从物质x和金属或者半金属m的制作方法

文档序号:3251617阅读:264来源:国知局
专利名称:从物质x和金属或者半金属m的制作方法
技术领域
本发明涉及将固体金属、金属化合物和半金属化合物以及合金中的溶解氧或其它元素含量降低的方法。此外,所述方法涉及自金属氧化物或其它化合物中直接制备金属。
背景技术
许多金属和半金属都会形成氧化物,而且某些金属或半金属中的氧的溶解度很大。许多情形下,氧是有害的,因此,在金属的机械或电性能能够加以充分开发之前,需要将氧的含量降低或去除。例如,钛、锆和铪均是反应性极高的元素,当暴露在含氧环境中时,即使在室温下,也会快速形成氧化物层。这一钝化现象的发生是这些元素在氧化性条件下具有优异耐腐蚀性的基础。然而,这种高反应性会附带产生支配这些金属的提取和处理过程的缺点。
除了按通常方式在高温下氧化形成氧化皮之外,钛以及其它元素中氧及其它类金属(例如碳和氮)的溶解度很高,因此会导致韧性的严重下降。钛以及其它IVA族元素的这种高反应性使其能够在高温下与难熔材料如氧化物、碳化物等发生反应,从而再使基体金属受到污染和脆化。这一性质对于相关金属的工业提取、熔化和处理极其有害。
典型地,通过在存在还原试剂(还原剂)的条件下加热氧化物来进行金属自金属氧化物中的提取。还原剂的选择通过对氧化物和还原剂进行热力学比较来确定,具体地是由还原反应中的自由能平衡决定。这种平衡必须为负值,以提供进行还原所需的驱动力。
反应动力学主要受还原进行的温度以及,另外受所涉及组元的化学活性影响。后者通常是一个决定过程的效率和反应完成程度的重要因素。例如,经常发现,虽然该反应从理论上讲应完全进行,但由于有关组元的活性不断下降,而使得反应动力学显著变慢。当氧化物为原材料时,会导致氧(或者可能涉及到的其它元素)的残存,这可能对还原的金属的性能有害,例如使韧性下降等。这样,为获得高质量的金属,通常需要进一步处理,以精炼金属和去除最终的残存杂质。
由于IVA族元素的反应性很高,以及残存杂质的有害作用很严重,因此,这些元素的提取不是像通常那样由氧化物进行,而是经过初步的氯化处理后,通过对氯化物进行还原来进行。镁或钠经常被用作还原剂。这样,就能够避免残存氧的有害作用。然而,这不可避免会使得处理成本更高,结果使得最终的金属更昂贵,从而使其应用以及对于潜在用户的价值受到限制。
尽管使用了上述处理方法,但仍会发生氧的污染。例如,在进行高温处理过程中,会在更常规的氧化皮下面形成一个富氧材料的硬层。在钛合金中,由于氧对α-β合金中的α相有稳定作用,故该硬层通常被称作“α表层”。如果该层未被去除,则随后在室温进行的处理会导致在硬且较脆的表面层上萌生裂纹。然后,这些裂纹就扩展至位于α表层下的金属体内。如果在对金属进行进一步处理之前,或者在产品使用之前,未将所述硬α表层或开裂的表面去除,将会导致性能,特别是疲劳性能的严重下降。在还原性气氛中进行热处理作为克服这一问题的手段并不可行,原因是氢会使IVA族金属脆化,而且氧化物或“溶解氧”均不会减少或消除。解决这一问题的商业成本相当高。
实际上,例如,热加工后通常金属的清洗过程为首先采用机械研磨、喷砂,或者使用熔盐将所述氧化皮去除,之后,通常在HNO3/HF的混合液中进行酸洗,以便将氧化皮下的金属富氧层去除。从金属产量的损失、各种消费上看这些处理工序代价昂贵,而且污水处理的花费也不少。为将氧化皮去除并且降低去除氧化皮所需的成本,热加工在实际可实现的低温度下进行。这实质上由于较低温度下材料的可加工性下降,造成了设备生产率的下降以及设备负荷的增加。所有这些因素都加大了处理成本。
另外,从可导致严重脆性问题的金属的氢污染上看,或者从表面光洁度和尺寸控制的角度考虑,酸洗不总是容易控制的。后面的这一问题在细薄材料如薄板、细线等的生产中尤为重要。
因此,很显然,不需采用上述的磨削和酸洗,就能从金属上将氧化物层去除,而且,附加地,也能将所述亚表面α表层中的溶解氧去除的方法对于金属的加工,包括金属提取具有显著的技术和经济意义。
这样一种方法对于纯化处理,或者加工的辅助步骤也有好处。例如,在α表层的机械去除期间或者加工成最终尺寸过程中产生的废切屑难于进行循环利用,原因在于这些切屑中的氧含量高,硬度也高,而且,会对将循环利用切屑的金属的化学组成和硬度增加有影响。如果已在高温下使用并且已经氧化或被氧污染的材料通过一种简单处理就会复原,则会产生甚至更为显著的优点。例如,由于α表层较深,并且存在表面裂纹萌生和扩展至叶盘体内,导致早期失效发生的危险,因此,由钛合金制造的航空发动机压缩机叶片或叶轮的寿命在一定程度受到限制。在这种情形下,酸洗和磨削均不可能采用,因为尺寸减小是不允许的,特别是在复杂形状条件下,例如对于叶片或压缩机叶盘而言,能降低溶解的氧含量但又不影响总体尺寸的技术具有明显且又非常重要的经济意义。由于温度对热力学效率影响显著,如果这将使得叶盘不仅能在相同温度下工作更长时间,而且也能够在使航空发动机的燃料效率更高时的更高温度下运行,则这些优点是复合性的。
除钛以外,另一个具有工业价值的金属是锗,这是一种位于元素周期表中IVA族中的半导性类金属元素。它以高纯状态用于红外光学和电子学领域。氧、磷、砷、锑以及其它类金属是锗中的典型杂质元素,须仔细控制以确保其具有充分性能。硅是一种类似的半导体,其电学性能与其纯净度密切相关。母体硅或锗的可控纯度作为保证与可重现的基础相当重要,正是在此基础上,才在计算机芯片等上建立起所要求的电学性能。
美国专利5,211,775公开了用于对钛进行脱氧的钙金属的使用。Okabe,Oishi和Ono(Met.Trans B.23B(1992)583)已使用一种钙-铝合金对钛铝化物进行脱氧。Okabe,Nakamura,Oishi以及Ono(Met.Trans B.24B(1993)449)曾通过由氯化钙熔体电化学制备的钙来对钛表面的钛进行脱氧处理。Okabe,Devra,Oishi,Ono以及Sadoway(Journal of Alloys and Compounds237(1996)150)曾采用类似方法对钇进行了脱氧。
Ward等(Journal of the Institute of Metals(1961)906-12)介绍了一种在精炼过程中将熔融铜中的各种污染元素加以去除的电解处理方法。所述熔融铜在电解槽中处理使用氯化钡作为电解质。该试验表明采用该方法可将硫去除。然而,氧的去除却不那么确定,而且,该作者认为发生了氧的自发非电解丧失,这可能会掩盖该方法去除氧的程度。另外,所述方法要求金属处于熔化态,从而加大了精炼过程的总成本。因此,该方法不适合用于在1660℃熔化且其熔体的反应性极高的金属如钛。

发明内容
根据本发明,通过在M2Y熔体中进行电解来将物质(X)从固体金属或半金属化合物(M1X)中去除的方法,包括在特定条件下进行电解,以使在电极表面发生的是X的反应而不是M2的沉积,而且X在电解质M2Y中溶解。
根据本发明的一个实施方案,M1X是导体并作为阴极使用。另一种方法是,M1X可以是与导体接触的绝缘体。
在另外一个实施方案中,电解产物(M2X)比M1X更稳定。
在一个优选的实施方案中,M2可以是Ca,Ba,Li,Cs或Sr中之任何一种,Y是Cl。
优选地,M1X是M1基体上的表面覆层。
在另外一个优选的实施方案中,X溶解在M1中。
在又一个优选的实施方案中,X是O,S,C或N中之任何一种。
在又一个优选的实施方案中,M1是Ti,Si,Ge,Zr,Hf,Sm,U,Al,Mg,Nd,Mo,Cr,Nb中之任何一种,或者上述元素的任何一种合金。
在本发明的方法中,优选电势低于电解质的分解电势时发生电解,可以存在另外一种金属化合物或者半金属化合物(MNX),所述电解产物可以是该金属元素的合金。
本发明的基础在于以下认识,即可以采用电化学方法使固体金属中含有的氧发生离子化,从而使氧在电解质中溶解。
当在以含氧金属作为阴极的电化学槽中施加一适当的负电势时,就会发生下述反应
这后,该离子化的氧就能够在电解质中溶解,本发明可以用于从金属中提取溶解的氧,即去除α表层,或者可以用于从金属氧化物中去除氧。如果使用各种氧化物的混合物,则各种氧化物的阴极还原会导致合金的形成。
实现本发明的方法比目前使用的更通常的还原和精炼方法更直接、更便宜。
原则上,包括其它的类金属,碳,氮,磷,砷,锑等的还原和溶解的其它阴极反应也会发生。在700℃下,在含氯化钙的熔融的氯化物熔体中,各种电极相对于ENa=OV的电势如下-0.314V-0.06V1.092V1.516V2.039V2.339V2.92V2.77V所述金属,金属化合物或半金属化合物可以是生产过程中或者之后,一般被称作半成品或轧材的单晶体或板坯、薄板、线材、管材等;或者是在使用期间或者之后在轧材中如通过锻造,机加工,焊接或者这些方法的组合形成的人工制品(artefact)。所述元素或者合金也可以是剃边、切屑、研磨的产物或者制造过程中的某些其它副产物。另外,所述金属氧化物也可以在处理之前涂覆于金属基体上,例如,TiO2可以涂覆在钢上并随后被还原成钛金属。
在本发明中提供以下技术方案在本发明中提供以下技术方案(1)一种通过在M2Y的熔盐或者各种盐的混合物中进行电解来从固体金属、金属化合物或者半金属化合物(M1X)中去除物质(X)的方法,包括在适当条件下进行该电解,以便使在电极表面发生的是X的反应而不是M2的沉积,并且,X溶解在电解质M2Y中。
(2)根据上述(1)的方法,其中,M1X是导体并且被用作阴极。
(3)根据上述(1)的方法,其中,M1X是绝缘体并且与导体接触使用。
(4)根据上述(1)-(3)中任一项的方法,其中,电解在700℃-1000℃的温度下进行。
(5)根据上述(1)-(4)中任一项的方法,其中,电解产物(M2X)比M1X更稳定。
(6)根据上述(1)-(5)中任一项的方法,其中,M2是Ca,Ba,Li,Cs或Sr,Y是Cl。
(7)根据上述(1)-(6)中任一项的方法,其中,M1X是M1基体上的表面覆层。
(8)根据上述(1)-(6)中任一项的方法,其中,X溶解在M1中。
(9)根据上述(1)-(8)中任一项的方法,其中,X是O,S,C或N。
(10)根据上述(1)-(9)中任一项的方法,其中,M1是Ti或其合金。
(11)根据上述(1)-(9)中任一项的方法,其中,M1是Si或其合金。
(12)根据上述(1)-(9)中任一项的方法,其中,M1是Ge或其合金。
(13)根据上述(1)-(9)中任一项的方法,其中,M1是Zr或其合金。
(14)根据上述(1)-(9)中任一项的方法,其中,M1是Hf或其合金。
(15)根据上述(1)-(9)中任一项的方法,其中,M1是Sm或其合金。
(16)根据上述(1)-(9)中之任一项的方法,其中,M1是U或其合金。
(17)根据上述(1)-(9)中任一项的方法,其中,M1是Al或其合金。
(18)根据上述(1)-(9)中任一项的方法,其中,M1是Mg或其合金。
(19)根据上述(1)-(9)中任一项的方法,其中,M1是Nd或其合金。
(20)根据上述(1)-(9)中任一项的方法,其中,M1是Mo或其合金。
(21)根据上述(1)-(9)中任一项的方法,其中,M1是Cr或其合金。
(22)根据上述(1)-(9)中任一项的方法,其中,M1是Nb或其合金。
(23)根据上述(1)-(22)中任一项的方法,其中,M1X的形式是多孔球团或粉末。
(24)根据上述(1)-(23)中任一项的方法,其中,在电势低于电解质的分解电势时发生电解。
(25)根据上述(1)-(24)中任一项的方法,其中,还存在另外一种金属化合物或半金属化合物(MNX),而且,电解产物是各金属元素的合金。


图1是本发明中使用的装置的示意图;图2是在3.0V和850℃下进行电解之前和之后的钛表面样品的硬度分布;
图3描述了在不同条件下对TiO2球团进行电解还原时的电流大小的差别。
具体实施例方式
本发明中,重要的是将阴极的电势维持和控制在恒电势状态,以便只发生氧离子化,而不会出现更常见的熔盐中的阳离子的沉积。
发生所述反应的程度取决于氧在金属阴极表面的扩散。如果扩散速率低,则所述反应很快会被极化,而且,为了保持电流流动,电势变得阴极电势绝对值更大,并且将会发生下一个竞争性阴极反应,即,熔盐电解质中的阳离子的沉积。然而,如果充许该过程在高温下进行,在阴极中溶解的氧的扩散和离子化将足以满足所施加的电流,氧将被从阴极中去除。这一过程将继续进行直至由于金属中溶解的氧的含量降低而使得电势变得阴极电势绝对值更大,直到所述电势与电解质中阳离子的放电电势相同。
本发明也可以用来将溶解氧或者其它溶解元素,如硫、氮和碳从其它金属或半金属如锗、硅、铪和锆中去除。本发明也可以用来对元素例如钛、铀、镁、铝、锆、铪、铌、钼、钕、钐以及其它稀土元素的氧化物进行电解分解。当对各种氧化物混合物进行还原时,将形成由被还原的金属构成的合金。
所述金属氧化物化合物应表现出至少某种程度的初始金属导电性或者与导体接触。
现在,结合附图对本发明的一个实施方案进行描述,其中图1示出的是一段钛被置于包括浸渍在熔盐中的惰性阳极的电解槽内。所述钛可以是棒、薄板或其它人工制品。如果钛是屑片或颗粒物质,则其可以装在网篮中。当通过电源施加电压时,直至在阳极与阴极之间发生平衡反应,电流才开始流动。在阴极,存在两种可能的反应,熔盐中阳离子的释放电荷或氧的离子化和溶解。后面这一反应发生时电势比金属阳离子释放电荷时更正,因此该反应首先发生。然而,为使反应继续进行,必须使氧扩散至钛的表面,而且,取决于温度的高低,这一过程可能很慢。因此,为获得最佳结果,使所述反应在合适的高温下进行,而且,控制阴极电势以防止其电势值升高以及防止发生作为氧的离子化和溶解至电解质的竞争性反应的电解质中金属阳离子的释放电荷很重要。这能够通过测量相对于参考电极的钛的电势来确保,而且,通过静电势控制,可使所述电势决不达到所述金属离子从熔盐中释放电荷所需的足够阴极电势的值。
所述电解质必须由优选比所精炼的金属相应的盐更稳定的盐组成,而且,理想地,所述盐应尽可能稳定,以便使氧降至尽可能低的水平。可选择的电解质包括钡、钙、铯、锂、锶和钇的氯化物盐。下面给出的是这些氯化物的熔点和沸点熔点(℃)沸点(℃)BaCl29631560CaCl2782>1600CsCl6451280LiCl6051360SrCl28751250YCl37211507当使用低熔点的盐时,如果要求熔盐的熔点较低,则可以使用所述这些盐的混合物,例如利用共晶或近共晶混合物。如果作为电解质的盐的熔点与沸点的差值较大也很有利,因为这能提供一个较宽的不发生过量蒸发的处理温度范围。此外,处理温度越高,氧在表面层的扩散速度越大,并且,因此,发生脱氧的时间相应较短。任何盐都可以使用,只要该盐中的阳离子的氧化物比待净化的金属的氧化物更为稳定。
下面的实施例用以说明本发明。特别地,实施例1和2涉及氧从氧化物中的去除。
实施例1将直径5mm,厚1mm的白色的TiO2球团置于充满950℃的熔融氯化钙的钛坩埚内。在石墨阳极和钛坩埚间施加3V的电势。5小时后,将所述盐凝固并且然后在水中溶解,就会展现出一种黑色/金属状球团。该球团的分析结果表明其为99.8%的钛。
实施例2
在空气中对钛箔带进行重度氧化,以形成一个厚的氧化物覆层(约50mm)。将所述箔材置于950℃的熔融氯化钙中并施加1.75V的电势达1.5小时。当从所述熔体中取出所述钛箔时,所述氧化物层已被完全还原成金属。
实施例3-5涉及金属中含有的溶解氧的去除。
实施例3商业纯度(CP)的钛板(氧1350-1450ppm,维氏硬度180)作为阴极置于熔融的氯化钙熔体中,阳极为碳。在950℃下施加下述电势达3小时,之后再于800℃下处理1.5小时。所获结果如下V(伏) 维氏硬度氧含量3V133.5 <200ppm3.3V 103 <200ppm2.8V 111 <200ppm3.1V 101 <200ppm200ppm是分析仪器的最低探测极限。钛的硬度与氧含量直接相关,因此,通过测定硬度可对氧含量的高低有一相当好的判断。
在所述各温度下纯氯化钙的分解电势是3.2V。当考虑极化损耗和电阻损耗时,需要约3.5V的槽电势来沉积钙。因为低于该电势值时钙不可能沉积,故这些结果证实阴极反应如下
这进一步证实可以采用本技术将氧从钛中去除。
实施例4将商业纯度的钛板在空气中,700℃下加热15小时,以便在钛的表面形成α表层。
将所述样品制成阴极,置于850℃的CaCl2熔体内,阳极为碳,之后,在850℃下施加3V的电势4小时。由硬度曲线(图2),其中VHN代表维氏硬度值,可看出α表层已被去除。
实施例5将含1800ppm氧的一种Ti-6Al-4V合金薄板制成阴极,置于950℃的CaCl2熔体中,并且施加3V的阴极电势。3小时之后,氧含量从1800ppm降至1250ppm。
实施例6和7涉及合金箔材上α表层的去除。
实施例6具有存在位于表面下的α表层(厚约40μm)的Ti-6Al-4V合金箔材样品的一端与阴极电流集电体(Kanthal导线)导电连结一起,然后置于CaCl2熔体内。该熔体盛放在钛坩埚中,该坩埚放置于被950℃的氩气连续冲刷的密封Inconel反应器内。样品的尺寸为厚1.2mm,宽8.0mm,长~50mm。电解在控制电压为3.0V的条件下进行。采用两次不同的试验时间和终止温度进行重复电解。在第一种情形,电解持续1个小时,而且样品立即从反应器中取出。在第二种情形,经3小时的电解后,使炉子的温度自然冷却,同时又维持电解继续进行。当炉温降至稍低于800℃时,停止电解并取出电极。水冲洗后发现1小时后的样品具有金属表面,但存在棕色的斑点,而3小时后的样品呈完全金属色泽。
然后,将上述两个样品截断并固定在胶木棒中,进行通常的研磨和抛光步骤。采用显微硬度测试、扫描电子显微镜(SEM)以及能量分散X射线分析仪(EDX)对上述样品的横截面进行了研究。硬度试验表明虽然3小时的样品靠近表面的硬度远低于样品中心部位的硬度,两样品的α表层均已消失,此外,SEM和EDX分析发现脱氧后的样品中的结构和元素组成(氧除外)的变化不明显。
实施例7在另外一个实验中,如上所述(厚1.2mm,宽8mm,长25mm))的Ti-6Al-4V箔材样品被置于钛坩埚的底部,起阴极电流集电体的作用。之后,在与实施例6中3小时样品相同条件下进行电镀,只是在950℃时的电镀持续时间为4小时。再次采用显微硬度测量,SEM和EDX分析,结果表明所有的三个样品中的α表层均已成功去除,除氧以外,样品的结构和元素组成均未发生变化。
实施例8示出了制造氧化物电极所采用的粉浆注浆成型技术。
实施例8
将TiO2粉末(锐钛矿,产自Aldrich,纯度99.9+%;该粉末可能含有表面活性剂)与水混合,制备出一种浆液(TiO2∶H2O=5∶2(重量)),之后,将该浆液注浆成各种形状(圆球团,矩形块,圆柱体等)和尺寸(从毫米到厘米),在室温/环境气氛下干燥过夜并在空气中进行烧结,典型地,在空气中,950℃的温度下烧结时间为2个小时。所获得的TiO2固体具有可进行机加工的强度和40-50%的孔隙率。与未烧结的TiO2球团相比,烧结后存在可察觉到但不显著的收缩。
将0.3-10g的所述球团置于盛有新鲜CaCl2熔体(典型为140g)的钛坩埚的底部。在氩气环境中,3.0V(钛坩埚与石墨棒阳极间的电压)和950℃下电解5-15小时。发现电解开始时,电流的流动随球团量几乎成比例增加,而且,大致服从1克TiO2对应1A初始电流的关系。
已发现,可以根据球团中心部位的颜色来估计球团的还原程度。还原程度或金属化程度更高的球团其整体颜色呈灰色,而还原程度较低的球团其中心部位呈深灰或黑色。球团的还原程度也可以通过将球团放入蒸馏水内几小时到一整夜来进行判断。部分还原的球团会自动破裂成细小黑色粉末,而金属化的球团仍保持其原始形状。也已注意到,甚至对于金属化的球团,也可以根据其室温下的耐压性能来估计氧含量。如果氧含量较高,则球团在压力作用下会变成灰色粉末;如果氧含量低,则在压力作用下会变成金属薄板。
球团的SEM和EDX研究发现金属化和部分还原的球团间的组成和结构有明显差异。在金属化的球团中,总会看到树枝状粒子的典型结构,而且,采用EDX探测不到氧或者氧的量很少。然而,由EDX分析发现,部分还原的球团的特征在于具有组成为CaxTiyOz的微晶。
实施例9非常希望电解提取能大规模进行,而且在电解结束时能方便地从熔融盐中取出所获产物。这例如可通过将TiO2球团放在篮形电极中来实现。
所述篮形电极的制造过程包括在薄的钛箔(~1.0mm厚)上钻许多孔(~3.5mm直径),之后,将其边缘弯曲,形成一个内部体积为15×45×45mm3的长方体的浅篮。该篮通过kanthal导线与电源相连。
采用大石墨坩埚(深140mm,直径70mm,壁厚10mm)盛放CaCl2熔体。该石墨坩埚也与电源相连并起阳极的作用。将约10g的注浆成型的TiO2球团/圆块(每个直径约10mm,最大厚度3mm)放在所述钛篮内并且降低进入熔体中。在3.0V,950℃下进行电解,在使炉温自然降低之前的电解时间约10小时。当温度达到约800℃时,电解终止。然后,将所述钛篮从熔体中提起并且在Inconel管式反应管的水冷上部保持直至炉温降至200℃以下,之后取出进行分析。
在进行酸浸析(HCl,pH<2)和水洗之后,电解后的球团的SEM和EDX特征与上述的相同。将所述球团中的一些研磨成粉末并且进行热重和真空熔化元素分析。结果表明,该粉末含有约20,000ppm氧。
SEM和EDX分析表明,除了典型的树枝状结构外,粉末中也观察到了CaTiOx(x<3)的某些微晶,其可能对应于所获产物中含有的氧的相当一部分。如果果真如此,可望通过熔化所述粉末,能够制备出更纯的钛金属锭。
作为篮形电极的替代品是使用“Looly”型TiO2电极。该电极由一个中央集电体以及位于该集电体顶部的厚度合理的多孔TiO2层构成。除了集电体的表面积减少之外,使用Lolly型TiO2电极的其它优点包括首先,它可以在电解之后立刻从反应器中取出,既节省处理时间又节约了CaCl2;第二,并且更重要的是,电势和电流分布以及电流效率均能得到很大改善。
实施例10将Aldrich的锐钛矿TiO2粉末的浆液注浆成稍有锥度的圆柱形Lolly(长约20nm,直径~mm级),其中心处包含一个钛金属箔材(厚0.6mm,宽3mm,长约40mm)。在950℃烧结之后,将所述Lolly在钛箔材的端部通过Kanthal导线与电源导电连接。电解在3.0V和950℃下进行约10小时。将所述电极从约800℃的熔体中取出,清洗并且采用弱HCl酸(pH1-2)浸析。之后,采用SEM和EDX对所获产物进行分析。再次观察到典型枝状结构,并且,采用EDX未探测到氧,氯和钙。
可以采用注浆方法制造大尺寸的矩形或柱状的TiO2块,之后,该TiO2块可以机加工成具有适合于工业处理所要求的形状和尺寸的电极。另外,也可以采用注浆法制造大的网状TiO2块,如具有厚骨架的TiO2泡沫体,而且这将有助于熔融盐的排放。
干燥新鲜的CaCl2熔体中几乎不含氧这一事实意味着氯离子的放电一定是电解初始阶段中的主要阳极反应。该阳极反应持续进行,直至氧阴离子从阴极扩散至阳极。所述反应可归纳如下阳极阴极总反应式当O2-离子的量充分时,阳极反应变为
而且,总反应式为
显然,氯离子的消耗是不可逆的,结果,阴极形成的氧阴离子将停留在熔体内来平衡电荷,从而导致熔体中的氧浓度增加。由于钛阴极中的氧水平例如通过下述反应与熔体中的氧含量处于化学平衡或准平衡K(950℃)=3.28×10-4预计如果电解在相同熔体中仅仅通过控制电压来进行,则在电解提取后的钛中的最终氧含量不可能很低。
这一问题可以通过(1)控制阴极氧的放电的初始速率和(2)降低熔体中的氧浓度来加以解决。前者可以通过在电解初始阶段控制电流流动来实现,例如,逐渐将所施加的槽电压增加至所要求的值以便使电流大小不会超过极限值。该方法可称为“双控制电解”。解决该问题的后一方法可以通过首先在高氧含量的熔体中进行电解,将TiO2还原成氧含量高的金属,然后将金属电极移至氧含量低的熔体中进一步电解来实现。在氧含量低的熔体中的电解可以看作是一个电解精炼过程,而且,可以称作“双熔体电解”。
实施例11说明的是“双熔体电解”原理的使用。
实施例11按照实施例10中的介绍制备出TiO2Lolly电极。在盛放在氧化铝坩埚中的重熔CaCl2内,于3.0V,950℃下进行第一个电解步骤,时间为一整夜(~12小时)。
采用石墨棒作为阳极。之后,立即将所述Lolly电极移至盛放在钛坩埚内的新鲜CaCl2熔体中。然后,采用与第一次电解相同的电压和温度进行第二次电解,时间约8小时,此时再次用石墨棒作为阳极,在约800℃下将所述Lolly电极从反应器中取出,冲洗,酸浸析以及借助超声浴用蒸馏水再次清洗。SEM和EDX研究再次证实提取很成功。
应用热重分析依据再氧化原理来确定提取的钛的纯度。将约50mg的取自于所述Lolly电极的样品放入一个带盖的小氧化铝坩埚内并且在空气中加热到950℃保温约1小时。在加热前和加热后均称量盛放所述样品的坩埚的重量,发现重量增加。然后,将此重量增加值与当纯钛被氧化成二氧化钛时的理论增加值加以比较。结果表明所述样品含有99.7+%的钛,意味着氧含量低于3000ppm。
实施例12本发明的原理不仅可应用于钛,而且也可用于其它金属以及它们的合金。将由TiO2和Al2O3粉末(重量比5∶1)构成的混合物稍稍弄湿并压制成球团(直径20mm,厚2mm),该球团后来在空气中,950℃下烧结2个小时。烧结后的球团呈白色并且比烧结前稍有缩小。采用实施例1和实施例3中所述相同方式对两个所述球团进行电解处理。SEM和EDX分析发现电解之后,虽然球团中的元素分布不均匀球团中心部位的Al浓度比表面附近高,从12wt%变化到1wt%,但球团仍转变成了Ti-Al金属合金。该Ti-Al合金球团的显微组织与纯Ti球团相似。
图3示出了在不同条件下电解还原TiO2球团时的电流大小的比较。可以看出电流量与反应器内氧化物的量直接成正比。更重要的是,还可看出电流随时间的延长而下降,因此,可能是二氧化物中的氧在离子化,而并非发生了钙的沉积。如果是钙沉积,则电流应随时间的变化保持不变。
权利要求
1.一种通过在M2Y的熔盐或者各种盐的混合物中进行电解来从固体金属、金属化合物或者半金属化合物(M1X)中去除物质(X)的方法,包括在适当条件下进行该电解,以便使在电极表面发生的是X的反应而不是M2的沉积,并且,X溶解在电解质M2Y中。
2.根据权利要求1的方法,其中,M1X是导体并且被用作阴极。
3.根据权利要求1的方法,其中,M1X是绝缘体并且与导体接触使用。
4.根据任何一项前述权利要求的方法,其中,电解在700℃-1000℃的温度下进行。
5.根据任何一项前述权利要求的方法,其中,电解产物(M2X)比M1X更稳定。
6.根据任何一项前述权利要求的方法,其中,M2是Ca,Ba,Li,Cs或Sr,Y是Cl。
7.根据任何一项前述权利要求的方法,其中,M1X是M1基体上的表面覆层。
8.根据权利要求1-6中之任何一项的方法,其中,X溶解在M1中。
9.根据任何一项前述权利要求的方法,其中,X是O,S,C或N。
10.根据任何一项前述权利要求的方法,其中,M1是Ti或其合金。
全文摘要
本发明提供一种从物质X和金属或者半金属M
文档编号C22B4/00GK1896326SQ20061009250
公开日2007年1月17日 申请日期1999年6月7日 优先权日1998年6月5日
发明者D·J·弗雷, T·W·法辛, 陈政 申请人:剑桥大学技术服务有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1