用于消除45度入射MUX/DEMUX设计的偏振相关性的方法和系统与流程

文档序号:21090420发布日期:2020-06-12 17:11阅读:373来源:国知局
用于消除45度入射MUX/DEMUX设计的偏振相关性的方法和系统与流程

相关申请的交叉引用/通过引用合并

本申请要求于2017年10月12日提交的、申请号为62/571,561的美国临时申请的优先权和权益,该美国临时申请通过引用以其整体合并于此。

本公开的方面涉及电子组件。更具体地,本公开的某些实现方式涉及用于消除45度入射mux/demux设计的偏振相关性的方法和系统。



背景技术:

用于复用和解复用的常规方法可能是昂贵的、麻烦的和/或低效的,例如,它们可能是复杂的和/或耗时的、和/或可能由于损耗而具有有限的响应度。

通过将这种系统与如在本申请的剩余部分中参考附图阐述的本公开的一些方面进行比较,常规和传统方法的其他限制和缺点对于本领域技术人员将变得显而易见。



技术实现要素:

提供了用于消除45度入射mux/demux设计的偏振相关性的系统和方法,该系统和方法基本如结合至少一幅附图所展现和/或描述的,并在权利要求中得到了更完整的阐述。

通过以下描述和附图,将更充分地理解本公开的这些和其他优点、方面和新颖特征以及其所示出的实施例的细节。

附图说明

图1是根据本公开的示例实施例的具有偏振无关mux/demux的光子使能的集成电路的框图。

图2是示出根据本公开的实施例的具有薄膜滤波器的mux/demux的示意图。

图3示出了根据本公开的示例实施例的经由用于不同偏振光信号的不同薄膜滤波器的光耦合。

图4示出了根据本公开的示例实施例的s偏振薄膜滤波器和p偏振薄膜滤波器的光谱响应。

图5示出了根据本公开的示例实施例的p偏振薄膜滤波器的光谱响应。

图6示出了根据本公开的示例实施例的堆叠的薄膜滤波器的光谱响应。

图7示出了根据本公开的示例实施例的用于在空间上分离不同偏振的分束器。

图8示出了根据本公开的示例实施例的具有空间分离分束器的光收发器。

图9示出了根据本公开的示例实施例的薄膜滤波器的cwdm堆叠件的光谱频带。

图10示出了根据本公开的示例实施例的具有偏振旋转器的分束器。

图11示出了根据本公开的示例实施例的具有空间分离分束器和偏振旋转器的光收发器。

图12示出了根据本公开的示例实施例的具有单偏振mux/demux的光收发器,该单偏振mux/demux具有光束移位器。

具体实施方式

如本文所使用的,术语“电路”和“线路”是指物理电子组件(即,硬件)以及可以配置硬件、由硬件执行、和/或以其他方式与硬件相关联的任何软件和/或固件(“代码”)。如本文所使用的,例如,特定处理器和存储器在执行第一一行或多行代码时可以包括第一“电路”,而在执行第二一行或多行代码时可以包括第二“电路”。如本文所使用的,“和/或”是指列表中由“和/或”连接的列表中的任何一个或多个项目。作为示例,“x和/或y”是指三元素集合{(x),(y),(x,y)}中的任何元素。换句话说,“x和/或y”是指“x和y中的一者或两者”。作为另一示例,“x、y和/或z”是指七元素集合{(x),(y),(z),(x,y),(x,z),(y,z),(x,y,z)}中的任何元素。换句话说,“x、y和/或z”是指“x、y和z中的一个或多个”。如本文所使用的,术语“示例性”是指用作非限制性示例、实例或说明。如本文所使用的,术语“例如”和“诸如”陈述一个或多个非限制性示例、实例或说明的列表。如本文所使用的,无论功能的执行是被禁用的还是未被使能的(例如,通过用户可配置的设置、工厂微调等),只要电路或设备包括执行功能所必需的硬件和代码(如果需要的话),则电路或设备就“可操作”以执行该功能。

图1是根据本公开的示例实施例的具有偏振无关mux/demux的光子使能的集成电路的框图。参考图1,示出了在光子使能集成电路130上的光电子器件,该光电子器件包括光调制器105a-105d、光电二极管111a-111d、监测光电二极管113a-113d、以及包括耦合器103a-103c和光栅耦合器117a-117h的光学器件。还示出了包括放大器107a-107d、模拟和数字控制电路109以及控制部分112a-112d的电子器件和电路。放大器107a-107d可以包括例如互阻抗放大器(tia)和限幅放大器(la)。耦合光学器件150可以包括分束器、薄膜滤波器、反射镜、棱镜等。

在示例场景中,光子使能集成电路130包括cmos光子管芯,其具有耦合到ic130的顶表面的激光器组件101。激光器组件101可以包括一个或多个半导体激光器,其具有用于将一个或多个连续波(cw)光信号引导到耦合器104a-104d的隔离器、透镜和/或旋转器。cw光信号可以是用于cwdm(例如,cwdm4)操作的不同波长。光子使能集成电路130可以包括单个芯片,或者可以被集成在多个管芯上,例如与一个或多个电子管芯和一个或多个光子管芯集成在一起。

光栅耦合器104a-104d包括具有光栅间距和宽度的光栅结构,该光栅间距和宽度被配置为将特定波长和偏振的光信号耦合到ic130中。透镜阵列可以被并入在光栅耦合器104a-104d与激光器组件101之间,以将光信号聚焦到光栅耦合器从而获得增加的耦合效率。

光信号经由制作在光子使能集成电路130中的光波导110在光学器件和光电子器件之间传送。单模或多模波导可以被用在光子集成电路中。单模操作使得到光信号处理和联网元件的直接连接成为可能。术语“单模”可以被用于支持针对两种偏振(横向电场(te)和横向磁场(tm))中的每种偏振的单模的波导,或者用于真正是单模的并且只支持一种模式的波导。此一种模式可以具有例如te偏振,te偏振包括平行于支撑波导的衬底的电场。所使用的两种典型的波导横截面包括条形波导和肋形波导。条形波导通常包括矩形横截面,而肋形波导包括在波导平板的顶部上的脊形部分。当然,其他波导横截面类型也是预期的且在本公开的范围内。

光调制器105a-105d包括例如马赫-曾德尔或环形调制器,并且使得能够调制连续波(cw)激光输入信号。光调制器105a-105d可以包括高速和低速相位调制部分,并且由控制部分112a-112d控制。光调制器105a-105d的高速相位调制部分可以利用数据信号来调制cw光源信号。光调制器105a-105d的低速相位调制部分可以补偿缓慢变化的相位因子,例如由波导之间的失配、波导温度或波导应力引起的相位因子,并且光调制器105a-105d的低速相位调制部分被称为mzi的被动相位或被动偏置。

在示例场景中,高速光相位调制器可以基于自由载流子色散效应来操作,并且可以表现出自由载流子调制区域与光模式之间的高重叠。在波导中传播的光模的高速相位调制是用于高数据速率光通信的若干类型的信号编码的构建块。可能需要若干gb/s的速度来维持现代光链路中使用的高数据速率,并且可以通过调制承载光束的波导中放置的pn结的耗尽区来在集成si光子器件中实现。为了增加调制效率并使损耗最小化,必须仔细优化光模与pn结的耗尽区之间的重叠。

光调制器105a-105d中的每个光调制器的一个输出可以经由波导110光学耦合到光栅耦合器117e-117h。光调制器105a-105d的其他输出可以被光学耦合到监测光电二极管113a-113d以提供反馈路径。ic130可以利用基于波导的光学调制和接收功能。因此,接收器可以采用集成波导光电检测器(pd),其可以例如利用直接地沉积在硅上的外延锗/sige膜来实现。

光栅耦合器104a-104d和117a-117h可以包括光学光栅,这些光栅使得光能够耦合进和耦合出光子使能集成电路130。光栅耦合器117a-117d可以被用来将从光学纤维接收到的光耦合到光子使能集成电路130中,并且光栅耦合器117e-117h可以被用于将来自光子使能集成电路130的光耦合到光学纤维中。光栅耦合器104a-104d和光栅耦合器117a-117h可以包括单偏振光栅耦合器(spgc)和/或偏振分离光栅耦合器(psgc)。在使用psgc的实例中,可以使用两输入或输出波导,如光栅耦合器117a-117d所示,但这些耦合器可以替代地是spgc。

光学纤维可以例如使用纤维耦合器来环氧树脂粘合到cmos芯片,该纤维耦合器选择性地偏转去往和来自芯片130上的不同光栅耦合器的不同波长的光信号,其中每个耦合器(例如,光栅耦合器117a-117h中的每个光栅耦合器)被配置为耦合不同波长的光信号。

光电二极管111a-111d可以将从光栅耦合器117a-117d接收到的光信号转换为电信号,该电信号被传送到放大器107a-107d以进行处理。在本公开的另一实施例中,光电二极管111a-111d可以包括例如高速异质结光电晶体管,并且可以在集电极区和基极区中包括锗(ge)以进行1.3至1.6μm光波长范围内的吸收,并且可以被集成在cmos绝缘体上硅(soi)晶圆上。

模拟和数字控制电路109可以控制放大器107a-107d的操作中的增益水平或其他参数,这些放大器然后可以将电信号从光子使能集成电路130传送出去。控制部分112a-112d包括使得能够调制从分离器103a-103c接收到的cw激光信号的电子电路。例如,光调制器105a-105d可能需要高速电信号来调制马赫-曾德尔干涉仪(mzi)的相应分支中的折射率。

在操作中,光子使能集成电路130可以可操作用于发送和/或接收以及处理光信号。光信号可以由光栅耦合器117a-117d从光学纤维接收,并由光电检测器111a-111d转换为电信号。电信号可以由例如放大器107a-107d中的互阻抗放大器放大,并且随后被传送到光子使能集成电路130中的其他电子电路(未示出)。

集成光子平台允许光收发器的全部功能被集成在单个芯片或倒装芯片接合结构中的多个芯片上。光收发器包括在发送器(tx)和接收器(rx)侧产生和处理光/电信号的光电子电路,以及将光信号耦合到纤维和从纤维耦合光信号的光接口。信号处理功能可以包括调制光载波、检测光信号、分离或组合数据流、以及复用或解复用具有不同波长的载波上的数据。

硅光子器件的重要商业应用是高速光收发器,即,具有集成在同一芯片或小封装件中的多个接合芯片中的光电子发送(tx)和接收(rx)功能的ic。这样的一个或多个ic的输入是通过调制来自激光器的光而被编码到芯片的tx输出上的高速电数据流,或者是由集成光电检测器接收并通过经过互阻抗放大器(tia)/限幅放大器(la)链而被转换为合适电信号的光数据流。这样的硅光子收发器链路已经成功地以几十ghz的波特率实现。

一种用于增加光收发器中的数据速率的方法是复用不同波长的多个光信号,以便这些信号并行传输通过光学纤维,然后这些信号可以在接收端处解复用。为此,多路复用器和多路分用器(mux/demux)可以被用于组合/分离不同的光波长。这可以利用被调谐到不同波长的薄膜滤波器(tff)来实现,其中,将光信号向下偏转到接近垂直入射到芯片上,进入相应光栅耦合器,同时允许其他波长信号通过。这些结构在图1中被示为耦合光学器件150,并且关于图2-图12被进一步详细示出。

图2是示出根据本公开的实施例的具有薄膜滤波器的mux/demux的示意图。参考图2,示出了mux/demux200,其包括纤维201、纤维耦合器203、rx光栅耦合器205a、tx光栅耦合器205b、透镜阵列207和tff结构209。rx光栅耦合器205a可以类似于例如关于图1所示的光栅耦合器117a-117d,tx光栅耦合器205b可以类似于例如关于图1所示的光栅耦合器117e-117h。

纤维耦合器203可以包括套圈(ferrule),用于接收光学纤维201的端部并将光信号耦合到包括tff209a-209d的tff结构209中。tff209a-209b中的每个tff均包括用于可配置波长的反射器,这意味着除了期望波长之外的所有波长都通过tff209a-209d中的每个tff,而期望波长被向下朝向透镜阵列207反射。在示例场景中,tff209a-209d中的每个tff均被配置用于不同波长(如由图2的侧视图中的光栅耦合器205a/205b下方的波长λ1-λ4所指示),并且可以反射信号,无论这些信号是从纤维201接收的还是从光子管芯250接收以耦合到纤维201中的。tff209a-209d能够在cwdm4发送模式和cwdm4接收模式两者中操作,在cwdm4发送模式中,来自光子管芯250的光信号被耦合到纤维201中的一个纤维中,在cwdm4接收模式中,来自纤维201的光信号被向下反射到光子管芯250,但是其他数量的tx和rx通道也是可能的。tff209a-209d可以被配置用于在45度处减小的偏振相关损耗(pdl),并且可以假设在每个偏振处的性能单独地是可重复和可接受的,但是在结构设计中应当考虑传递函数之间的分离。

透镜阵列207可以包括硅透镜结构,用于将从tff209a-209d接收的光信号聚焦到位于阵列下面的光栅耦合器205a上。此外,透镜阵列207可以将从光栅耦合器205a/205b接收的光信号聚焦到tff209a-209d中,以便经过纤维201中的一个纤维传输。

在操作中,在解复用示例中,可以从纤维201中的一个纤维接收cwdm光信号,其中其他纤维用于从光子管芯250接收信号,接收到的信号被耦合到tff209中。每个tff209a-209d可以将一个波长的光信号向下反射到相应rx光栅耦合器205a,同时允许其他三个波长的光信号通过。然后,向下反射的每个光信号被透镜阵列207聚焦到相应光栅耦合器205a上,该光栅耦合器205a然后将光信号耦合到平行于光子管芯250的顶表面延伸的波导中。

为了复用,可以从光子管芯250中的tx光栅耦合器205b耦合不同波长λ1-λ4的光信号,并且由透镜阵列207聚焦到相应tff209a-209d上。然后,每个tff将信号反射到纤维201的tx纤维中。tff209a-209d允许除从管芯250反射的一个光信号之外的每个波长的光信号通过,从而在纤维中生成cwdm4光信号。

图3示出了根据本公开的示例实施例的利用用于不同偏振光信号的不同薄膜滤波器进行的光耦合。参考图3,示出了cwdmmux/demux300,其包括光学纤维301、纤维耦合器303、透镜阵列307、s偏振tff309a、p偏振tff309b和光子管芯350。通常,p偏振光可以被理解为具有平行于器件上的入射平面的电场方向,而s偏振光具有垂直于该平面取向的电场。

纤维301、纤维耦合器303、透镜阵列307和光子管芯350可以基本上类似于上述类似命名的结构。s-tff309a包括针对从纤维301或从光子管芯305接收的s偏振光信号而调谐的薄膜滤波器,p-tff309b包括针对从纤维301或从光子管芯305接收的p偏振光信号而调谐的薄膜滤波器。

s偏振和p偏振之间的反射偏差可以被有利地用在cwdm系统中,其中第一4-滤波器堆叠件、s-tff309a被配置用于s偏振光信号,使得每个滤波器被设计为将p偏振推出频带外,这意味着它们不被向下反射。然后,p偏振可以由第二4-滤波器堆叠件、p-tff309b收集。离开光子管芯350的光信号例如可以经由s-tff309a传输,或者经由这两组tff传输。这样,可以基于tff的偏振相关性来实现解复用和复用。

图4示出了根据本公开的示例实施例的s偏振薄膜滤波器和p偏振薄膜滤波器的光谱响应。参考图4,示出了与参考图3描述的cwdmmux/demux300类似的cwdmmux/demux400。通过旋转tff,s偏振的透射性质相对于p偏振不同,如以下曲线所示,其中s-tff与p偏振透射光谱相差约80nm。具有向下一直到约1260nm的所有波长的p偏振的光信号将通过s-tff,而仅向下一直到约1340nm的波长的s偏振的光信号将通过p-tff。在该实施例中,来自纤维的p偏振信号通过s-tff,而s偏振信号被向下反射到光子芯片中。然后,p偏振信号经由p-tff向下反射到光子芯片。

图5示出了根据本公开的示例实施例的p偏振薄膜滤波器的光谱响应。参考图5,示出了与前面描述的cwdmmux/demux类似的cwdmmux/demux500。mux/demux500下面的曲线图说明了通过最后的p-tff的透射,表明了小于约1338nm波长范围的所有p偏振信号将经由p-tff被向下反射到光子芯片中,但是由于这些波长中的大部分波长已经被先前的tff向下反射,因此实际上只有最后剩余的信号被反射。

图6示出了根据本公开的示例实施例的堆叠的薄膜滤波器的光谱响应。参考图6,其顶部示出了堆叠的s-tff的频谱响应,底部示出了堆叠的p-tff的频谱响应,其中,上方曲线图中的实线表示s-tff对s偏振信号的透射/反射之间的转变,其指示所有p偏振信号都透射通过s-tff。在下方的曲线图中,虚线表示p-tff的透射曲线。因此,堆叠的tff使得四个cwdm频带能够用于每个偏振。以这种方式,cwdm能够具有可配置的偏振和波长。

图7示出了根据本公开的示例实施例的用于在空间上分离不同偏振的分束器。参考图7,示出了分束器700,其包括在菱形棱镜703的一个表面上的反射镜701和在梯形棱镜707上的偏振分离薄膜堆叠件705。菱形棱镜703和梯形棱镜707可以包括透明材料,在该透明材料上可以形成反射材料。类似地,薄膜堆叠件705可以形成在梯形棱镜707的倾斜表面上,薄膜堆叠件705可以被配置为向下反射一种偏振的光信号,同时允许另一种偏振的信号通过。

在操作中,输入光信号在菱形棱镜703中被接收,其中s偏振信号可以被薄膜堆叠件705横向地反射,而p偏振信号可以通过薄膜堆叠件705并且继续向下到达光子管芯中的光栅耦合器。形成在与薄膜堆叠件相邻的菱形棱镜703上的反射镜701将经反射的s偏振信号向下反射到光子管芯。以这种方式,不同的偏振在空间上彼此平移,其中如果需要,移位光束分离可以大于5mm。

图8示出了根据本公开的示例实施例的具有空间分离分束器的光收发器。参考图8,示出了收发器800,其包括tx纤维801a、rx纤维801b、纤维耦合器803、光子管芯850和分束器820。光子管芯850可以类似于先前关于图1至图7描述的光子管芯,并且可以包括tx光栅耦合器805a和rx光栅耦合器805b和rx光栅耦合器805c。在示例场景中,tx耦合器805a和rx光栅耦合器805b可以包括单偏振光栅耦合器,rx光栅耦合器805c可以包括偏振分离光栅耦合器。

棱镜807c可以包括透明结构,该透明结构具有在倾斜表面上形成的薄膜滤波器,用于将期望信号向下反射到rx光栅耦合器805b和rx光栅耦合器805c以及从tx光栅耦合器805a经由分离器棱镜807a反射到tx纤维801a。棱镜807a还可以具有在成角度的表面上形成的薄膜,从而形成用于当不同偏振的信号达到倾斜表面时将它们分离的tff809a,而反射镜棱镜807b包括在成角度的表面上形成的层,以提供用于将信号从tff809a反射到rx光栅耦合器805c的反射镜811。

收发器800包括分束器820,该分束器820包括在分离器棱镜807a中的tff809a和在反射镜棱镜807b中的反射镜811,以在空间上分离不同偏振的信号,使得不同的rx光栅耦合器805b和rx光栅耦合器805c可以被用于来自单个接收到的cwdm信号的不同偏振和波长。此外,如图9所示,收发器包括用于第四p偏振的第五tff。

每个tff809b-809f可以被设计为反射一个cwdm频带的s偏振和前一个cwdm频带的p偏振,同时允许所有其他偏振通过。这使用与图7的先前实现方式相同的方法,其中p偏振透射和s偏振透射的频带边缘被故意地分开。在该示例中,它们之间的δ被设置为20nm(cwdm通道间距)。例如,两个偏振之间的延迟可以容易地在硅上补偿,例如在一侧上具有几百微米的额外波导长度。

在操作中,收发器800可操作用于通过使用空间分离偏振分离器和波长敏感型薄膜滤波器来接收和发送cwdm4信号。如前所述,可以在光子管芯821中生成不同cwdm波长的四个光信号,并且经由tx光栅耦合器805a将这些信号耦合出管芯。tff809b-809f将每个信号从tff棱镜807c反射出去到分离器棱镜807a中,并且进入到tx纤维801a中,从而生成被发送到纤维801a中的cwdm4信号。

类似地,可以经由rx纤维801b来接收cwdm信号,并将该信号耦合到分束器820,在分束器820处,一种偏振通过tff809a到达tff棱镜807c,其中tff809b-809f中的每个tff将特定波长信号和偏振的信号向下反射到rx光栅耦合器805b,该rx光栅耦合器805b将相应波长的信号耦合到光子管芯821中以进行处理。tff809a处的其他偏振信号被横向地反射到反射镜811,该反射镜811将信号反射到tff棱镜807c中,其中tff809b-809f各自将特定波长和偏振的信号向下反射到rx光栅耦合器805c,该rx光栅耦合器805c将信号耦合到光子管芯821中以进行处理。

图9示出了根据本公开的示例实施例的薄膜滤波器的cwdm堆叠件的光谱频带。参考图9,示出了堆叠的tff光谱频带,这示出了针对cwdm4应用的、从1264至1338nm范围的频带1至频带4。每个滤波器可以被调谐以反映一个cwdm频带的s偏振和前一个cwdm频带的p偏振。因此,第一tff可以反映频带1的p偏振和频带2的s偏振,第二tff可以反映频带2的p偏振和频带3的s偏振,以此类推。以这种方式,五个tff可以被用于8个cwdm信号。

图10示出了根据本公开的示例实施例的具有偏振旋转器的分束器。参考图10,示出了具有偏振旋转的分束器1000,该分束器包括在菱形棱镜1003的成角度的表面上形成的反射镜1011、梯形棱镜1007上的偏振分离薄膜堆叠件1005、偏振旋转器1009、以及平板1013。反射镜1001、棱镜1003和棱镜1007以及薄膜堆叠件1005可以类似于关于图7描述的元件。

此外,形成或安装在反射镜下方、与输入信号成45度取向的半波片旋转偏振,使得仅单一偏振(在该示例中为p偏振)入射在光子管芯上。偏振旋转器1009可以包括1/2波长偏振旋转器平板,其中在一个表面处的入射信号在从相对表面射出时可以旋转90度。例如,s偏振信号在通过旋转器1009时将被p偏振化。最后,可以将玻璃平板1013放置成与半波平板偏振旋转器1009相邻以使分束器1000的底部平整。

在操作中,可以在菱形棱镜1003中接收包括s偏振信号和p偏振信号的输入光信号,使得该输入光信号入射到薄膜堆叠件1005,该薄膜堆叠件1005横向地反射s偏振信号并且通过偏振旋转器1009将p偏振信号向下透射到光子管芯中的光栅耦合器。形成在与薄膜堆叠件相邻的菱形棱镜上的反射镜将经反射的s偏振信号向下反射到光子管芯,从而产生横向地移位的信号。

图11示出了根据本公开的示例实施例的具有空间分离分束器和偏振旋转器的光收发器。参考图11,示出了收发器1100,其包括tx纤维1101a、rx纤维1101b、光子管芯1121、分束器1120和纤维耦合器1103。

分束器1120可以包括:在分离器棱镜1107a的成角度的表面上的tff1109a、在反射镜棱镜1107b的成角度的表面上的反射镜1111、以及与反射镜棱镜1107b相邻的旋转器1113。旋转器1113可以包括例如半波片,用于在tff1109a处将s偏振的偏振旋转为p偏振的偏振。可以将玻璃平板1115放置在半波片偏振旋转器1113附近以使分束器1120的表面平整,该分束器1120被耦合到tff棱镜1107c。

光子管芯1150可以包括tx光栅耦合器1105a和rx光栅耦合器1105b和rx光栅耦合器1105c。在示例场景中,与可以提供较低耦合效率的单偏振光栅耦合器和偏振分离光栅耦合器的组合相反,光栅耦合器1105a-1105c包括单偏振光栅耦合器。

来自rx纤维1101b的、包括不同波长和偏振的信号的输入信号可以被分成p偏振信号,该p偏振信号透射通过偏振分离tff1109a、通过平板1115并且到达tff棱镜1107c。可以将s偏振信号反射向反射镜1111,反射镜1111然后将其反射到旋转器1113,该旋转器1113将信号旋转为p偏振信号,该p偏振信号被耦合到tff棱镜1107c。因此,仅p偏振信号从分束器1120传输出去,由于tff1109a的取向,该信号在滤波器的表面被s偏振化。由于旋转器1113对光信号的旋转导致具有相同偏振的所有信号从分束器1120出来,因此可以在整个收发器1100中利用单偏振光栅耦合器,而非利用具有较低耦合效率的偏振分离光栅耦合器。

收发器1100包括空间分离分束器1120,使得不同的rx光栅耦合器1105a可以被用于不同波长。例如,光子管芯1150的表面处的不同p偏振信号之间的延迟可以容易地在硅上补偿,例如在一侧上具有几百微米的额外波导长度。

由于在整个收发机1100中psgc可以被spgc代替,因此rx插入损耗的显著改善可以被证明。不管收发器1100的确切实现方式如何,都可以获得该益处。

图12示出了根据本公开的示例实施例的具有单偏振mux/demux的光收发器,该单偏振mux/demux具有光束移位器。参考图12,示出了收发器1200,其包括tx纤维1201a、rx纤维1201b、纤维耦合器1203、移位器1210、tff棱镜1207和光子管芯1221。

光子管芯1221可以包括tx光栅耦合器1205a和rx光栅耦合器1205b和rx光栅耦合器1205c。tff棱镜1207可以包括tff1209a-1209d,用于将特定波长的光信号向下反射到rx光栅耦合器1205b和12-5c,以及将从tx光栅耦合器1205a接收的光信号反射到分束器1220。

分束器1220可以包括均由光学透明材料制成的光束移位器1210、旋转器1213和平板1215。在图12所示的示例中,通过使用光束移位器1220来完成偏振分离,该光束移位器1220可以包括平板,该平板包括强双折射晶体(例如,钒酸钇(yvo4)),其中光轴为45度,如图所示。相对于直接通过半波片旋转器1213的p偏振信号而言,该晶体横向地折射s偏振,导致s偏振信号从分束器1220出来。

旋转器1213可以包括例如用于将p偏振信号的偏振旋转到s偏振的半波片。由于经由旋转器1213将s偏振信号旋转到p偏振,可以利用单偏振光栅耦合器,而非偏振分离光栅耦合器。

收发器1200包括空间分离分束器1220,使得不同的rx光栅耦合器1205b和rx光栅耦合器1205c可以被用于不同波长。例如,光子管芯1250的表面处的横向地移位信号之间的延迟可以容易地在硅上补偿,例如在一侧上具有几百微米的额外波导长度。

在本公开的示例实施例中,描述了一种用于消除45度入射mux/demux设计的偏振相关性的方法和系统。该系统可以包括光收发器,其中光收发器包括输入光学纤维、分束器和耦合到光子管芯的多个薄膜滤波器,并且其中薄膜滤波器被布置在光子管芯中的相应光栅耦合器上方。

收发器可以可操作用于经由输入光学纤维来接收包括多个不同波长信号的输入光信号,通过使用分束器将第二偏振的信号与第一偏振的信号横向地分离,从而将输入光信号分成第一偏振的信号和第二偏振的信号,将第一偏振的信号和第二偏振的信号传送到多个薄膜滤波器,以及使用薄膜滤波器将多个不同波长信号中的每一者的信号反射到光子管芯中的相应光栅耦合器。可以将来自光子管芯的多个波长的光信号传送到薄膜滤波器。

可以使用薄膜滤波器将来自光子管芯的光信号中的每个光信号反射到分束器。来自光子管芯的经反射的光信号可以被传送到光收发器的输出纤维。薄膜滤波器中的每个滤波器均可以被配置为反射第一波长的第一偏振的光信号和第二波长的第二偏振的信号。分束器可以包括在第一棱镜的成角度的表面上的薄膜堆叠件,其中该薄膜堆叠件被配置为反射第二偏振的信号,同时允许第一偏振的信号通过。

可以使用在与第一棱镜相邻的第二棱镜的成角度的表面上形成的分束器中的反射镜将第二偏振的分离的信号传送到多个薄膜滤波器。在经反射的第二偏振的信号被传送到多个薄膜滤波器之前,可以使用第二棱镜上的偏振旋转器来旋转其偏振。可以使用双折射材料将第二偏振的信号与第一偏振的信号横向地分离。双折射材料可以允许第一偏振的信号直接通过以到达多个薄膜滤波器。

尽管已经参考某些实施例描述了本公开,但是本领域技术人员将理解,在不脱离本发明的范围的情况下,可以进行各种改变并且可以替换等同物。另外,在不脱离本发明的范围的情况下,可以做出许多修改以使特定情况或材料适应本发明的教导。因此,本发明不旨在限于所公开的特定实施例,而是本发明将包括落入所附权利要求的范围内的所有实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1