一种动态光场发生方法及发生装置与流程

文档序号:20992700发布日期:2020-06-05 21:52阅读:317来源:国知局
一种动态光场发生方法及发生装置与流程

本发明涉及,特别涉及一种动态光场发生方法及发生装置。



背景技术:

在工业激光器开发和应用场景中,往往需要对远场光斑进行整形以改善光束质量或得到特定模式的光斑,例如得到平顶光斑、长焦深光斑等。传统的技术手段就是利用doe元件或自由曲面透镜等光学元件,其缺点是光斑形态受限于光路元件,一旦光路元件固定就无法再改变光斑形态,因此其属于静态光路。

科研中基于空间光调制器(slm)的光学整形系统是一种常见的动态光束整形系统。空间光调制器是一种对光波空间分布进行调制的器件,空间光调制器含有许多独立单元,这些独立单元在空间上排列成一维或二维阵列,每个单元都可以独立地接收光学信号或电学信号的控制,并按此信号改变自身的光学性质(透射率、反射率、折射率等光场参数),从而对照射在其上的光波进行调制,进而得到需要的光场。

上述的光学信号或电学信号被称为控制输入信号(写入信号),写入信号通常含有控制slm各单元的信息,并把这些信息分别传送到slm相应的各单元位置上改变其光学性质。而写入信号把信息传递到slm上相应位置,以改变slm的透过率分布的的过程,被称为寻址,按照控制输入信号的方式不同,空间光调制器可以分为光寻址(0a-slm)和电寻址(ea-lsm)两类。

现有技术中,空间光调制器是以光学头模块如lcos、dmd、mems等光电器件为核心完成光学调制功能,其控制信号都是采用pcie方式输入到空间光调制器,控制信号内容依赖上位机来处理。但由于空间光调制器需要上位机输入信号进行控制,难以与激光器进行集成。同时由于光场调控技术需要编程或操控软件,不易被工厂普通操作人员理解,对激光设备生成或调试人员的技术能力要求较高,因此,现有空间光调制器技术直接应用到大规模的设备制作生成非常麻烦,亟待解决调控光场的操作方式傻瓜化、简单化的问题。

因此,开发一种简单可控、易于集成的光场发生装置,用于激光器内或集成到激光器应用设备中,就非常必要。这种装置可以作为激光器的内嵌组件,也可以作为外装设备,让激光器能产生特定目的的光场。本发明基于光束整形技术和空间光调制器的动态调制技术,利用硬件电路和光路相结合的手段,提出了一种激光动态光场发生器装置。该装置可以作为工业激光器特别是低功率激光器的内部组件,直接应用到激光器产品开发中,也可以作为现有激光器应用设备的加装组件,代替固定光学元件,应用到不同的激光设备中。



技术实现要素:

针对现有技术存在的光路元件固定后出射的光斑形态即固定,从而难以灵活调整的问题,本发明的目的在于提供一种动态光场发生方法及发生装置。

为实现上述目的,本发明的技术方案为:

一种动态光场发生方法,包括以下步骤:

步骤1、为经过动态光束调制单元调制并发射的输出光建立空间光场函数field=f(p1,p2,p3…pn),其中p1,p2,p3…pn表示的是上述的输出光的各项可调光学性质;为所述空间光场函数f与输入电信号之间建立第一映射函数;为所述空间光场函数f与寻址函数建立第二映射函数;

步骤2、动态光束调制单元接收输入光以及输入电信号,所述输入光为矩形光束;

步骤3、根据步骤1中的所述第一映射函数得到光学性质确定的空间光场函数;

步骤4、根据步骤1中的所述第二映射函数以及步骤3中所述光学性质确定的空间光场函数,得到寻址地址;

步骤5、动态光束调制单元根据步骤4中获得的所述寻址地址进行寻址,以改变输出光的可调光学特征,从而生成所需的光场。

优选的,所述输入电信号为电平信号、开关信号、指令信号中的一种或者多种。

优选的,在所述步骤1中,所述映射关系由空间复用相位函数进行定义;在所述步骤2中,动态光束调制单元调用所述空间复用相位函数对所述输入电信号进行处理并生成所述寻址地址。

优选的,所述输入光通过偏振分光棱镜分成p偏光和s偏光;所述p偏光被发射到所述动态光束调制单元;所述s偏光被发射到固体成像传感器,所述固定成像传感器采集所述s偏光携带的输入光的光学性质,以便于调整所述输入电信号。

另一方面,本发明还提供一种动态光场发生装置,包括结构载体和安装在所述结构载体上的控制模块、交互接口和光路结构;

所述光路结构包括支撑架以及按照光路传播路径依次分布在所述支撑架上的偏振片、矩形光斑整形单元、前光学4f系统、动态光束调制单元和后光学4f系统;所述偏振片用于将入射光束起偏成线偏振光,所述矩形光斑整形单元用于将所述线偏振光整形成矩形光斑,所述前光学4f系统用于将所述矩形光斑无畸变的传递到所述动态光束调制单元;

所述交互接口用于采集输入电信号;所述控制模块用于接收所述输入电信号,并对所述输入电信号进行处理后向所述动态光束调制单元发送寻址地址;所述动态光束调制单元用于根据所述寻址地址进行寻址,从而调制出需要形态的输出光;所述后光学4f系统用于将所述输出光无畸变的射出。

优选的,所述动态光束调制单元为lcos芯片的电控相位调制单元;所述控制模块包括嵌装有空间复用相位函数的firmware固件,所述输入电信号通过所述firmware固件与输出光的可调光学性质建立映射关系;所述交互接口包括gpio接口、串口、拨位开关中的一种或者多种。

优选的,所述光路结构还包括安装在所述支撑架上的偏振分光棱镜和固体成像传感器,所述偏振分光棱镜布置在所述前光学4f系统与所述动态光束调制单元之间;所述偏振分光棱镜用于将所述前光学4f系统发出的光线分成p偏光和s偏光,所述p偏光被发送给所述动态光束调制单元,所述s偏光被发送给所述固体成像传感器,所述固定成像传感器采集所述s偏光携带的输入光的光学性质,以便于调整所述输入电信号。

优选的,所述矩形光斑整形单元包括矩形整形镜,所述矩形光斑整形镜的入射端面和出射端面均为双曲柱面,所述入射端面脊线和所述出射端面的脊线互相垂直。

优选的,所述结构载体包括有相互独立且密封的光学仓和电学仓,所述光路结构安装在所述光学仓内,所述光学仓上设置有入射口和出射口,所述控制模块安装在所述电学仓内;所述光学仓的外壁上安装有散热模块。

优选的,所述光路结构还包括波片,所述波片安装在所述支撑架上,且所述波片位于所述前光学4f系统与所述动态光束调制单元之间。

采用上述技术方案,使得只需要通过改变外部输出信号即可以对出射光场进行调制,从而使出射光场的形态不局限于光路元件的配置,大大提高了出射光场形态可调节性和灵活性。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明一种动态光场发生装置的主视图;

图2为本发明一种动态光场发生装置的侧视图;

图3为本发明一种动态光场发生装置中光路结构的示意图;

图4为本发明一种动态光场发生装置中的电路连接示意图。

图中:10-结构载体、20-控制模块、30-交互接口、40-光路结构、1-偏振片、2-矩形光斑整形单元、21-矩形整形镜、22-第一扩束透镜、23-滤波方孔、3-前光学4f系统、304-第二扩束透镜、4-动态光束调制单元、5-后光学4f系统、6-偏振分光棱镜、7-固体成像传感器、8-直角反射棱镜、101-光学仓、102-电学仓、103-电源和通信接口、104-视频插口。

具体实施方式

下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。

需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示对本发明结构的说明,仅是为了便于描述本发明的简便,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

对于本技术方案中的“第一”和“第二”,仅为对相同或相似结构,或者起相似功能的对应结构的称谓区分,不是对这些结构重要性的排列,也没有排序、或比较大小、或其他含义。

另外,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,连接可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个结构内部的连通。对于本领域的普通技术人员而言,可以根据本发明的总体思路,联系本方案上下文具体情况理解上述术语在本发明中的具体含义。

实施例一

一种动态光场发生方法,包括以下步骤:

步骤1、根据输出光的可调光学参数建立空间光场函数,其中,所述输出光由动态光束调制单元调制并发射;根据空间光场函数的变量与多个输入电信号获得第一映射函数;根据所述空间光场函数与寻址函数获得第二映射函数;

步骤2、接收输入光以及多个输入电信号,所述输入光为矩形光束;

步骤3、根据所述第一映射函数和所述多个输入电信号获得所述空间光场函数的变量;

步骤4、根据所述第二映射函数和所述空间光场函数的变量以及寻址函数,获得寻址地址;

步骤5、根据步骤4中获得的所述寻址地址进行寻址,获得空间光场函数的变量值,从而调制成需要的输出光。

首先,作为基本原理,本发明的动态光束调制单元为基于lcos芯片的电控相位调制元件,该基于lcos芯片的电控相位调制元件通常作为空间光调制器的核心元件使用,因此可以理解的是,本发明技术方案是基于对空间光调制器的使用和开发。空间光调制器根据其应用场景的不同,通常包括包括数据接口、数据存储器、指令控制器、寻址模块、空间光调制器光学头、驱动模块、gpio接口、内存模块和供电及基础配置模块等多个模块。

而本发明着重利用其中的以下模块:数据接口和gpio接口,这用于电信号的输入,通常还用于向外输出电信号;数据存储器和内存模块,这用于存储相关数据;寻址模块,这用于生成寻址地址;驱动模块,这用于接收寻址模块提供的寻址地址,并驱动空间光调制器光学头工作;空间光调制器光学头,其用于在驱动模块的驱动下对slm的各个单元进行调整,从而输出需要的光场(具有特定光学性质)。当然,还包括必要的供电及基础配置模块。

具体的,首先需要为上述的输出光建立空间光场函数,field=f(p1,p2,p3…pn),其中p1,p2,p3…pn表示的是上述的输出光的各项可调光学性质(参数),只需要改变任一个或者多个参数即可对空间光场进行调整。

但实际应用中,空间光场的形态只与寻址地址有关,因此可以理解的是,如果要对上述的空间光场函数f进行调整,必须对寻址地址进行调整;而寻址地址的生成直接与用户输入的输入电信号相关。因此,本发明设定多种输入电信号,使每一种输入电信号发生变化时,其所产生的新的寻址地址的寻址结果是:空间光场函数f有且只有一个参数发生变化。如此即可使输出光的形态与输入电信号一一关联,从而方便操作,避免了传统技术中,需要编制复杂的程序才能够对输出光的各项参数进行调整的缺点。

具体在本实施例中,由于输入电信号与输出光的空间光场函数之间具有映射关系,因此当操作者改变某个输入电信号时,动态光束调制单元知晓其需要调整空间光场函数中的哪一个光场参数,从而得到一个确定的空间光场函数;

接下来只需要求得一个寻址地址,使动态光束调制单元根据该寻址地址进行寻址的结果是使输出光的光学性质符合上述确定的空间光场函数即可;

具体在本实施例中,寻址地址由寻址函数得到,因此只需要使空间光场函数与寻址函数之间建立映射关系,即可以根据确定的空间光场函数得到上述的寻址地址;再对该寻址地址进行寻址后,则必然得到需要的空间光场;而在本实施例中,通过空间复用相位函数与空间光场已经确定的光学性质共同作用,使寻址函数与空间光场函数之间建立起相应的映射关系。

本实施例中,上述的输入电信号为电平信号、开关信号、指令信号中的一种或者多种,具体表现为ttl电平信号、串口、光耦信号或者光栅尺位移信号。因此使得操作者通过简单的外接硬件操作设备即可向动态光束调制单元下达调制命令,方便快捷。例如,当上述的输入电信号为pwm电平信号时,pwm电平信号的频率高低、占空比参数通过映射关系与出射光场参数进行映射,这种映射关系通过电压、电流参数直接外接到触发按键、光栅尺、plc模块、旋钮开关、手柄等电子交互设备,从而方便操作人员进行操作。

因此,上述过程可以简化描述为,输入电信号后,例如某一种pwm电平信号,根据上述的第一映射函数得到光学性质确定的空间光场函数(具体是确定相应的光学性质),再通过空间复用相位函数与上述已经确定的光学性质共同作用得到一个确定的寻址函数(即得到寻址地址),对该寻址地址进行寻址后得到上述光学性质确定的空间光场函数(即输出光的光学性质符合预期)。该空间复用相位函数,可以是例如贝塞尔光束相位分布函数或者空间复用多焦点相位分布函数等,得到焦深不同的多焦点光场、焦点xy位置不同的多焦点光场和双贝塞尔光场阵列等,此时的表示空间光场函数的参数可以是焦点数量、焦点深度等光学参数。

实施例二

其与实施例一的区别在于:本实施例中,所述输入光通过偏振分光棱镜分成p偏光和s偏光;p偏光被发射到动态光束调制单元;而s偏光则被发射到固体成像传感器,该固定成像传感器采集s偏光携带的输入光的光学性质,以便于为调整输入电信号提供依据。

同时,还可以根据固定成像传感器显示的数据判断偏振分光棱镜的位置是否准确,从而保证动态光束调制单元能够获得输入光的照射。

实施例三

如图1-4所示,本发明还提供一种动态光场发生装置,包括结构载体100和安装在结构载体100上的控制模块20、交互接口30和光路结构40。其中,结构载体100包括有相互独立且密封的光学仓101和电学仓102;而上述的光路结构40安装在光学仓101内,光学仓101上设置有供如射光束进入的入射口和供出射光场射出的出射口,该入射口和出射口均安装有透明的保护玻璃;而上述的控制模块20则安装在电学仓102内;而上述的交互接口30则设置在电学仓102上。可以理解的是,电学仓102的侧壁上还设置有电源和通信接口103,电源和通信接口可以分别设置,也可以一体设置。

如图3所示,上述的光路结构40包括支撑架10以及按照光路传播路径依次分布在支撑架10上的偏振片1、矩形光斑整形单元2、前光学4f系统3、动态光束调制单元4和后光学4f系统5,且上述的光学元件采用胶合、机械件锁紧固定相结合的方式固定在支撑架10上。

其中,偏振片1用于将入射光束(例如常见的圆形光斑)起偏成线偏振光。

而矩形光斑整形单元2用于将上述的线偏振光整形成矩形光斑;具体的,设置矩形光斑整形单元2包括一个矩形整形镜21,光斑呈圆形的光束经过该矩形整形镜21后则变成光斑呈矩形的光束,成为矩形光斑;

在本实施例中,该矩形光斑整形单元2包括矩形整形镜21,矩形光斑整形镜21的入射端面和出射端面均为双曲柱面,且入射端面的脊线和出射端面的脊线互相垂直。或者在另一个实施例中还可以在矩形整形镜21的后方依次设置一个第一扩束透镜22和一个滤波方孔23,该滤波方孔23可以理解为设置在一块板材上的通孔,如此设置,使得从矩形整形镜21上射出的矩形光斑的尺寸能够被第一扩束透镜22放大,而尺寸放大后的矩形光斑则在通过滤波方孔23后被处理的更加干净且噪音更低。

前光学4f系统3用于将上述经过放大和滤波的矩形光斑无畸变的传递到动态光束调制单元4中。

交互接口30用于采集输入电信号,交互接口包括gpio接口、串口、拨位开关中的一种或者多种。

而控制模块20用于接收该输入电信号,并向动态光束调制单元4发送寻址地址;控制模块包括嵌装有空间复用相位函数的firmware固件,输入电信号通过firmware固件与输出光的可调光学性质建立映射关系。

而动态光束调制单元4一方面用于接收将前光学4f系统3发出的矩形光斑,另一方面用于根据上述寻址地址对空间光进行调制,从而生成需要形态的输出光;本实施例中,该动态光束调制单元包括基于lcos芯片的电控相位调制单元以及相应的驱动模块和寻址模块,三者共同作用,使动态光束调制单元4能够根据输入电信号对输入光进行调制,并发出需要的输出光。

而上述的后光学4f系统5则用于将该出射光场无畸变的射出。

如图4所示,上述的控制模块20包括电路板和安装在电路板上的嵌入式控制电路,例如fpga(现场可编程逻辑门阵列),该嵌入式控制电路加载有firmware固件程序,该固件程序包括作为成熟技术使用的贝塞尔光束函数、多焦点光束函数以及菲涅尔相位函数等空间复用相位函数,通过协议定义输入电信号与输出光的光学参数之间的映射关系,以及输出光的空间光场函数与寻址函数之间的映射关系,从而使得输入电信号发生变化后,动态光束调制单元4得到对应的输出光的光场参数数据,并通过生成对应的寻址地址,调制出需要的输出光。

具体的,上述的输入电信号为ttl电平信号、串口、光耦信号或者光栅尺位移信号,例如,当上述的输入电信号为pwm电平信号时,pwm电平信号的频率高低、占空比参数通过映射关系与出射光场参数进行映射,这种映射关系通过电压、电流参数直接外接到触发按键、光栅尺、plc模块、旋钮开关、手柄等电子交互设备,从而方便操作人员进行操作。

在输入电信号的采集上,本实施例设置交互接口30为gpio接口,并采用航空插头的方式固定在电学仓102上,而且由于光场参数有多种,例如焦点的数量和焦点的间距,因此输入电信号的类型也需要有对应的两个,即,需要设置两个交互接口30用于分别采集两个输入电信号。

如图4所示,例如,在本发明提供的一个实施例中,设置动态光束调制单元4为基于lcos芯片的电控相位调制元件,其lcos芯片的有效区域尺寸为15.4*9.6mm,工作在532nm波长,整个光路元器件采用532nm波长镀膜;且如图3的电路图所示,fpga搭载有算法程序,并为光场设计了两个参数:焦点个数和焦点间距。当操作者通过旋钮调节两路pwm电平信号的占空比时,两路pwm电平信号通过两个gpio接口输入到fpga,其中一路pwm电平信号占空比对应焦点个数这一参数、另一路pwm电平信号占空比对应焦点间距这一参数;fpga中的驱动模块生成寻址地址,该寻址地址通过fpc(柔性电路)输入到lcos芯片,lcos芯片根据该寻址地址完成空间相位调制(调制光场的焦点个数和焦点间距),从而得到远场光斑的3d分布符合多焦点分布。

或者,在本发明提供的另外一个实施例中,在fpga加载的程序算法中编程生成涡旋光束的相位调制程序,即可获得涡旋光束。本实施例下设置3个bnc接口,3个bnc接口连接一个操作手柄作为交互接口30使用。该操作手柄x方向、y方向上动作产生的两个输入信号分别对应上述的焦点个数参数和焦点间距参数,而操作手柄滚轮的动作产生的输入信号则对应出射光场半径大小这一参数。如此即可实现移动涡旋光束的位置和半径大小。

或者,在本发明提供的另外一个实施例中,还可以在fpga中增加fpgajtag接口,从而通过该接口更新固件程序,使得出射光场具有更多的可变化性,能极大的丰富应用场景。

另外,在本实施例中,还包括安装在支撑架10上的偏振分光棱镜(pbs)6和固体成像传感器7。其中,偏振分光棱镜6布置在前光学4f系统3与动态光束调制单元4之间,偏振分光棱镜6用于将前光学4f系统3发出的光线分成两束,该两束光线具体是p偏光(平行于入射光方向)和s偏光(垂直于入射光方向)。p偏光被配置成发送到动态光束调制单元4,用于被处理后生成上述的出射光场。而s偏光则被配置成发送到上述的固体成像传感器7,固定成像传感器7用于采集s偏光携带的波前相位信息。一方面,在固定成像传感器7固定不动的情况下,通过分析其检测到的s偏光,能够找准和定位入射光的角度和位置,从而为调整入射光的角度和位置提供依据,并且,设置一个视频插口104用于调试光路使用,如图2所示;另一方面,当入射光束发生改变时,控制模块20通过接收由固体成像传感器7检测到的入射光束的波前相位信息,从而能够准确及时的调整输入电信号和左右空间调制参数之间的映射关系,使得操作人员改变输入电信号的幅度,依然能够和入射光场形态的变化相符。本实施例中,优选固体成像传感器7为cmos探测器或者cdd探测器。

本实施例中,该光路结构40还包括波片9,首先波片9安装在支撑架10上,其次波片9位于前光学4f系统3与动态光束调制单元4之间,具体的,波片9位于动态光束调制单元4与偏振分光棱镜6之间。

本实施例中,由于光路结构40在使用时会发热,因此在光学仓101上安装一个用于散热的散热模块,并设置光学仓101的材质为低热膨胀系数的金属材料,例如因瓦钢,如图1所示。

如图3所示,由于偏振分光棱镜6的设置,动态光束调制单元4生成的出射光场并不是直接发射到支撑架10的外部,而是反向发射到偏振分光棱镜6上,并被90°反射,且其反射方向与上述的s偏光方向相反。如此,可以理解的是,上述的后光学4f系统5则需要设置在出射光场被反射方向上。

可以理解的是,为了使光束在传递的过程中,使其光斑的尺寸更好的与各个光学元件进行适配,本实施例中,在前光学4f系统3与动态光束调制单元4之间也设置有第二扩束透镜304,从而将光束的光斑尺寸扩大,使动态光束调制单元4的光学靶面能够获得更好的照射。

同时,如果光束始终在光路结构中沿着直线传递的话,会使得光路结构的长度过大,因此,本实施例中,在光束的传递路径上设置一定数量的反射镜,并优选反射镜为直角反射棱镜8,且优选设置三个,每个直角反射棱镜8能够对光束进行90°反射,其中两个直角反射棱镜8分别设置在上述的第二扩束透镜304的前侧和后侧,从而使光束折返180°,而第三个直角反射棱镜8则设置在偏振分光棱镜6与后光学4f系统5之间,从而使出射光场再次弯折90°,且朝向远离动态光束调制单元4的方向反射。

使用时,入射光线,该入射光线通常是由激光发出的圆形光斑,该圆形光斑首先通过入射口进入封闭的光学仓101,并照射到偏振片1上,由偏振片1将圆形光斑偏振成线偏振光,该线偏振光继续经过矩形光斑整形单元2,使其光束形态从圆形变化呈矩形,同时其矩形光斑尺寸被放大,噪音被过滤;该矩形光斑再经过直角反射棱镜8进行180°反射,以及经过第二扩束透镜304放大后,被光学4f系统3无畸变的发送到动态光束调制单元4;同时,操作人员操作输入电信号,例如某一种pwm电平信号,其通过一个交互接口30输入到控制模块20上后,控制模块20根据其加载空间复用相位函数对该pwm电平信号进行定义,从而根据其接口协议生成寻址地址并发送给基于lcos芯片的电控相位调制元件;基于lcos芯片的电控相位调制元件接收到寻址地址后,根据上述的映射关系使左右空间调制参数发生对应的变化;基于lcos芯片的电控相位调制元件根据发生变化的左右空间调制参数调制矩形光斑的波前相位信息,从而生成不同形态的出射光场。如此,使得操作人员想要改变出射光场的形态时,只需要调整某一pwm电平信号即可。

以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1