单模光纤的制作方法

文档序号:2770280阅读:566来源:国知局
专利名称:单模光纤的制作方法
技术领域
本发明涉及一种单模光纤,具体地说,涉及一种折射率随芯线半径变化的单模光纤。
一般地说,长距离、超高速和宽带通讯所用的光纤在使用波长内必须具有低损失、低散射和低散射斜率的特性。具有这样的特性的光纤通常是散射移位光纤或非-零散射移位光纤。这些光纤的折射率的分布形式被变化成满足上述光学特性的各种结构。
通过向其折射率以三角型变化的芯线提供一个环形区或者使芯线具有与凸形折射率对应的双线结构,可以实现这种折射率变化。


图1表示美国专利US 5,553,185公开的与普通芯线半径对应的相对折射率偏差。这里,在nco是芯线的最大折射率,而ncl是包层的折射率的情况下,相对折射率偏差被表示为(nco2-ncl2)/2nco2。按照这种方法,通过降低邻近芯线的环形区的折射率使包层与芯线之间的折射率偏差增大,从而获得较小的散射斜率。
为了加宽芯线与包层之间的折射率偏差,可以增加芯线的折射率,或降低包层的折射率。然而,在第一种方法中,用以增加折射率的掺杂剂使光损失增大,这就不可能有一个超过预定水平的折射率。在第二种方法中,由一个降低的区域使长波长区的光损失突然增大。为了解决这一问题,必须使包层半径对芯线半径的比率很大。图2表示美国专利US4,447,127中揭示的在包层半径与芯线半径之间的比率为6和7时与光纤的各个波长对应的的泄漏损失。实线表示包层对芯线的直径比为6的情况,虚线表示包层对芯线的直径比为7的情况。图中的a和a’线每个的相对折射率偏差为0,表明包层的折射率与芯线的相同。b和b’线每个的相对折射率为0.2,c和c’线每个的相对折射率为0.23,d和d’线每个的相对折射率为0.25,e和e’线每个的相对折射率为0.27。
然而,当把改良的化学蒸汽沉积(MCVD)方法应用于上述光纤生产方法时,这种常规方法就出现问题,即难于制作大孔径光纤预制坯件,而且要生产光纤得花费大量的时间。
为了解决上述问题,本发明的目的是提供一种折射率变化的单模光纤,以获得低散射和低散射斜率。
于是,为实现上述目的,提供一种单模光纤,它包括第一芯线,在距离光纤中心的预定半径内有恒定折射率;包在第一芯线外的第二芯线,其折射率随着其半径的增加而从第一芯线的折射率降低;和包在第二芯线外的包层,其折射率比第二芯线折射率的最小值还小。
图1是表示现有技术中具有低散射斜率的折射率变化曲线;图2是表示当包层对芯线的半径比为6和7时与光纤的各个波长对应的泄漏损失曲线;图3是本发明一种实施例单模光纤的横截面图;图4表示图3所示光纤的折射率的分布;图5A和5B表示本发明另一实施例光纤的折射率分布;图6表示本发明又一实施例光纤的折射率分布;图7是表示与图4中a1/a2的变化对应的散射斜率的变化曲线;图8表示随着使图4中n1、n2和a2被固定,通过改变a1所得的散射斜率;图9表示在使图4的a1/a2为常数时,通过改变a2所得的散射斜率;图10表示在波长1.55μm下与图4的a1/a2对应的损失。
参照图3,一种光纤包括第一芯线300和第二芯线302,以及包层304。第一芯线300和第二芯线302以及包层304的分布如图4所示。也就是说,距离中心的半径为a1的第一芯线300的折射率为常数n1。半径为a2并包在第一芯线上的第二芯线302的折射率从第一芯线的折射率n1线性减小为n2。包层304的折射率为n0,它比n2小。折射率的分布是具有低散射的阶梯型折射率分布与具有低损失的三角型折射率分布的结合。
图5A和5B表示本发明另一实施例光纤的折射率分布。除了第一和第二芯线外,图5A的光纤还包括第三芯线,而图5B的光纤还包括在图5A的第三芯线外面的第四芯线。其中,第三芯线的折射率n3比第二芯线的折射率的最小值n2小,第四芯线的折射率n4比第三芯线的折射率的最小值n3小。这里的n3和n4都比n0大。
图6表示本发明又一实施例光纤的折射率分布。除了图4的第一和第二芯线外,图6的光纤还包括第三芯线和第四芯线。其中,第三芯线的折射率是n2,它等于第二芯线的最小折射率,第四芯线的折射率是n3比第三芯线的折射率n2小,比包层的折射率n0大。
图7到图10表示折射率分布与结构之间的相互关系,用以满足具有上述组合折射率分布的光纤的低分散、低散射斜率和低损失光学特性。
图7是表示对应于图4中a1/a2的变化散射斜率变化的曲线。其中N是(第一芯线相对折射率偏差-第二芯线相对折射率偏差)/(第一芯线相对折射率)的结果。随着N的增加,所述芯线折射率曲线接近三角形,或者随着N的减小,接近阶梯型。根据图7中所示,当折射率n2较小,即当N较大时,如果a1/a2较小,即折射率曲线是三角形时,散射斜率有较高值。另一方面,当a1/a2增加并达到预定值时,散射斜率有最小值。另外,当折射率n2增大,变成阶梯型,即当N变小时,即使a1/a2变化,散射斜率也在较窄的范围内变化,散射斜率基本上恒定,与a1/a2无关。因此,在N值为0.2到0.85的范围和a1/a2为0.7或更小的范围内可以获得小的散射斜率。另外,通过适当地把n1、n2和a1/a2互相结合在一起,可以获得优化的小散射斜率。
图8到图10表示根据图7给出的值制作的光纤实施例所得到的散射斜率。
图8表示随着图4的n1、n2和a2被固定,通过改变a1所得到的散射斜率。图9表示当使图4的a1/a2为常数时,通过改变a2所得到的散射斜率。
图10表示在波长1.55μm下与图4的a1/a2对应的损失。参照图10,随着a1/a2变小,即折射率曲线变成三角形的,散射损失变小。随着a1/a2变大,即折射率曲线变成阶梯型的,散射损失变大。这就是说,为了获得低损失光学特性,最好是三角形的折射率分布。当a1/a2在0到0.7之间时,可以得到约0.22dB/km的损失。
因此,光纤的折射率分布最好为有低散射的阶梯型和有低损失的三角形的结合。
根据本发明可以控制光纤的芯线结构,并且使光纤的折射率分布是具有低散射的阶梯型和具有低损失的三角形的结合,从而制出具有低散射和低损失的光纤。另外,使大半径芯线的三角形折射率与具有较小弯曲损失的小半径芯线的阶梯型折射率结合;其中所述大半径芯线与微观或宏观弯曲所对应的损耗增加敏感,这是由于中心下降的缘故。于是,可以减小弯曲损失。
权利要求
1.一种单模光纤,包括第一芯线,在距离光纤中心的预定半径内有恒定的折射率;第二芯线,它包在所述第一芯线外并且随着其半径的增加折射率从第一芯线的折射率减小;和包层,它包在所述第二芯线外并且折射率比所述第二芯线的折射率的最小值还小。
2.按照权利要求1所述的单模光纤,其特征在于所述第一芯线半径与第二芯线半径的比在0与0.7之间。
3.按照权利要求1所述的单模光纤,其特征在于公式(第一芯线相对折射率偏差-第二芯线相对折射率偏差)/(第一芯线相对折射率偏差)结果在0.2与0.85之间。
4.按照权利要求1所述的单模光纤,其特征在于还包括多层包在第二芯线外的芯线层,它们的折射率随半径的增大而呈阶梯型减小,而且小于第二芯线的最小折射率以及大于包层的折射率。
5.按照权利要求4所述的单模光纤,其特征在于所述多层芯线中间,有一个芯线直接包在第二芯线外,折射率与第二芯线的最小折射率相同。
全文摘要
一种单模光纤包括第一芯线,在距离光纤中心的预定半径内有恒定折射率;第二芯线包在第一芯线外,其折射率随其半径的增加而从第一芯线的折射率减小;以及包在第二芯线外的包层,其折叠率比第二芯线的折射率的最小值还小。从而,使该光纤的芯线结构受到控制,并且所述光纤的折射率分布是具有低散射的阶梯型和具有低损失的三角形的结合,因而可制作具有低散射和低损失的光纤。
文档编号G02B6/036GK1285925SQ98812025
公开日2001年2月28日 申请日期1998年12月29日 优先权日1997年12月30日
发明者李知勋, 都文显 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1