一种激光热力逐层交互增材制造的组合装置的制作方法

文档序号:11271462阅读:276来源:国知局
一种激光热力逐层交互增材制造的组合装置的制造方法

本发明涉及增材制造领域以及激光冲击强化领域,特指一种激光热力逐层交互增材制造的组合装置,本装置有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能,实现成形件的高效高质量整体加工。



背景技术:

选择性激光熔化(selectivelasermelting,slm)技术是一种今年出现的最新的快速成形技术,应用分层制造进行增材制造,通过粉末将cad模型转换为实物零件。其采用激光快速熔化选区金属粉末与快速冷却凝固技术,可以获得非平衡态过饱和固溶体及均匀细小的金相组织,并且成形材料范围广泛,制造过程不受金属零件复杂结构的限制,无需任何工装模具,工艺简单,可实现金属零件的快速制造,降低成本,还能实现材料组分连续变化的梯度功能材料制造。

激光冲击强化(lasershockpeening,lsp)技术是一种新型的表面强化技术,主要是采用短脉冲(几十纳秒)、高峰值功率密度(>109w/cm2)的激光辐照在金属表面,激光束通过约束层之后被吸收层吸收,吸收层从而获得能量形成爆炸性气化蒸发,产生高温高压的等离子体,由于外层约束层的约束,等离子体形成高压冲击波从而向材料内部传播,利用冲击波的力效应在材料表层发生塑性变形,使得表层材料微观组织发生变化,细化材料晶粒尺寸,是材料组织更致密,降低孔隙率,并在较深的厚度上形成残余压应力,而残余压应力层能有效地消除材料内部的应力集中和抑制裂纹的萌生和扩展,显著提高关键零件构件的疲劳寿命以及抗腐蚀和抗磨损能力。大量的研究证明激光冲击强化技术是延长裂纹萌生时间降低裂纹扩展速度提高材料寿命的有效手段。

虽然近年来在激光增材制造方面取得了长足进步,但是由于选择性激光熔凝是一个快速成形过程,熔化的金属表面张力很大,所以容易产生球化效应,导致制件内部空洞增多,密度和强度降低;金属粉末熔化快,熔池存在时间短,快速凝固成形时存在较大的温度梯度,以至于容易产生较大的热应力,不同组织的热膨胀系数不一样,会产生组织应力,凝固组织还存在残余应力,这三种应力综合作用将会导致制件产生裂纹。而激光冲击强化技术可以显著细化熔覆层粗晶,诱导较大深度的残余压应力,同时能闭合塑性变形层内微裂纹和微小冶金缺陷,是消除熔覆层残余拉应力和细化晶粒的一种卓有成效的方法。

鉴于上述问题,本发明提出一种激光热力逐层交互增材制造的组合装置,以实现在成形件成形过程中同时对成形件进行激光冲击强化,有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能,实现成形件的高效高质量整体加工。



技术实现要素:

本发明旨在提供了一种激光热力逐层交互增材制造的组合装置,通过激光冲击强化和选择性激光熔化交替工作,实现了在成形件成形过程中同时对成形件进行激光冲击强化,在每一层粉料熔化之后,对其进行激光冲击强化,有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能,实现成形件的高效高质量整体加工。

本发明提出一种激光热力逐层交互增材制造的组合装置,所述组合装置包括激光冲击强化模块,喷水模块,选择性激光熔化模块,由防水层、滚筒、滚筒支架、螺纹丝杠和电机构成的防水层施加模块,回形水槽,由空气压缩机、气缸和控制阀构成的气动模块,底座,由液压缸、电气系统和可升降工作台构成的液压升降模块,导轨以及由供粉箱、刮板和电机构成的铺粉模块。

其中,激光冲击强化模块与选择性激光熔化模块位于成形件正上方,可通过机械手臂进行移动;防水层位于成形件前侧,可通过电机带动螺纹丝杠进行前后移动,通过气动模块进行上下移动;成形件左右两侧各有一组滚筒、滚筒支架、螺纹丝杠和电机,其中滚筒位于滚筒支架上,滚筒支架位于螺纹丝杠上;成形件位于可升降工作台上;铺粉模块位于成形件后侧,可通过导轨进行前后往复移动;可升降工作台四周为回形水槽,气动模块位于水槽下方;整个装置最下方为底座。

优选地,所述的激光热力逐层交互增材制造的组合装置,其激光冲击强化模块可与选择性激光熔化模块交替工作,达到在对成形件进行成形加工的同时强化成形件的效果。

优选地,激光冲击强化的参数为:光斑直径为3mm,脉宽为8~30ns,脉冲能量2~15j,横向和纵向搭接率均为50%。

优选地,选择性激光熔化成形的参数为:光斑直径为80μm,激光波长为1.06~1.10μm,激光功率为200~1000w,扫描速度为500~1000mm/s,铺粉层厚为0.02~0.5mm。

优选地,所述的激光热力逐层交互增材制造的组合装置,其铺粉模块通过导轨移动,实现均匀铺粉及复位。

优选地,所述的激光热力逐层交互增材制造的组合装置,其液压升降模块的升降工作台通过液压升降模块实现平稳升降,随着制件高度的增加而下降。

优选地,所述的激光热力逐层交互增材制造的组合装置,在选择性激光熔化成形时,选择性激光熔化模块通过机械手控制运动轨迹。

优选地,所述的激光热力逐层交互增材制造的组合装置,在激光冲击强化时,激光冲击强化模块通过机械手控制运动轨迹。

优选地,所述的激光热力逐层交互增材制造的组合装置,在成形件外表面激光冲击强化时,防水层施加模块通过电机和气动模块调动防水层,使防水层自动移动、贴合、分离及复位。

优选地,所述的激光热力逐层交互增材制造的组合装置,其防水层施加模块通过气动模块实现垂直方向的运动,控制防水层与成形件外表面的贴合和分离。

优选地,所述的激光热力逐层交互增材制造的组合装置,其防水层施加模块通过电机实现水平方向的运动,进行防水层移动和复位,不影响成形件卸下以及接下来的选择性激光熔化成形。

优选地,所述的激光热力逐层交互增材制造的组合装置,防水层采用自粘防水材料的铝箔,当结束一个成形件的加工后,防水层施加模块通过电机实现滚筒间歇运动,进行防水层更换,避免重复使用,出现漏水情况。

优选地,所述的激光热力逐层交互增材制造的组合装置,在激光冲击强化时,通过喷水模块,采用以去离子水形成的厚度为1~2mm的均匀水膜作为约束层,以提高冲击波的峰值压力。

优选地,所述的激光热力逐层交互增材制造的组合装置,其可升降工作台在中心,周边为回形水槽,防止水飞溅或淹没成形件及粉末。

优选地,所述的激光热力逐层交互增材制造的组合装置,其回形水槽中的水通过水循环模块,可循环利用。

本发明的有益效果:本发明提供了一种激光热力逐层交互增材制造的组合装置,通过激光冲击强化模块和选择性激光熔化模块交替工作,实现了在成形件成形过程中同时对成形件进行激光冲击强化。

1.选择性激光熔化技术与激光冲击强化技术的结合使用,提高了加工效率,可以更加广泛地应用于工业生产。

2.有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能。

附图说明

图1为本发明一种实施例的主视图。

图2为图1的俯视图(除激光冲击强化模块和选择性激光熔化成形模块)。

图3为本发明一种实施例选择性激光熔化成形时的左视图。

图4为本发明一种实施例激光冲击强化时的主视图。

图5为本发明一种实施例激光冲击强化时的左视图。

图中:1-激光冲击强化模块;2-喷水模块;3-选择性激光熔化成形模块;4-防水层;5-滚筒;6-滚筒支架;7-螺纹丝杠;8-回形水槽;9-气动模块;10-底座;11-液压升降模块;12-可升降工作台;13-成形件;14-粉末;15-导轨,16-铺粉模块。

具体实施方式

本发明针对现有技术中的不足,提供了一种激光热力逐层交互增材制造的组合装置,主要是通过激光冲击强化模块和选择性激光熔化成形模块交替工作、自由切换(如图1、2所示),实现了在成形件成形过程中同时对成形件进行激光冲击强化,有效解决了增材制造中内应力造成成形件易于变形开裂的“控形”和冶金缺陷导致疲劳性能较差的“控性”难题,提高成形件的疲劳强度和力学性能,实现成形件的高效高质量整体加工。

参见图1与图2,图1为本发明一种实施例的主视图,图2为图1的俯视图(除激光冲击强化模块和选择性激光熔化成形模块)。如图所示,一种激光热力逐层交互增材制造的组合装置。

在进行选择性激光熔化前,铺粉模块16通过导轨15间歇往复运动,均匀地在可升降工作台12上铺粉,铺粉完成后自动复位至初始位置(如图2所示),不影响后续选择性激光熔化成形模块和激光冲击强化模块作业。

在选择性激光熔化成形模块3作业时(如图3所示),通过机械手控制其运动轨迹,此时,防水层4在安全区域,不会影响选择性激光熔化成形模块作业。

选用选择性激光熔化成形的参数为:光斑直径为80μm,激光波长为1.08μm,激光功率为600w,扫描速度为800mm/s,铺粉层厚为0.2mm,进行选择性激光熔化成形,在一层粉料熔化之后,选择性激光熔化成形模块3结束作业,激光冲击强化模块1将对其进行激光冲击强化。

在激光冲击强化模块作业前(如图4和5所示),选择性激光熔凝成形模块3通过机械手离开可升降工作台12上方;同样地,在激光冲击强化模块作业时(如图4和5所示),通过机械手控制其运动轨迹。

选用激光冲击强化的参数为:光斑直径为3mm,脉宽为10ns,脉冲能量8j,横向和纵向搭接率均为50%,进行激光冲击强化,在激光冲击强化之后,激光冲击强化模块结束作业,可升降工作台(12)通过液压升降模块(11)下降一定高度(一般小于1mm,因为激光冲击强化的影响层深度约为1mm),为后续的铺粉作业留出空间。

铺粉模块16进行铺粉后,选择性激光熔化成形模块3将进行下一层粉料熔化。

如此,选择性激光熔化模块3和激光冲击强化模块1交替作业、自由切换,直至完成对指定成形件的加工。最后,防水层4通过电机带动螺纹丝杠7移动至成形件13上方,通过滚筒5转动一定角度,使上一次使用过的防水层偏离成形件13外表面,新的防水层通过气动模块9下降至低于成形件外表面1mm处,使新的防水层与成形件外表面贴合。喷水模块2随激光冲击强化模块一起作业,为成形件外表面激光冲击强化提供了约束层,防水层及回形水槽的设计避免水飞溅或淹没成形件13及粉末(如图2所示),且水槽中的水可循环使用。

激光冲击强化之后,激光冲击强化模块1和喷水模块2结束作业,防水层4通过气动模块9上升至初始高度,与成形件分离,并通过电机带动螺纹丝杠7复位至初始位置,进行下一个成形件的加工。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1