包括具有低编振模色散的光纤制品及制造该光纤的方法

文档序号:2763723阅读:110来源:国知局
专利名称:包括具有低编振模色散的光纤制品及制造该光纤的方法
技术领域
本发明涉及光导纤维,尤其涉及具有较低偏振模色散(PMD)的单模光纤。本发明还与包含上述光纤的通信系统有关,并与制造上述光纤的方法有关。
理想的园形对称“单模”光导纤维能支持两个独立的、互相垂直偏振的简并模。这两者之中的任何一个构成了基本的HE11模。一般说来,沿光纤传播的光的电场是这两个偏振本征模(eigen modes)的线性叠加。
在实际的单模光纤中,各种各样缺陷诸如不对称横向应力和非园形的纤芯通常破坏了理想光纤的园形对称并提高了这两偏振模的简并度。于是这两个模以不同的相速传播,它们的有效折射率之间的这种差别称为双折射性。
光纤的双折射或者可能起因于几何变形或者由于各种弹光(elasto-optic)、磁-光或电-光折射率变化。在所谓的偏振保持光纤中,是故意把非对称性引入该光纤的。但是,对普通的(非偏振保持)光纤而言,双折射过程则以事实上不能预料的方式作用于光纤上。因此,制导光的偏振状态一般将通过沿着光纤状态的伪随机序列逐渐形成,而在光纤输出端的偏振状态一般既不能预料又不稳定。平均来说,给定光纤的已知偏振状态在某一长度Lp,与给定光纤有关的偏振“拍”长度,之后再现。
出现于一般单模光纤中的双折射导致信号色散(所谓的偏振模色散或PMD),因此一般是不希望出现这种情况的,尤其对涉及高比特率或模拟传输应用来说(例如,对光导纤维模拟CATV系统而言)。
人们已知,在从预制件拉出光纤的同时,通过迅速旋转预制件能产生具有低PMD的光纤。先有技术教导这导致周期性地互换的高速和低速的沿着纤维的双折射轴线,由于逐段补偿在偏振本征模之间的相应相位延迟,只要自旋节距比“不拉长”光纤差拍长度小得多,该轴线会导致非常低的净双折射。参看(例如)A.Ashkin等人的文章,刊登于应用光学(AppliedOptics20(13)卷,第2299页;A.J.Barlow等人的文章,刊于应用光学,20(17)卷,第2962页;及S.C.Rashleigh的文章,刊于1983年5月的激光聚焦(LaserFocus)。
先有技术的基本要求是,自旋节距要比“不拉长(unspun)“Lp小得多,这使先有技术工艺方法事实上不适用于当前大批量光纤生产。例如,假设不拉长Lp是1米左右,而拉制速度是10米/秒,于是为了获得1/10不拉长Lp的自旋节距,预型件必须以每分6000转的速度旋转,这在批量光纤生产中一般是不实用的。
鉴于低的双折射率光导纤维的商品化意义,最理想的是能获得兼顾当前商业实践用于生产上述光纤的技术,例如,现在一般使用的即使在高控制速度下也可用的技术。本申请揭示了这样一种技术。


图1大略地描绘典型的先有技术光纤拉制设备;
图2大略地并以俯视图显示图1设备的导引部分;
图3-5大略地以俯视图描绘能用来实施本发明的典型导引部分;及图6显示按照本发明纤维的转数作为沿光纤方向位距函数的典型数据。
本发明是像权利要求所限定的那样。概括地说,本发明体现在制造光导纤维(一般单模光纤)的新型和简便的方法,它可用来生产具有低PMD的光纤(典型地少于0.5PS/km1/2)。它还体现在新型的低PMD光纤,以及体现在包括这种光纤的制品(例如,光导纤维通信系统)中。
更准确地说,发明方法包括提供常规的光纤预制件,把预制件的至少一部分加热到常规拉制温度,并通过把旋压施加在光纤上的方式从加热预制件拉制光导纤维。重要的是,把扭矩如此加到光纤上以使光纤围绕其纵轴扭转,由此引起高温区的光纤材料扭转变形。
如果要使高温区的光纤材料扭转变形,把旋压“施加”在该区内的光纤上,同时把该变形固定在纤维中,以致光纤呈现永久性旋转”,也就是,永久性扭转变形。这种固定了的旋转的存在能快速地加以确定,例如,用显微镜检查光纤以确定纤芯椭园度的旋转或偏心率,或者借助于像M.J.Marrone等人所使用的那种移动式磁光调制器(光学通讯,卷12(1)第60页)。与这种固定了的旋转相联系的是节距,该旋转重复沿光纤方向的位距。
正如本领域技术人员会易于理解的,先有技术旋转预制件的方法导致基本上节距不变的自旋。人们已知,在控制工艺期间会出现对称轴少许扭转,以致于即使一般单模光纤也呈现沿光纤方向的光偏振变化。参看(例如)上面列举的Marrone等人的论文。可是,我们知道没有一种先有技术光纤其旋转具有超过4转/米的空间频率的不是故意旋转,参看(例如)M.J.Marrone等人的论文,OP.Cit,表1。具有上述低旋转的光纤一般不呈现商业意义上的PMD低下。因此,按照本发明的光纤包括具有超过4转/米的旋转空间频率的一个区段或几个区段,最好超过10或甚至20转/米。
在目前本发明的较好实施例中,转矩是间歇地加到光纤上,从而使施加于光纤上的旋压具有的节距在光纤的实际长度范围内是不恒定的,例如,在差拍长度Lp范围是不恒定的。现在我们相信,只要节距是准确地与光纤双折射空间频率匹配,这种不恒定节距会有胜过恒定节距的优点,因为低节距也能耦合两个偏振模。参看(例如)S.C.Rashleigh的论文,刊登于光波技术学报(J.ofLightwaveTechnology);LT-1(2)卷,312-331页,特别是320页,该文认为,“……不管双折射扰动的实际分布f(Z)怎样,仅仅具有频率(βi)的一个光谱分量能耦合两个偏振本征模。所有其他光谱分量都不能有效地耦合该模”。参数βi是光纤的本征双折射,而F(βi)是f(Z)的傅里叶变换。由于扰动f(Z)基本上是随机的,显然恒定节距旋转一般不会导致有效的模耦合。另一方面,不恒定节距旋转,特别是具有正负交替的螺旋性的旋转,可能包含产生有效耦合的空间分量。我们现在相信,变化着的空间频率下的旋转能获得强耦合,该频率包括,除较高旋转空间频率区之外,还有较低旋转空间频率区。这就是(例如)旋转是在正负螺旋性之间交替时的情况。
本发明也体现在用本发明方法生产的光导纤维(一般地SiO2基光纤包括一个纤芯和一个包层,前者具有比围绕纤芯的包层材料较大的有效折射率)。本发明还体现在一种商品里(例如,光导纤维通信系统,它包括光信号源、用于检测光信号的装置以及为传送信号连接检测装置和信号源的本发明光导纤维。更准确地说,施加在该光纤上的是旋压而旋压沿光纤方向是不恒定的,而且至少一部分光纤具有超过4转/米的空间旋转频率。
图1大略地描绘一般(先有技术)拉制设备10。光纤预制件11缓慢地馈送入(通过图中未示的供料装置)加热炉,其中光纤13是从预制件的颈缩部分拉出的。裸光纤穿过直径监控器14进入涂层涂敷器15,在那里聚合物涂层(常常包括内部和外部涂层)被加到(这时已较凉)裸光纤上。在穿过涂层同心监控器16之后,光纤穿过固化站17。一般地17包括紫外线(UV)灯。17的下游方向是涂层直径监控器18,后面是导引装置(例如,滚轮191,192,193)和区域21中的驱动装置(例如,牵引卷筒20)。应该注意,导引滚轮191是光纤与固体的第一接触点。在这点上光纤已经为固化了的聚合物涂层所保护。还应注意,拉力是由卷筒20提供的,而20的转速确定了拉制速度,一般能高达20米/秒。一般光纤从20出来被导向(独立驱动式的)卷绕装置,例如,卷带盘。本领域技术人员会认识到,图1显示出一些可供选择的装置(例如,14,16,18),而并未示出所有可能的装置(例如,在12和15之间的密封涂敷室)。然而,图10例示了当前所用的常规拉制设备。
在图1的先有技术设备中,光纤基本上在单个平面上,至少在加热炉中其开始点与卷筒之间移动,而没有故意将扭矩旋加于光纤上。参看图2,该图是图1设备组成部分21的概略俯视图。
按照本发明,是如此把转矩加到光纤上的以致对光纤施加了旋压。虽然原则上转矩能加到光纤已冷却到足以被接触的任何下游点上(在卷绕以前),但一般说来最好不接触裸光纤。因此,最好把转矩施加于从固化站17下行位移的某一点上,一般施加于区域21中的基一合适点。目前最好用第一导引滚轮施加转矩。
我们已发现,可以这样的把间歇转矩加到光纤上,以致于把非恒定节距的扭矩施加于光纤上。这可(例如)通过改变图3导引滚轮1911的走向来完成,一般通过使滚轮围绕与拉制塔架连接轴平行的方向倾斜一个角度θ。为响应在这种安排中自然出现的横向力,如所指出的那样,倾斜滚轮1911使光纤在滚轮上来回摆动。更准确地说,横向力转变成在光纤上的转距,使光纤在滚轮1911上横向地转动,从而使该光纤移出由先有技术(不倾斜的)设备的光纤所限定的平面。人们会理解,横向滚动是叠在常规的拉制运动上的。人们认为光纤的横向运动导致随光纤横向位移的增加而增加的回复力,使光纤跳回(基本上,而不必十分准确)到该平面上,只是为了立即开始另一侧向滚动。这非对称往返运动是由图3中接近滚轮1911的双箭头表示的。在横向滚动期间光纤的角旋转速度是(除了别的以外)倾斜角θ的函数。因而,施加在光纤上的旋转节距也是θ的函数。例如,我们所用的特定拉制设备对于θ=7°和15°分别得出了14cm和7cm的平均节距。人们知道,这些数值仅仅是示范性的,因为该节距将依赖(除了别的以外)于拉制塔架的结构和高度、拉制速度、拉力以及涂层粘滞性。
本领域技术人员会认识到,所描述的典型方法不仅把旋压旋加在光纤上而且把大体上相等并反向的(通常是有弹性的)扭矩引入卷绕的光纤。尽管上述光纤对某些用途(例如,对只需要较短长度光纤的传感器用途来说)是可接受的,但一般说来最好除去不需要的弹性扭矩(或避免该扭矩的引入)。该弹性扭矩能(例如)用适当的再缠绕来加以消除。但是,最好是实质上避免弹性扭矩的引入。这可通过交替地对光纤施加顺时针方向和反时针方向的扭矩来实现,(典型的如下所述)。
使图4的导引滚轮1912围绕与光纤拉制方向平行的轴线(它一般是和拉制塔架连接轴相同)摆动交替地把正和负旋压施加在光纤上。此外,在光纤上最后得到的正和负弹性扭矩实际上是这样抵消的,即使卷带盘上的光纤基本上没有扭转弹性应变。用任一适当装置,例如,用偏心轮传动装置(图中未示)都能使图4的导引滚轮1912来回振荡。图5概略示出一个可供选择的装置,其中用适当的常规装置(图中未示)使导引滚轮1913轴向地来回移动,结果导致交替地将顺时针和反时针方向的扭矩施加于光纤上。
本领域技术人员会意识到,图1的导引和驱动装置21可以采用许多形式。例如,可以使用滑轮(如图1-3所示的),或可以使用无槽滚轮,或可以组合使用滑轮和无槽滚轮(典型地如图4和5所示)。正如为把适当的转矩加到光纤上用的所有适当装置,可设想所有适当的导引和驱动装置。
图6显示典型的试验数据,即,旋转空间频率(单位为转/米)作为沿光纤方向位距的函数。特性曲线60是从单模光纤得到的,该光纤是在图4的导引滚轮1912以60周/分的速度摆动并以1.5米/秒的牵引速度下拉制而成,特性曲线61是按另一种方式的相同单模光纤得到的,该光纤是以3米/秒的速度控制,同时制动滚轮1912的速度为106周/分。如从图6所能看到的,每根光纤包含其旋转空间频率大大超过4转/米(甚至超过20转/米)的部位,在每根光纤中即使具有顺时针方向和反时针方向的螺旋性,旋转也是不恒定的,结果实际可能的是该旋转包括一种在耦合该两偏振模过程中是有用的分量。
本领域技术人员会知道,施加在用图4所示的那种类型设备拉制而成的光纤上的旋转的节距随(除了别的以外)摆动幅度20′和摆动频率而定。例如,在按照本发明的一种特定光纤拉制设备中,θ′是15°左右,摆动频率大约是106周/分。这些数值只是举例说明的,本领域技术人员会借助于本文的技术,不但能修改他们的设备以实施本发明,而且能选择适合于他们的特定设备的拉制参数。
权利要求
1.制造光导纤维的方法,包括a)提供光导纤维预制件(11);b)加热至少一部分所述预制件;及c)从加热后预制件如此拉制光导纤维(13),以使在拉制方向上拉制光纤的同时把旋压施加在该光纤上。其特征在于d)步骤c)包括把转矩加到光纤上,所述转矩使光纤如此经受围绕光纤纵轴的旋转,以致于当从预制件拉制光纤时,旋压被加到光纤上,而且如此选择转矩以使至少一部分光纤受到其空间频率大于4转/米的的旋压。
2.按照权利要求1的方法,其特征在于,该转矩是这样施加的以致于加到光纤上的旋压不具备恒定的空间频率。
3.按照权利要求1的方法,其特征在于,该转矩是以顺时针方向和反时针方向交替地施加,致使加到光纤上的旋压是顺时针方向和反时针方向交替的。
4.按照权利要求3的方法,其特征在于,步骤c)包括给光纤涂上聚合物涂料并使带涂层光纤接触导引滚轮,在那点上通过所述导引滚轮施加交变转矩。
5.按照权利要求4的方法,其特征在于,用导引滚轮施加转矩包括使该导引滚轮围绕基本上与所述拉制方向平行的轴线摆动。
6.包括单模光导纤维的产品,该光纤包含纤芯和包围该纤芯的包层,同时对光纤施加旋压;其特征在于在至少一部分光纤中,该旋压具有超过4转/米的空间频率,同时沿光纤方向该旋压是不恒定的。
7.按照权利要求6的产品,其特征在于,与光纤有关联的是偏振模色散(PMD),而光纤的PMD是小于0.5ps/km。
8.按照权利要求6的产品,其特征在于,该旋压是顺时针方向和反时针方向交替的。
9.按照权利要求6的产品,其特征在于,该产品是一种光导纤维通信系统,该系统包括光信号源、用于检测光信号的装置,同时所述单模光纤连接所述信号源和所述检测装置使信号能传输过去。
10.包含纤芯和包围该纤芯的包层的光导纤维,在旋压施加到该光纤上,所述光纤是按照权利要求1生产的单模光导纤维。
全文摘要
在单模光导纤维中出现(一般不是故意的)双折射会严重限制用于高比特率或模拟光纤通信系统的光纤的效用,这归因于由此引起的偏振模色散(PMD)。现已发现,若在拉制光纤13期间把转矩加到光纤上致使对光纤施加旋压,便能显著减低PMD。最好如此施加转矩致使加到光纤上的旋压没有恒定空间频率,例如,有顺时针和反时针方向交替的螺旋性。至少一部分按本发明的光纤具备其空间频率超过4转/米的旋压。
文档编号G02F1/01GK1083449SQ9310963
公开日1994年3月9日 申请日期1993年8月2日 优先权日1992年8月3日
发明者小·A·C·哈特, R·G·哈夫, K·L·沃克 申请人:美国电话电报公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1