Cu-Mg合金体、Cu-Mg合金体的制造方法及拉丝材料的制作方法

文档序号:3294860阅读:212来源:国知局
Cu-Mg 合金体、Cu-Mg 合金体的制造方法及拉丝材料的制作方法
【专利摘要】本发明涉及Cu-Mg合金体、Cu-Mg合金体的制造方法及拉丝材料。本发明提供具有充分的强度、在实施拉丝加工时可以充分地抑制所得到的拉丝材料的表面的裂纹的产生的Cu-Mg合金体、Cu-Mg合金体的制造方法以及通过将Cu-Mg合金体进行拉丝加工而制造的拉丝材料。上述Cu-Mg合金体是包含Cu-Mg合金的Cu-Mg合金体,Cu-Mg合金体中的Mg的含有率为0.3质量%至1.0质量%,在Cu-Mg合金体的截面,从表面至深度30μm为止的表层部的面积中Mg的偏析物的面积所占的比例即第1偏析Mg占有率为3.0面积%以下。
【专利说明】Cu-Mg合金体、Cu-Mg合金体的制造方法及拉丝材料
【技术领域】
[0001]本发明涉及Cu-Mg合金体、Cu-Mg合金体的制造方法及拉丝材料。
【背景技术】
[0002]Cu-Mg合金体具有高强度且具有高电导率,因此利用于例如架空导线等架空电线中使用的拉丝材料。
[0003]Cu-Mg合金体一般通过连续铸造法制造。例如,下述专利文献I中公开了通过由Cu合金熔液通过铸造模连续地进行提升而制造的铸造材料,以及通过将该铸造材料进行拉丝加工而制造的拉丝材料。此外,在下述专利文献I中公开了为了防止实施拉丝加工时在得到的拉丝材料的表面产生裂纹,在拉丝加工之前进行将铸造材料的表面进行切削的剥皮加工。
[0004]现有技术文献
[0005]专利文献
[0006]专利文献1:日本特开2010-201505号公报
【发明内容】

[0007]然而,上述专利文献I中所述的铸造材料需要在拉丝加工之前将铸造材料的表面进行切削的剥皮加工,因此关于拉丝材料的生产率存在改善的余地。
[0008]于是,期望即使拉`丝加工之前不进行切削剥皮加工,在实施拉丝加工时也可以充分地抑制所得到的拉丝材料的表面的裂纹的产生的Cu-Mg合金体。
[0009]本发明是鉴于上述情况而完成的,其目的是提供具有充分的强度、可以充分地抑制进行拉丝加工而得到的拉丝材料的表面的裂纹的产生的Cu-Mg合金体、Cu-Mg合金体的制造方法以及拉丝材料。
[0010]本发明的发明人等为了确认将利用铸造而制造的Cu-Mg合金体进行拉丝加工时,在得到的拉丝材料的表面产生裂纹的原因而进行了深入研究。
[0011]其结果,本发明的发明人等确认了拉丝材料的表面产生裂纹的原因是在铸造的Cu-Mg合金体的表层部存在偏析的Mg。
[0012]于是,本发明的发明人等进一步进行了反复深入的研究,其结果发现,通过将Cu-Mg合金体中的Mg的含有率调整为特定的范围,将Cu-Mg合金体的表层部中Mg的偏析物所占的比例调整为特定的范围,可以解决上述课题。
[0013]进而,本发明的发明人等发现,对于得到Cu-Mg合金体的表层部中Mg的偏析物所占的比例在特定的范围的Cu-Mg合金体,利用铸造制造Cu-Mg合金体时,将熔解包含Cu和Mg的原料而形成的合金熔液的冷却速度调整为特定的范围是有效的,从而完成了本发明。
[0014]即,本发明是一种Cu-Mg合金体,是包含Cu-Mg合金的Cu-Mg合金体,上述Cu-Mg合金体中的Mg的含有率为0.3质量%至1.0质量%,在上述Cu-Mg合金体的截面,从表面至深度30 μ m为止的表层部中Mg的偏析物的面积所占的比例即第I偏析Mg占有率为3.0面积%以下。
[0015]根据本发明的Cu-Mg合金体,Cu-Mg合金体具有充分的强度,在实施拉丝加工时,可以充分地抑制所得到的拉丝材料的表面的裂纹的产生。
[0016]在上述Cu-Mg合金体中,上述第I偏析Mg占有率优选为1.5面积%以下。
[0017]在这种情况下,与第I偏析Mg占有率大于1.5面积%的情况相比,在实施拉丝加工时,可以更充分地抑制所得到的拉丝材料的表面的裂纹的产生。
[0018]此外,在上述Cu-Mg合金体中,在上述Cu-Mg合金体的截面,从表面至深度ΙΟΟμπι为止的表层部的面积中Mg的偏析物的面积所占的比例即第2偏析Mg占有率优选为1.0面积%以下。
[0019]在这种情况下,与第2偏析Mg占有率大于1.0面积%的情况相比,在实施拉丝加工时,可以更充分地抑制所得到的拉丝材料的表面的裂纹的产生。
[0020]此外,在上述Cu-Mg合金体中,上述Cu-Mg合金体中的Mg的含有率优选为0.3质
量%至0.9质量%。
[0021]在这种情况下,与Cu-Mg合金体中的Mg的含有率偏离上述范围的情况相比,在实施拉丝加工时,可以更充分地抑制所得到的拉丝材料的表面的裂纹的产生。
[0022]此外, 本发明涉及Cu-Mg合金体的制造方法,其中,包括以下工序:熔解工序,使含有Cu和Mg的原料熔解,得到合金熔液;和铸造工序,一边将上述合金熔液通过铸造模进行冷却,一边连续地取出,得到Cu-Mg合金体;在上述铸造工序中的上述合金熔液的冷却速度为250Κ/分钟以上。
[0023]根据本发明的Cu-Mg合金体的制造方法,可以制造具有充分的强度、在实施拉丝加工时可以充分地抑制所得到的拉丝材料的表面的裂纹的产生的Cu-Mg合金体。
[0024]此外,本发明是,将上述Cu-Mg合金体进行拉丝加工而得到的拉丝材料。
[0025]根据本发明的拉丝材料,拉丝材料具有充分的强度,表面的裂纹的产生被充分地抑制。
[0026]根据本发明,提供具有充分的强度、在实施拉丝加工时可以充分地抑制所得到的拉丝材料的表面的裂纹的产生的Cu-Mg合金体、Cu-Mg合金体的制造方法以及拉丝材料。
【专利附图】

【附图说明】
[0027]图1是表示在本发明的Cu-Mg合金体的制造方法中为了冷却合金熔液而使用的冷却器的截面图。
【具体实施方式】
[0028]以下,对本发明详细地进行说明。
[0029](Cu-Mg 合金体)
[0030]首先,对本发明的Cu-Mg合金体进行说明。
[0031 ] 本发明的Cu-Mg合金体是包含Cu-Mg合金的Cu-Mg合金体,Cu-Mg合金体中的Mg的含有率为0.3质量%至1.0质量%,从Cu-Mg合金体的表面至深度30 μ m为止的表层部的面积中Mg的偏析物的面积所占的比例即第I偏析Mg占有率为3.0面积%以下。
[0032]根据该Cu-Mg合金体,Cu-Mg合金具有充分的强度,在实施拉丝加工时,可以充分地抑制所得到的拉丝材料的表面的裂纹的产生。
[0033]Cu-Mg合金体中的Mg的含有率小于0.3质量%时,Cu-Mg合金体不具有充分的强度。此外,Mg的含有率大于1.0质量%时,Cu-Mg合金体在实施拉丝加工时不能充分地抑制所得到的拉丝材料的表面的裂纹的产生。进而,Cu-Mg合金体中的Mg的含有率大于1.0质量%时,Cu-Mg合金体不能具有充分的导电性。此外,第I偏析Mg占有率大于3.0面积%时,Cu-Mg合金体在实施拉丝加工时不能充分地抑制所得到的拉丝材料的表面的裂纹的产生。
[0034]Cu-Mg合金体中的Mg的含有率优选0.3质量%至0.9质量%。在这种情况下,与Cu-Mg合金体中的Mg的含有率偏离上述范围的情况相比,可以得到Mg的偏析物更少的Cu-Mg合金体。因此,与Cu-Mg合金体中的Mg的含有率偏离上述范围的情况相比,在实施拉丝加工时,可以更充分地抑制所得到的拉丝材料的表面的裂纹的产生。
[0035]Cu-Mg合金体中的Mg的含有率更优选为0.3质量%至0.7质量%。
[0036]第I偏析Mg占有率优选为1.5面积%以下。在这种情况下,与第I偏析Mg占有率大于1.5面积%的情况相比,在实施拉丝加工时,可以更充分地抑制所得到的拉丝材料的表面的裂纹的产生。第I偏析Mg占有率更优选为1.0面积%以下。
[0037]第I偏析Mg占有率优选尽量小,但若考虑在Cu-Mg合金体最表面可形成高粘度的纯铜层这样的理由,则优选大于O面积%。Cu-Mg合金与纯的铜相比延展性小,容易产生裂纹。通过形成纯铜的层,可以保护Cu-Mg合金体表面,与均匀的Cu-Mg合金相比能够减小裂纹。
[0038]此外,在Cu-Mg合金体中,在Cu-Mg合金体的截面,从表面至深度100 μ m为止的表层部的面积中Mg的偏析物的面`积所占的比例即第2偏析Mg占有率优选为1.0面积%以下。
[0039]在这种情况下,与第2偏析Mg占有率大于1.0面积%的情况相比,Cu-Mg合金体在实施拉丝加工时可以更充分地抑制所得到的拉丝材料的表面的裂纹的产生。
[0040]第2偏析Mg占有率更优选为0.6面积%以下,进一步优选为0.4面积%以下。
[0041]这里,要求第I偏析Mg占有率如下所述。即,第I偏析Mg占有率是将得到的Cu-Mg合金体切断,用光学显微镜观察切断面,测定从Cu-Mg合金体的表面至深度30 μ m为止的表层部中Mg的偏析物的占有面积,由该Mg的偏析物的占有面积和从Cu-Mg合金体的表面至深度30 μ m为止的表层部的总面积,通过下述式求出。
[0042]第I偏析Mg占有率(面积%)=(表层部中的Mg的偏析物的占有面积/表层部的总面积)X 100 (面积%)
[0043]此外,第2偏析Mg占有率也通过与上述同样的方法求出。
[0044](Cu-Mg合金体的制造方法)
[0045]接着,对制造本发明的Cu-Mg合金体的Cu-Mg合金体的制造方法进行说明。
[0046]首先,在说明制造本发明的Cu-Mg合金体的Cu-Mg合金体的制造方法之前,参照图1,对本发明的Cu-Mg合金体的制造方法中用于合金熔液的冷却的冷却器的一个例子进行说明。图1是表示本发明的Cu-Mg合金体的制造中使用的冷却器的一个例子的示意截面图。
[0047]Cu-Mg合金体的冷却器100是用于将提升的合金熔液I进行冷却的装置,如图1所示,它的一部份浸溃于合金熔液I。[0048]如图1所示,冷却器100具备筒状的铸造模10、冷却体20、收容部30和冷却管50,其中,上述铸造模10是用于将合金熔液I加工为棒状;上述冷却体20以包围铸造模10的方式设置,冷却铸造模10和从铸造模10提升的合金熔液I ;上述收容部30收容冷却体20 ;上述冷却管50在冷却体20的上方冷却通过冷却体20而固化的合金熔液1,具有使合金熔液I成为Cu-Mg合金体40而通过的上部开口 50a。
[0049]在冷却管50的下部连接有导入冷却水的冷却水导入管50b,在冷却管50的上部连接有排出冷却水的冷却水排出管50c。因此,能够在冷却管50内使冷却水循环,能够冷却通过冷却体20的合金熔液I。此外,冷却管50也使得冷却体20冷却。
[0050]这里,作为构成铸造模10的材料,例如使用石墨。作为构成收容部30的材料,例
如使用石墨。
[0051]另外,在图1中,Pl是冷却体20和收容部30的边界面的位置,表示开始合金熔液I的冷却的位置(以下,称为“冷却开始位置”),P2是冷却管50的上部开口 50a的位置,表示结束合金熔液I的冷却的位置(以下,称为“冷却结束位置”)。
[0052]接着,对Cu-Mg合金体40的制造方法进行说明。
[0053]首先,使包含Cu和Mg的原料熔解而得到合金熔液I (熔解工序)。这里,作为包含Cu和Mg的原料,可以使用Cu-Mg合金,或Cu-Mg合金与电解铜等Cu单体金属的混合物等。合金熔液I的温度例如为1473K至1573K即可。
[0054]接着,从冷却器 100的冷却水导入管50b向冷却管50内导入冷却水,从冷却水排出管50c排出冷却水。如此,在冷却管50内使冷却水循环。此时,冷却体20利用冷却管50来冷却。
[0055]在这种状态下,将合金熔液I通过铸造模10而连续地提升(铸造工序)。合金熔液I通过铸造模10后,利用冷却体20冷却,其后,利用冷却管50冷却。然后,通过冷却管50的上部开口 50a。如此得到Cu-Mg合金体40。
[0056]此时,合金熔液I的冷却速度设为250K/分钟以上。
[0057]将合金熔液I的冷却速度设为250K/分钟以上,其原因是,合金熔液I的冷却速度小于250K/分钟时,得到的Cu-Mg合金体40在实施拉丝加工时不能充分地抑制所得到的拉丝材料的表面的裂纹的产生。
[0058]这里,冷却速度以以下方式定义。在图1中,若将合金熔液I的温度设为T1 (K),将通过冷却管50的上部开口 50a时,即通过冷却结束位置P2时的Cu-Mg合金体40的表面的温度设为T2 (K),将Cu-Mg合金体40的提升速度设为V Cm/分钟),将从合金熔液I的冷却开始位置Pl到冷却结束位置P2的高度设为h (m),则冷却速度用以下的计算式定义。
[0059]冷却速度(K/分钟)=(T1 (K) — T2 (K)) Xv Cm/ 分钟)/h Cm)
[0060]若如上进行而制造Cu-Mg合金体40,则可以制造具有充分的强度、在实施拉丝加工时可以充分地抑制所得到的拉丝材料的表面的裂纹的产生的Cu-Mg合金体40。
[0061]上述冷却速度优选为270K/分钟以上,进一步优选为300K/分钟以上。
[0062]但是,上述冷却速度优选为400K/分钟以下。在这种情况下,与冷却速度大于400K/分钟的情况相比,可以更充分地抑制铸造材料表面的皲裂。
[0063](拉丝材料)
[0064]拉丝材料是将上述Cu-Mg合金体40进行拉丝加工而得到的。[0065]根据该拉丝材料,拉丝材料具有充分的强度,充分地抑制表面的裂纹的产生。
[0066]拉丝加工的条件没有特别的限制,与公知的条件同样就可以。但是,拉丝加工的条件优选模具拉拔。
[0067]实施例
[0068]以下,举出实施例和比较例来更具体地说明本发明的内容,本发明不限定于以下实施例。
[0069](实施例1~9和比较例I~8)
[0070]< Cu-Mg合金体的制造>
[0071]首先,准备电解铜和Cu-Mg合金(Mg含量50质量%)作为Cu-Mg合金体的原料。接着,将这些原料以得到的Cu-Mg合金体中的Mg的含有率为表1和表2所示的值的方式进行秤量而装入石墨坩埚,使其加热熔解而得到合金熔液。合金熔液的温度变为1250°C( 1523K)后,将合金熔液通过由石墨形成的铸造模,一边以表1和2所示的冷却速度冷却一边提升,实施例1~9和比较例I~8的Cu-Mg合金体以具有表1和表2所示值的直径的圆线的形式得到。[ 表1]
【权利要求】
1.一种Cu-Mg合金体,是包含Cu-Mg合金的Cu-Mg合金体,所述Cu-Mg合金体中的Mg的含有率为0.3质量%至1.0质量%,在所述Cu-Mg合金体的截面,从表面至深度30 μ m为止的表层部的面积中Mg的偏析物的面积所占的比例即第I偏析Mg占有率为3.0面积%以下。
2.如权利要求1所述的Cu-Mg合金体,其中,所述第I偏析Mg占有率为1.5面积%以下。
3.如权利要求1或2所述的Cu-Mg合金体,其中,在所述Cu-Mg合金体的截面,从表面至深度100 μ m为止的表层部的面积中Mg的偏析物所占的比例即第2偏析Mg占有率为1.0面积%以下。
4.如权利要求1或2所述的Cu-Mg合金体,其中,所述Cu-Mg合金体中的Mg的含有率为0.3质量%至0.9质量%。
5.一种Cu-Mg合金体的制造方法,其中,包括以下工序: 熔解工序,使含有Cu和Mg的原料熔解,得到合金熔液,和 铸造工序,一边将所述合金熔液通过铸造模进行冷却,一边连续地取出,得到Cu-Mg合金体, 在所述铸造工序中的所述合金熔液的冷却速度为250K/分钟以上。
6.一种拉丝材料,是将 权利要求1或2所述的Cu-Mg合金体进行拉丝加工而得到的。
【文档编号】C22C9/00GK103805801SQ201310525185
【公开日】2014年5月21日 申请日期:2013年10月30日 优先权日:2012年11月7日
【发明者】坂卷亮, 深浦圭二 申请人:株式会社藤仓
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1