包括多个电极区段,电极区段绕光轴在顺时针方向上被顺序地设置。电极区段可以被称为液体透镜的子电极或端子。

一个或两个或更多个板142和144可以连接到液体透镜28中包括的两个电极132和134,以向电极传送电压。可以响应于驱动电压来改变在液体透镜28中形成的界面130的曲率、挠曲或倾斜度,由此可以调整液体透镜28的焦距。

图5(a)和图5(b)是用于说明液体透镜的透镜校正方法的图。

首先,参照图5(a),使用便携式终端或便携式设备的摄像机功能的用户可以在任何特定方向上(例如,由箭头32指示的方向上)移动便携式终端或便携式设备。由用户在任何特定方向上对便携式终端或便携式设备的移动可以是用户期望的移动,或者可以是用户不期望的移动例如手抖动等。

参照图5(b),在便携式终端或便携式设备中安装的液体透镜28可以移动达到与用户有意或无意移动便携式终端或便携式设备(例如,在由箭头32指示的方向上)基本相同的程度。这是因为液体透镜28经由各种结构、装置、元件等被固定地安装在便携式终端或便携式设备中。由于液体透镜28还根据便携式终端或便携式设备的移动而移动,因此当基于通过液体透镜28接收的光信号来接收图像时,需要对移动进行补偿。例如,如果液体透镜28的移动(例如,在由箭头32指示的方向上)等于便携式终端或便携式设备的移动,则位于液体透镜28中的透镜区域310处的界面需要沿相反方向(例如,由箭头34指示的方向)校正接收到的光学信号,以对液体透镜28的移动进行补偿。

图6(a)至图6(c)示出了液体透镜28中的界面的改变。特别地,图6(a)至图6(c)是用于说明界面30a、30b和30c的移动的图,在将电压施加到液体透镜28的单独电极l1、l2、l3和l4时,会发生该移动。

首先,参照图6(a),当将具有基本相同大小的电压施加到液体透镜28的单独电极l1、l2、l3和l4时,界面30a可以保持近似圆形。在从顶部观看时,界面的水平长度lh和界面的竖直长度lv可以基本相同,并且界面30a的移动(例如,倾斜角度)可以以平衡的方式实现。在该情况下,通过四个不同的单独电极l1、l2、l3和l4测量的界面30a的电容值可以基本相同。

另外,将参照图6(b)描述被施加到液体透镜28的第一单独电极l1至第四单独电极l4的电压低于在图6(a)中示出的情况下的电压的情况。在该情况下,界面30b的倾斜度增加。因此,在从顶部观看时,界面30b可以成形为使得其水平长度lh和竖直长度lv变得大于在图6(a)中示出的界面30a的水平长度lh和竖直长度lv。

另外,参照图6(c),在被施加到液体透镜28的第一单独电极l1和第三单独电极l3的电压与被施加到第二单独电极l2和第四单独电极l4的电压不同的情况下,在从顶部观看时,界面可以成形为使得竖直长度lv短于水平长度lh。与在图6(b)中示出的情况类似,通过四个不同的单独电极l1、l2、l3和l4测量的界面30c的电容值可以彼此不同。同时,由于界面30c对称地改变,因此通过四个不同的单独电极l1、l2、l3和l4测量的界面30c的电容值可以是对称的。在该情况下,l1和l3的电容值可以相同,并且l2和l4的电容值可以相同。

另外,在图6(a)、图6(b)和图6(c)中示出的界面30a、30b和30c处测得的电容值彼此不同。可以使用电容值的差、根据被施加到第一单独电极l1至第四单独电极l4的电压直接地且更准确地测量界面30a、30b和30c的移动相对于其先前移动的改变。

同时,尽管在以上实施方式中以示例方式描述了液体透镜28包括四个单独电极的结构,但是液体透镜28可以包括更大数目的单独电极例如八个、十二个、十六个或更多个,以及与其对应的反馈电极。在该情况下,可以更精确地控制液体透镜28的移动,并且可以更准确地测量相应移动。

第一实施方式

图7示出了液体透镜中的界面的移动。

如图7所示,液体透镜中的界面在两种液体之间形成。在两种自由移动的液体之间形成的界面的移动也可以是非常自由和灵活的。

如参照图5所述,便携式终端或便携式设备的移动可以在三维空间中发生,并且还可以对应于三维空间坐标(例如,x轴、y轴和z轴)确定用于对该移动进行补偿的补偿值。对应于三维空间坐标的补偿值可以表现为液体透镜的屈光度的改变。屈光度的改变可以根据液体透镜的性能来确定。可以预测,界面在沿三维空间坐标轴的相同范围或各自不同范围内根据沿相对于液体透镜的中心轴的三维空间轴的屈光度的变化而移动。

液体透镜中的界面可以非常灵活和自由地移动。因此,在从图7(a)示出的状态到图7(b)示出的状态在任何特定方向上发生大的改变的情况下,由于液体透镜中的界面的灵活和自由的移动特性,液体透镜中的界面可以在短时间段内移动以具有期望的形状。然而,界面的快速移动可能会导致界面滚动。当通过在液体透镜中设置的单独电极和公共电极施加驱动电压时,液体透镜中的两种液体可能由于驱动电压而受到电能的影响,并且可能发生界面移动。当在特定方向上将预定大小或更大的力瞬时施加到液体时,界面可能会起伏移动。当起伏自然消散时,可以认为液体透镜的界面已准备好执行正常操作。在另一示例中,为了更好地理解,当一并抬起在桌子上放置的一张薄纸的所有四个角时,纸张可能会飘动。然而,当一张纸的四个角逐个被顺序地抬起时,可以减小纸张的飘动。

为了防止这种现象,当确定了需要通过液体透镜中的界面的移动和形状来补偿的补偿值时,根据补偿值顺序地施加驱动电压而不是将其一并施加到液体透镜中的单独电极和公共电极,使得突然的力被顺序地传送到液体透镜中的界面。当电能被顺序地传送到液体透镜中的界面时,可以减小界面的起伏现象等,从而使用补偿值来缩短直到液体透镜正常操作所需的时间。

图8是根据第一实施方式的液体透镜的控制电路的框图。

如图8所示,可以响应于由被传送到多个电极区段l1、l2、l3和l4的电压vl1、vl2、vl3和vl4以及被传送到公共电极c0的电压vc0形成的驱动电压来控制液体透镜28的界面30。可能由于被施加到第一单独电极至第四单独电极l1、l2、l3和l4的第一电压至第四电压vl1、vl2、vl3和vl4与被施加到公共电极c0的电压vc0之间的电压差而发生液体透镜28中的界面30的位置、移动或形状的改变。

可以从液体透镜的控制电路50施加驱动电压vl1、vl2、vl3、vl4和公共电压vc0。液体透镜的控制电路50可以控制液体透镜28中的界面的屈光度的变化,或者可以控制被施加到液体透镜28中的多个单独电极l1、l2、l3和l4以及公共电极c0(参照图3)的电压以改变屈光度。另外,液体透镜的控制电路50可以在向多个单独电极l1、l2、l3和l4以及公共电极c0施加电压以改变驱动电压的过程中设置并且控制切换部分。

液体透镜的控制电路50可以包括:透镜驱动确定单元54,其用于确定液体透镜28的界面30的屈光度的改变;电压生成器56,其用于确定要向液体透镜28中的多个单独电极区段l1、l2、l3和l4以及公共电极区段c0施加的驱动电压的改变;以及时序控制器52,其用于确定响应于屈光度的改变要向多个单独电极区段l1、l2、l3和l4以及公共电极区段c0施加驱动电压的改变的时间点。液体透镜的控制电路50可以从安装有液体透镜的装置中包括的各种传感器(例如,陀螺仪传感器等)接收与液体透镜28的移动有关的信息。另外,当通过经由用户接口等的用户输入来改变液体透镜28的屈光度时,与该输入对应的信息可以被传送到液体透镜的控制电路50。

当确定了要通过液体透镜28中的界面30的移动基于其执行补偿的补偿值时,在向液体透镜28中的多个单独电极l1、l2、l3和l4以及公共电极c0施加与电压vl1、vl2、vl3、vl4和vc0对应的电压vl1、vl2、vl3、vl4和vc0的改变的过程中,可以一并全部即同时施加驱动电压vl1、vl2、vl3、vl4和vc0的改变,因此导致界面30起伏或滚动。为了减小或减轻界面的起伏现象,时序控制器52可以将电压vl1、vl2、vl3、vl4和vc0的改变顺序地施加到多个单独电极区段l1、l2、l3和l4以及公共电极区段c0。

例如,在要施加到第一单独电极区段至第四单独电极区段l1、l2、l3和l4的驱动电压vl1、vl2、vl3和vl4从40v变为50v的情况下,要施加到第一单独电极区段至第四单独电极区段l1、l2、l3和l4的驱动电压可以不一并全部从40v调整到50v,而是可以通过时序控制器52顺序地改变,使得要提供给第一单独电极区段l1的第一驱动电压vl1首先从40v变为50v,然后,使要提供给第二单独电极区段l2的第二驱动电压vl2从40v变为50v,并且其后,使第三驱动电压vl3和第四驱动电压vl4顺序地改变。

图9(a)和图9(b)是用于说明通过根据第一实施方式的液体透镜的控制电路施加到液体透镜28的驱动电压的波形图。

具体地,图9(a)示出了将驱动电压的改变同时施加到液体透镜28中的单独电极区段的示例性方法,并且图9(b)示出了将驱动电压的改变顺序地施加到液体透镜28中的单独电极区段的示例性方法。

首先,参照图9(a),在已将30v的驱动电压施加到四个单独电极区段l1、l2、l3和l4的状态下,将40v的驱动电压同时施加到全部四个单独电极区段l1、l2、l3和l4。在两种液体之间形成的界面的移动由被施加到四个单独电极区段l1、l2、l3和l4的驱动电压来确定。被施加到四个单独电极区段l1、l2、l3和l4的驱动电压的改变同时发生可能会导致界面由于冲击而在物理上经历动量的改变。在该过程中,可以自由且灵活地移动的界面可能起伏或滚动。该现象可以一直持续到导致界面起伏的能量被传送到腔150的侧表面并因此消散或消失。如果逐渐改变被施加到界面的电能的量,则可以避免该现象。

根据实施方式,参照图9(b),在已将30v的驱动电压施加到四个单独电极区段l1、l2、l3和l4的状态下,将40v的驱动电压顺序地即按时间间隔施加到四个单独电极区段l1、l2、l3和l4。首先,可以将40v仅施加到第一单独电极区段l1,并且可以使其他单独电极区段l2、l3和l4保持在30v。其后,可以将40v施加到第一单独电极区段l1和第二单独电极区段l2,并且可以使其他单独电极区段l3和l4保持在30v。以此方式,如果被施加到各个单独电极区段的驱动电压逐个被顺序地改变,则可以减小通过被施加到液体透镜28的界面的电能而被施加到其的冲击,从而避免界面的起伏或滚动现象。为了顺序地改变被施加到各个单独电极区段的驱动电压,液体透镜的控制电路50可以包括时序控制器52(参照图8)。

已经参照图9描述了改变要施加到四个单独电极区段l1、l2、l3和l4的驱动电压的情况。然而,在一些实施方式中,即使当仅要施加到单独电极区段中的一些单独电极区段的驱动电压改变时,也可以顺序地向其施加驱动电压。在示例中,在不改变被施加到四个单独电极区段中的两个单独电极区段的驱动电压而改变被施加到其他两个单独电极区段的驱动电压的情况下,可以不将驱动电压的改变一并施加到其他两个单独电极区段而是可以顺序地施加到其他两个单独电极区段。

同时,图9(b)示出了在每个周期无分开的时间间隔地将驱动电压顺序地施加到多个单独电极区段l1、l2、l3和l4的情况。然而,实施方式不限于此。即,响应于需要由液体透镜28或根据实施方式来补偿的移动,存在长达从驱动电压被施加到一个单独电极的时间到驱动电压被施加到下一单独电极的时间的至少一个周期的时间间隔。例如,时序可以是驱动电压的周期的整数倍,以将驱动电压顺序地提供给各个单独电极。

上述液体透镜28可以被包括在摄像机模块或摄像机装置中。摄像机模块可以包括:透镜组件,其包括在壳体中安装的液体透镜以及可以被设置在液体透镜的前表面或后表面上的至少一个固体透镜;图像传感器,其用于将通过透镜组件传送的光信号转换为电信号;以及控制电路,其用于向液体透镜提供驱动电压。

同时,图9(b)概念性地示出了通过数值之间的差以及模式之间的形状差来调整驱动电压。波形的形状可以根据驱动器或控制电路通过其实际生成驱动电压的脉冲宽度调制(pwm)方案或脉冲幅度调制(pam)方案而改变。

图10(a)和图10(b)示出了响应于配备有液体透镜的便携式设备的移动而将驱动电压施加到液体透镜的过程。

如图10(a)所示,便携式终端可以经历相对于x轴从左到右的移动52。该移动52可以是由用户的手抖动等引起的。为了补偿从左到右的移动52以使得摄像机模块可以保持其焦点,从陀螺仪传感器接收与移动52有关的信息的控制电路可以将用于补偿的驱动电压施加到第三单独电极l3和第四单独电极l4,并且其后,可以将用于补偿的驱动电压施加到第一单独电极l1和第二单独电极l2。

相反,便携式终端可以经历相对于x轴从右到左的移动54。为了补偿从右到左的移动54以使得摄像机模块可以保持其焦点,从陀螺仪传感器接收与移动54有关的信息的控制电路可以将用于补偿的驱动电压施加到第一单独电极l1和第二单独电极l2,并且其后,可以将用于补偿的驱动电压施加到第三单独电极l3和第四单独电极l4。

如上所述,当基于从陀螺仪传感器接收到的与移动有关的信息来调整驱动电压并将其施加到液体透镜以补偿相应移动时,可以将驱动电压顺序地施加到单独电极以减小施加到界面的冲击。在该情况下,可以根据需要补偿的相应移动或需要补偿的方向来确定驱动电压被顺序地施加到单独电极的顺序。根据实施方式或需要补偿的移动,可以将经调整的驱动电压被施加到单独电极的顺序确定为顺时针方向、逆时针方向、从左到右的方向(或从右到左的方向)、从顶部到底部的方向(或从底部到顶部的方向)等。

另外,在一些实施方式中,可以按从高电压到低电压的顺序将电压施加到液体透镜的第一单独电极至第四单独电极。

根据实施方式或需要补偿的移动,可以将经调整的驱动电压顺序地施加到各个单独电极,或者可以将其施加到各自包括两个单独电极的各个组。

第二实施方式

同时,如上面参照图6(a)至图6(c)所述,液体透镜28中的界面30a、30b和30c的位置、移动或形状可以进行各种改变。界面30a、30b和30c的移动和形状的改变可以由驱动电压确定,驱动电压是被施加到多个单独电极的电压与被施加到公共电极的电压之间的差。可以在短时间内通过控制电路或电压生成和供电电路来施加驱动电压的改变,但是根据驱动电压的改变的、液体透镜28中的界面30a、30b和30c的位置、移动或形状的改变可能不像施加驱动电压的改变的速度那么快。因此,为了通过更迅速地控制液体透镜28中的界面30a、30b和30c的移动和形状的改变来提高包括液体透镜28的摄像机模块或光学装置的操作速度,可以使用在预定时间段内提供过冲电压的方法。

图11(a)和图11(b)示出了使用过冲电压的提供来控制液体透镜的方法。具体地,图11(a)和图11(b)示出了使用脉冲幅度调制(pam)方案向液体透镜提供驱动电压的示例。然而,图11(a)示出了使用具有预定周期的驱动电压脉冲的情况,并且图11(b)示出了控制驱动电压脉冲的不同周期或周期的改变的情况。对不同周期或周期的改变的控制可以与控制不同频率或改变频率基本相同。

首先,参照图11(a),认为需要液体透镜28(参照图3和图4)的折射率从第一状态s1到第二状态s2的改变。可以通过改变驱动电压v来改变有效电压vrms,以从第一状态s1切换到第二状态s2。驱动电压v可以改变在预定时间段内通过占空比的改变实际传送的电能的量。例如,第二状态s2中的占空比可以大于第一状态s1中的占空比。可以将相对于具有这样的波形的驱动电压v的有效值(例如,均方根(rms))计算为有效电压vrms。另外,可以改变通过驱动电压v的幅度的改变实际传送的电能的量。例如,第二状态s2中的驱动电压v的幅度可以大于第一状态s1中的驱动电压v的幅度。在第一状态s1和第二状态s2中,液体透镜的折射率响应于有效电压vrms的改变而改变。

由于液体透镜28中的在两种液体之间形成的界面由于液体的改变而改变或移动,因此液体透镜28的折射率可能如图所示呈现不稳定的波形,并且然后可以逐渐稳定。如果缩短了在引起界面移动之后直到液体透镜28中的界面稳定即直到折射率稳定地改变所需的时间,则配备有液体透镜的摄像机模块或光学装置可以更快速地操作。

参照图11(b),可以看出,根据液体透镜28的状态s1、o1、o2、s2a和s2b不同地控制具有脉冲形状的驱动电压的周期。例如,认为可以在三个周期p1、p2和p3中提供驱动电压v。三个周期p1、p2和p3仅为一个示例,并且可以根据实施方式不同地设置驱动电压v的周期。第二周期p2可以长于第一周期p1,并且第三周期p3可以长于第二周期p2。例如,当驱动电压改变时,可以施加作为最短周期的第一周期p1,并且当在改变状态之后施加驱动电压时,可以施加第二周期p2。另外,可以将作为最长周期的第三周期p3施加到在稳定状态下施加的驱动电压,在该稳定状态下,状态是稳定的,并且确定驱动电压没有改变。

首先,认为在第一状态s1中需要驱动电压的改变,在第一状态s1中,具有第二周期p2的驱动电压被施加。当需要从第一状态s1切换到第二状态s2以提高液体透镜28的操作速度时,可以在两个状态之间(例如,在第一状态s1与第二状态s2之间)即在切换时间点存在第一切换部分o1和第二切换部分o2。在改变驱动电压的过程中,可以在第一切换部分o1和第二切换部分o2中施加具有作为短周期的第一周期p1的驱动电压。为了在短时间内将驱动电压的改变施加到液体透镜,第一切换部分o1可以是过冲电压周期。在第一切换部分o1中,可以施加大小比目标电压高30%以上的电压。另外,为了防止未落入正常范围内的过冲电压或下冲电压被施加到液体透镜28,可以在第二切换部分o2中施加大小比目标电压低15%以下的电压,从而减小过冲电压在初始驱动阶段的施加。

在第一切换部分o1和第二切换部分o2之后的第二状态s2a中,可以将具有长于第一周期p1的第二周期p2并且落入目标电压范围内的驱动电压施加到液体透镜。当过程从施加目标电压的第二状态s2a进行到驱动电压不发生改变的稳定状态时,过程可以进入第三状态s2b。当过程从第二状态s2a进行到第三状态s2b并且驱动电压稳定时,可以在更长的周期p3中施加具有脉冲形状的驱动电压。

在一些实施方式中,脉冲周期(操作频率)可以被进一步分段和改变。可以根据驱动电压增加的情况、驱动电压减小的情况、驱动电压保持在高电压的情况或者驱动电压保持在低电压的情况来使用分别不同的脉冲周期。

图11(b)示出了在从有效电压vrms低的第一状态s1切换到有效电压vrms变高的第二状态s2的过程中存在第一切换部分o1和第二切换部分o2的情况。同时,在从有效电压vrms高的状态切换到有效电压vrms低的过程中可以包括多个切换部分。例如,可以在第一切换部分中施加大小比目标电压低30%以下的电压,并且其后,可以在第二切换部分中施加大小比目标电压高15%以上的电压,从而实现液体透镜中的界面的更快移动。

另外,驱动电压v的周期可以根据液体透镜28中的界面的操作状态或操作模式而改变。例如,可以在第一切换部分o1和第二切换部分o2中提供具有短周期p1的驱动电压,并且可以在驱动电压稳定的第三状态s2b中提供具有长周期p3的驱动电压。为了提高液体透镜的操作速度,可以在第一切换部分o1和第二切换部分o2中增加驱动电压的频率,从而实现驱动电压的更快响应以引起液体透镜的折射率的改变。另外,在将液体透镜稳定并保持在特定状态的保持状态下,可以降低驱动频率以因此降低切换损耗,从而提高控制电路的总体效率。

根据液体透镜的控制装置和方法,在改变被施加到液体透镜的驱动电压的大小的时间点,特别地,当驱动电压的改变大时,可以设置施加具有短周期(即,高频率)的驱动电压的多个切换部分,以实现液体透镜的快速操作。例如,可以在多个切换部分中之一中施加大小与目标电压相差30%以上或30%以下的电压,并且其后,可以在另一切换部分中施加大小与目标电压相差15%以下或15%以上的电压。

另外,为了确定液体透镜28是否稳定并且处于保持状态,可以确定在预定周期内驱动电压是否无改变(例如,在预定周期内有效电压是否无改变)。可以基于液体透镜的控制电路提供驱动电压的周期来确定保持状态。然而,在一些实施方式中,可以通过用户的外部输入操作或者配备有液体透镜的摄像机模块或光学装置的控制电路来确定保持状态。当液体透镜处于保持状态时,液体透镜的控制电路可以通过减小驱动频率(即,增加周期)来提高控制电路的效率。

图12是用于说明根据第二实施方式的液体透镜的控制电路50的图。

如图12所示,可以响应于通过多个单独电极区段l1、l2、l3和l4传送的电压vl1、vl2、vl3和vl4以及被施加到公共电极c0的电压vc0来控制液体透镜28中的界面30。当相对于液体透镜的中心(光轴或圆周)从第一电极区段顺时针被顺序地定位的电极区段分别被称为第二电极区段、第三电极区段和第四电极区段时,第一单独电极至第四单独电极l1、l2、l3和l4中的每一个单独电极可以与第一电极区段至第四电极区段中的相应一个电极区段一起形成电极对,并且被施加到第一单独电极至第四单独电极l1、l2、l3和l4的驱动电压可以分别被称为第一驱动电压至第四驱动电压。可能由于第一电压至第四电压vl1、vl2、vl3和vl4与被施加到公共电极c0的电压vc0之间的电压差而发生液体透镜28中的界面30的移动和形状的改变。

可以从液体透镜的控制电路50施加驱动电压vl1、vl2、vl3、vl4和公共电压vc0。液体透镜的控制电路50可以确定要施加到液体透镜28中的多个单独电极区段l1、l2、l3和l4以及公共电极c0(参照图3)的驱动电压。即,液体透镜的控制电路50可以确定驱动电压的幅度或周期。另外,液体透镜的控制电路50可以改变被施加到多个单独电极区段l1、l2、l3和l4以及公共电极区段c0的驱动电压的周期。

液体透镜的控制电路50可以包括:透镜驱动确定单元56,其用于确定液体透镜28的移动或者液体透镜28中的界面30的屈光度的改变;电压生成器56,其用于响应于屈光度的改变来确定要施加到液体透镜28中的多个单独电极l1、l2、l3和l4以及公共电极c0的驱动电压的改变;以及驱动电压周期控制器58,其用于改变要施加到多个单独电极l1、l2、l3和l4以及公共电极c0的驱动电压的周期。液体透镜的控制电路50可以从安装有液体透镜28的装置中包括的各种传感器(例如,陀螺仪传感器等)接收与液体透镜28的移动有关的信息或者与需要通过液体透镜28来补偿的值有关的信息。另外,当通过经由用户接口等的用户输入来改变液体透镜28的屈光度时,与该输入对应的信息可以被传送到液体透镜的控制电路50。此外,当屈光度未被传感器输入或外部输入改变时,与其对应的信息可以被传送到液体透镜的控制电路50。

当确定要通过液体透镜28中的界面30的移动基于其执行补偿的补偿值时,在向液体透镜28中的多个单独电极l1、l2、l3和l4以及公共电极c0施加与电压vl1、vl2、vl3、vl4和vc0对应的电压vl1、vl2、vl3、vl4和vc0的改变的过程中,为了控制液体透镜28中的界面30根据驱动电压vl1、vl2、vl3、vl4和vc0的目标电压更快速地移动,电压生成器56可以在切换部分期间根据驱动电压vl1、vl2、vl3、vl4和vc0的改变将比目标电压高出或低出预定范围的电压施加到多个单独电极l1、l2、l3和l4以及公共电极c0。

例如,当被施加到第一单独电极至第四单独电极l1、l2、l3和l4的电压vl1、vl2、vl3和vl4从30v变为50v时,即,当将被施加到第一电极至第四电极l1、l2、l3和l4的驱动电压从30v调整到50v时,可以控制切换部分以使得比50v的目标电压高30%以上的电压被施加,并且其后,比50v的目标电压低15%以下的电压被施加。当将第一电压vl1提供给第一单独电极l1时,可以通过电压生成器56施加比目标电压高出或低出预定范围的电压。

在一些实施方式中,在改变被提供给第一单独电极至第四单独电极l1、l2、l3和l4的驱动电压的过程中,可以顺序地控制或者可以同时控制相对于各个单独电极区段的切换部分。在改变被施加到液体透镜28的电压的大小的时间点,特别地,当驱动电压的改变大时,驱动电压周期控制器58可以设置多个切换部分并且可以控制在切换部分中施加的电压的大小,以实现液体透镜的快速操作。例如,根据驱动电压的改变(增加或减少),可以在多个切换部分中之一中施加大小与目标电压相差30%以上的电压,并且可以在另一切换部分中施加大小与目标电压相差15%以下的电压。

当在液体透镜的公共电极与多个单独电极中之一之间施加的驱动电压的幅度从第一幅度变为第二幅度时,驱动电压可以包括驱动电压的幅度增加的第一部分以及驱动电压的幅度减小的第二部分。在该情况下,第二幅度可以在第一部分中的最大幅度与第二部分中的最小幅度之间。同时,当第一幅度小于第二幅度时,第一部分中的最大幅度可以是第二幅度的130%以上,并且第二部分中的最小幅度可以是第二幅度的85%。另外,第一部分和第二部分中的电压周期可以小于以第一幅度和第二幅度施加的驱动电压的周期。

另外,电压vl1、vl2、vl3、vl4和vc0的周期可以通过驱动电压周期控制器58来改变。例如,当需要液体透镜28中的界面30的移动或形状的改变时,可以缩短驱动电压vl1、vl2、vl3、vl4和vc0的周期。当保持稳定状态而不存在界面30的移动或形状的改变时,可以增加驱动电压vl1、vl2、vl3、vl4和vc0的周期。可以通过改变具有脉冲形状的驱动电压的周期的示例来理解驱动电压周期控制器58的操作,该示例已经参照图11(b)结合液体透镜的控制方法进行描述。

图13是用于说明根据第二实施方式的驱动液体透镜的方法的波形图。

如图13所示,可以通过公共电极c0和单独电极l1至l4(参照图12)施加被提供给液体透镜的驱动电压。对液体透镜中的界面的改变有影响的驱动电压v可以与被施加到公共电极c0的电压与被施加到单独电极l1的电压之间的差的绝对值基本相同。

如参照图11所述,可以使用脉冲幅度调制(pam)方案通过公共电极c0和单独电极l1至l4来施加驱动电压。在脉冲幅度调制(pam)方案中,具有脉冲形状的驱动电压的幅度可以与被施加到液体透镜28的驱动电压和目标驱动电压vrms对应地改变。

在一般脉冲幅度调制(pam)方案中,脉冲的大小被调整。然而,参照图13,脉冲的周期以及脉冲的大小可以被调整。被施加到液体透镜28的公共电极c0和单独电极l1的脉冲型驱动电压可以被调整其脉冲的大小,并且可以具有不同的脉冲周期p1和p2。在施加具有均匀电平的驱动电压的时间点的周期p2可以长于在改变驱动电压的电平的时间点的周期p1。

为了实现光学图像稳定(ois),如果用于调整液体透镜中的界面的移动的驱动电压在短时间内改变,则液体透镜的操作速度可以增加。为此,可以施加高于目标驱动电压的电压,并且其后,可以施加低于目标驱动电压的电压,从而在减小液体的起伏的同时实现驱动电压的更快改变。另外,为了进一步提高液体透镜的操作速度,可以改变被施加到公共电极c0和单独电极l1的脉冲型驱动电压的周期。为了更快速且更精确地控制驱动电压的改变,可以改变驱动电压的脉冲周期。即,参照图11(b)描述的第一切换部分o1和第二切换部分o2中的脉冲周期p1可以短于其他部分中的脉冲周期p2。这也可以以类似方式应用于参照图13描述的驱动电压。

第三实施方式

图14(a)和图14(b)是用于说明通过提供过冲电压来控制液体透镜的方法的波形图。

具体地,可以通过脉冲宽度调制(pwm)方案来确定被提供给液体透镜28的驱动电压。图14(a)示出了不使用过冲电压的情况,并且图14(b)示出了使用过冲电压的情况。在图14(a)和图14(b)中示出的情况中,驱动电压的周期是均匀的。

首先,参照图14(a),认为需要将液体透镜28(参照图3和图4)的界面的曲率或焦点从第三状态s3变为第四状态s4。由于液体透镜28的驱动电压是用于确定液体透镜的界面的形状的主要因素,因此可以确定与驱动电压的vrms值对应的液体透镜的界面的曲率或焦距。因此,可以通过改变驱动电压v来改变有效电压vrms,以从第三状态s3切换到第四状态s4。可以通过调整被施加到液体透镜的公共电极或单独电极的电压来调整驱动电压v。驱动电压v可以改变通过改变预定周期中的占空比来实际传送的电能的量。例如,第四状态s4中的驱动电压的占空比可以大于第三状态s3中的驱动电压的占空比。第四状态s4中的占空比d2可以大于第三状态s3中的占空比d1。可以将相对于具有这样的波形的驱动电压v的有效值(例如,均方根(rms))计算为有效电压vrms。在第三状态s3和第四状态s4中,液体透镜的界面的形状响应于有效电压vrms的改变而改变,由此可以调整液体透镜的焦点。

由于液体透镜中的在两种液体之间形成的界面的位置、曲率或移动是通过液体的改变来实现的,因此液体透镜的折射率可能如图所示呈现不稳定的波形,并且然后可以逐渐稳定。如果缩短了在引起界面移动之后直到液体透镜中的界面稳定即直到折射率稳定地改变所需的时间,则配备有液体透镜的摄像机模块或光学装置可以更快速地操作。

参照图14(b),当需要从第三状态s3切换到第四状态s4以提高液体透镜的操作速度并减小不稳定波时,在两个状态(例如,第三状态s3和第四状态s4)之间即在切换时间点可以存在第三切换部分o3和第四切换部分o4。第三切换部分o3可以是过冲电压周期。可以在第三切换部分o3中施加大小比目标电压高30%以上的电压。另外,为了防止未落在正常范围内的过冲电压或下冲电压被施加到液体透镜,可以在第四切换部分o4中施加大小比目标电压低15%以下的电压,从而减小过冲电压在初始驱动阶段的施加。在第三切换部分o3和第四切换部分o4之后的第四状态s4中,可以将落入目标电压范围内的驱动电压施加到液体透镜。在示例中,可以将第三状态s3、第三切换部分o3、第四切换部分o4和第四状态s4中的占空比d1、d3、d4和d2确定成具有以下大小:d3>d2>d4>d1。

图14(b)示出了在从有效电压vrms低的第三状态s3切换到有效电压vrms变高的第四状态s4的过程中存在第三切换部分o3和第四切换部分o4的情况。同时,在从有效电压vrms高的状态切换到有效电压vrms低的状态的过程中可以包括多个切换部分。例如,可以在第三切换部分中施加大小比目标电压低30%以下的电压,并且其后,可以在第四切换部分中施加大小比目标电压高15%以上的电压,从而实现液体透镜的更快移动。尽管上面已经以示例方式描述了存在两个切换部分即第三切换部分和第四切换部分的情况,但是实施方式不限于此。还可以存在另外的切换部分。

如上所述,根据液体透镜的控制装置和方法,在改变被施加到液体透镜的驱动电压的大小的时间点,特别地,当驱动电压的改变大时,可以设置多个切换部分以实现液体透镜的快速操作。例如,可以在多个切换部分中之一中施加大小与目标电压相差30%以上或30%以下的电压,并且其后,在另一切换部分中施加大小与目标电压相差15%以下或15%以上的电压。

图15(a)和图15(b)是用于说明根据实施方式的通过提供过冲电压来控制液体透镜的方法的波形图。具体地,可以通过脉冲宽度调制(pwm)方案来确定被提供给液体透镜28的驱动电压。图15(a)示出了不使用过冲电压的情况,并且图15(b)示出了使用过冲电压的情况。图15(b)中示出的情况包括驱动电压的周期改变的部分。

首先,参照图15(a),图15(a)中示出的情况与图14(a)中示出的情况相同。

参照图15(b),当需要从第三状态s3切换到第四状态s4以提高液体透镜的操作速度时,在两个状态(例如,第三状态s3和第四状态s4)之间即在切换时间点可以存在第三切换部分o3和第四切换部分o4。第三切换部分o3可以是过冲电压周期。在第三切换部分o3中,可以施加大小比目标电压高30%以上的电压。另外,为了防止未落入正常范围内的过冲电压或下冲电压被施加到液体透镜28,可以在第四切换部分o4中施加大小比目标电压低15%以下的电压,从而减小过冲电压在初始驱动阶段的施加。在第三切换部分o3和第四切换部分o4之后的第四状态s4中,可以将落入目标电压范围内的驱动电压施加到液体透镜。

另外,在第三切换部分o3和第四切换部分o4中被施加到液体透镜的驱动电压的脉冲周期p4可以短于在第三状态s3和第四状态s4中被施加到液体透镜的驱动电压的脉冲周期p5。在需要驱动电压的改变的时间点,可以缩短驱动电压的脉冲周期p4,并且在驱动电压无改变的状态下,可以增加驱动电压的脉冲周期p5。

图15(b)示出了在从有效电压vrms低的第三状态s3切换到有效电压vrms变高的第四状态s4的过程中存在第三切换部分o3和第四切换部分o4的情况。同时,在从有效电压vrms高的状态切换到有效电压vrms低的状态的过程中可以包括多个切换部分。例如,可以在第三切换部分中施加大小比目标电压低30%以下的电压,并且其后,可以在第四切换部分中施加大小比目标电压高15%以上的电压,从而实现液体透镜的更快移动。

如上所述,根据依据实施方式的液体透镜的控制装置和方法,在改变被施加到液体透镜的驱动电压的大小的时间点,特别地,当驱动电压的改变大时,可以设置多个切换部分以实现液体透镜的快速操作。例如,可以在多个切换部分中之一中施加大小与目标电压相差30%以上或30%以下的电压,并且其后,可以在另一切换部分中施加大小与目标电压相差15%以下或15%以上的电压。

图15(b)示出了存在与驱动电压无改变的部分以及驱动电压改变的部分对应的不同的脉冲周期(操作频率)的实施方式。然而,在一些实施方式中,脉冲周期(操作频率)可以被进一步分段和改变。可以根据驱动电压增加的情况、驱动电压减小的情况、驱动电压保持在高电压的情况或者驱动电压保持在低电压的情况来使用分别不同的脉冲周期。

图16是根据第三实施方式的液体透镜的控制电路的框图。

如图16所示,可以响应于由被传送到多个单独电极区段l1、l2、l3和l4的电压vl1、vl2、vl3和vl4以及被传送到公共电极c0的电压vc0形成的驱动电压来控制液体透镜28的界面30。可能由于被施加到第一单独电极至第四单独电极的第一电压至第四电压vl1、vl2、vl3和vl4与被施加到公共电极c0的电压vc0之间的电压差而发生液体透镜28中的界面30的位置、移动或形状的改变。

可以从液体透镜的控制电路50施加电压vl1、vl2、vl3、vl4和vc0。液体透镜的控制电路50可以控制液体透镜中的界面的屈光度的变化,或者可以控制被施加到液体透镜中的多个单独电极l1、l2、l3和l4以及公共电极c0(参照图3)的电压以改变屈光度。另外,在向多个单独电极l1、l2、l3和l4以及公共电极c0施加电压的过程中,液体透镜的控制电路50可以设置并控制切换部分以改变驱动电压。

液体透镜的控制电路50可以包括:透镜驱动确定单元54,其用于确定液体透镜28的界面30的屈光度的改变;电压生成器56,其用于响应于屈光度的改变来控制要施加到液体透镜28中的多个单独电极部分l1、l2、l3和l4以及公共电极部分c0的电压;以及切换电压控制器59,其用于在被施加到多个单独电极区段l1、l2、l3和l4以及公共电极区段c0的驱动电压响应于屈光度的改变而改变的时间点控制至少一个切换部分。液体透镜的控制电路50可以从安装有液体透镜的装置中包括的各种传感器(例如,陀螺仪传感器等)接收与液体透镜28的移动有关的信息。另外,当通过经由用户接口等的用户输入来改变液体透镜28的屈光度时,可以将与该输入对应的信息传送到液体透镜的控制电路50。

当确定了要通过液体透镜28中的界面30的移动基于其执行补偿的补偿值时,可以将与其对应的电压vl1、vl2、vl3、vl4和vc0分别施加到液体透镜28中的多个单独电极l1、l2、l3和l4以及公共电极c0。在该过程中,响应于液体透镜的驱动电压的目标电压,切换电压控制器59可以在切换部分期间将比目标电压高出或低出预定范围的电压施加到多个单独电极l1、l2、l3和l4以及公共电极c0。

例如,当被施加到第一单独电极至第四单独电极l1、l2、l3和l4的电压vl1、vl2、vl3和vl4从30v变为50v时,可以控制切换部分以使得比50v的目标电压高30%以上的电压被施加,并且其后,比50v的目标电压低15%以下的电压被施加。当将第一驱动电压vl1提供给第一单独电极l1时,可以通过控制切换部分的切换电压控制器59施加比目标电压高出或低出预定范围的电压。

在一些实施方式中,在改变被提供给第一单独电极至第四单独电极l1、l2、l3和l4的电压的过程中,可以顺序地控制或者可以同时控制相对于各个单独电极的切换部分。在改变被施加到液体透镜28的驱动电压的大小的时间点,特别地,当驱动电压的改变大时,切换电压控制器59可以设置多个切换部分并且可以控制在切换部分中施加的电压的大小,以实现液体透镜的快速操作。例如,根据驱动电压的改变(增加或减少),可以在多个切换部分中之一中施加大小与目标电压相差30%以上或30%以下的电压,并且,可以在另一切换部分中施加大小与目标电压相差15%以下或15%以上的电压。

图17a和17b是用于说明根据第三实施方式的驱动液体透镜的方法的波形图。

参照图17a,被提供给液体透镜28的驱动电压可以通过公共电极c0和单独电极l1至l4(参照图16)来施加。对液体透镜中的界面的改变有影响的驱动电压v可以与被施加到公共电极c0的电压与被施加到单独电极l1的电压之间的差的绝对值基本相同。

如参照图15所述,可以使用脉冲宽度调制(pwm)方案通过公共电极c0和单独电极l1至l4施加驱动电压。在脉冲宽度调制(pwm)方案中,可以与被施加到液体透镜的驱动电压和目标驱动电压vrms对应地改变脉冲型驱动电压的占空比。

在一般脉冲宽度调制(pwm)方案中,调整脉冲的占空比。然而,参照图17,可以调整脉冲的周期(操作频率)以及脉冲的占空比。被施加到液体透镜的公共电极c0和单独电极l1的脉冲型驱动电压可以在脉冲宽度上被调整,并且可以具有不同的脉冲周期p4和p5。在施加具有均匀电平的驱动电压的部分中的周期p5可以长于在驱动电压的电平改变的部分中的周期p4。

为了实现光学图像稳定(ois),如果用于调整液体透镜中的界面的移动的驱动电压在短时间内改变,则液体透镜的操作速度可以增加。为此,可以施加高于目标驱动电压的电压,并且其后,可以施加低于目标驱动电压的电压,从而实现驱动电压的更快变化。另外,为了进一步提高液体透镜的操作速度,可以改变被施加到公共电极c0和单独电极l1的脉冲型驱动电压的周期。为了更快速地控制驱动电压的改变,可以改变驱动电压的脉冲周期。即,参照图15(b)描述的第三切换部分o3和第四切换部分o4中的脉冲周期p4可以短于在其他部分中的脉冲周期p5。这也可以以类似方式应用于参照图17描述的驱动电压。

参照图17b,为了实现目标驱动电压vrms,被施加到公共电极c0和单独电极l1的电压的周期或操作频率被不同地改变(p0、p4、p5等)。可以通过改变被施加到公共电极c0和单独电极l1的驱动电压的周期或操作频率来改变通过公共电极c0与单独电极l1之间的电压的差确定的驱动电压v的脉冲。

图18(a)和图18(b)是用于说明控制液体透镜的驱动电压的方法的波形图。具体地,参照图18(a)和图18(b)描述的实施方式可以与一般脉冲宽度调制(pwm)方案不同地调整周期(操作频率)。

参照图18(a),如参照图14(b)和图16所述,被施加到公共电极c0和单独电极l1的驱动电压的占空比和周期被改变。特别地,被施加到公共电极c0和单独电极l1的驱动电压的周期从长周期p41变为短周期p42,并且占空比从50%变为75%。这里,对液体透镜的界面有影响的驱动电压v是被施加到公共电极c0的驱动电压与被施加到单独电极l1的驱动电压之间的差(绝对值)。可以通过控制被施加到公共电极c0和单独电极l1的驱动电压的占空比来调整对液体透镜的界面有影响的驱动电压v的大小。另外,可以通过改变被施加到公共电极c0和单独电极l1的驱动电压的周期(操作频率)来实现更精确和准确的控制(减小噪声、阻尼等)。

同时,已经以示例方式描述了被施加到公共电极c0的驱动电压的占空比以及被施加到单独电极l1的驱动电压的占空比被相同地改变(从50%到75%)的情况。然而,可以将被施加到公共电极c0的驱动电压的占空比以及被施加到单独电极l1的驱动电压的占空比调整成彼此不同。例如,公共电极c0的占空比可以是50%,而单独电极l1的占空比可以是75%。另外,被施加到各个单独电极l1至l4(参照图15)的驱动电压的占空比可以彼此相同或不同。使用该方法,可以将通过液体透镜的各个单独电极l1至l4和公共电极c0施加的驱动电压v的大小调整成彼此相同或不同,由此可以控制液体透镜的焦点。

另外,参照图18(b),以如下方式调整对液体透镜的界面有影响的驱动电压v:在被施加到公共电极c0的驱动电压的占空比与被施加到单独电极l1的驱动电压的占空比彼此相同的状态下,公共电极c0的驱动电压的周期保持长周期p43,并且单独电极l1的驱动电压的周期从长周期p43变为短周期p44。即使将被施加到公共电极c0的驱动电压的占空比与被施加到单独电极l1的驱动电压的占空比调整成彼此相同(例如,50%),也可以将被施加到公共电极c0的驱动电压的周期与被施加到单独电极l1的驱动电压的周期调整成彼此不同。即,被施加到公共电极c0的驱动电压的周期与被施加到单独电极l1的驱动电压的周期可以被相同地或不同地调整。另外,可以将被施加到各个单独电极l1至l4的驱动电压的周期(参照图15)调整成彼此不同或相同。以此方式,可以将通过液体透镜的各个单独电极l1至l4和公共电极c0施加的驱动电压v的大小调整成彼此不同或相同,由此可以控制液体透镜的焦点。

上述各个实施方式的内容可以应用于其他实施方式,或者可以组合,只要它们并非彼此不兼容即可。

尽管上面描述了仅有限数目的实施方式,但是各种其他实施方式也是可能的。上述实施方式的技术内容可以被组合成各种形式,只要它们并非彼此不兼容即可,并且因此可以在新的实施方式中实现。

可以实现包括上述摄像机模块的光学装置(或光学仪器)。这里,光学装置可以包括可以处理或分析光信号的装置。光学装置的示例可以包括摄像机/视频装置、望远镜装置、显微镜装置、干涉仪、光度计、旋光仪、光谱仪、反射仪、自动准直仪和透镜计,并且实施方式可以应用于可以包括液体透镜的光学装置。另外,光学装置可以在诸如智能电话、膝上型计算机或平板计算机的便携式设备中实现。这样的光学装置可以包括摄像机模块、被配置成输出图像的显示单元以及其中安装有摄像机模块和显示单元的主体外壳。可以与其他装置进行通信的通信模块可以被安装在光学装置的主体外壳中,并且光学装置可以进一步包括能够存储数据的存储单元。

根据上述实施方式的方法可以被编程为在计算机中执行,并且可以被存储在计算机可读记录介质上。计算机可读记录介质的示例包括rom、ram、cd-rom、磁带、软盘和光学数据存储装置。

计算机可读记录介质还可以在网络耦合的计算机系统上分布,使得以分布式方式存储和执行计算机可读代码。另外,实施方式所属领域的有经验程序员可以容易地理解用于完成上述方法的功能程序、代码和代码段。

对于本领域技术人员明显的是,在不脱离本文阐述的本公开内容的精神和必要特征的情况下,可以进行形式和细节上的各种改变。因此,以上详细描述并不旨在被解释为在所有方面限制本公开内容,并且以示例方式来考虑。本公开内容的范围应当通过所附权利要求书的合理解释来确定,并且在不脱离本公开内容的情况下作出的所有等同修改应当被包括在本公开内容的范围内。

发明方式

已经以用于实施本公开内容的具体实施方式描述了各种实施方式。

工业适用性

根据实施方式的液体透镜的控制电路可以用在便携式设备中,例如,摄像机/视频装置、望远镜装置、显微镜装置、干涉仪、光度计、旋光仪,光谱仪、反射仪、自动准直仪、透镜计、智能电话、膝上型计算机和平板计算机。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1