一种含铜及非贵金属的枝杈状纳米材料的制备方法与流程

文档序号:13674773阅读:503来源:国知局

本发明涉及催化领域,具体地涉及一种枝杈状纳米材料及其制备方法。



背景技术:

具有枝杈状结构的金属纳米材料能够提供大的比表面积,增加金属颗粒的活性位点,枝杈状结构还能够分散金属颗粒,阻止金属颗粒团聚,从而提高金属颗粒的利用率。鉴于以上优点枝杈状结构金属纳米材料在催化、电化学、光学等领域具有诸多应用。

目前关于枝杈状金属纳米材料的报道中,其金属元素多数为单金属或非贵金属与贵金属的组合,而对于非贵金属之间反应得到枝杈状结构的报道相对较少。浸渍法是制备树枝状单金属纳米结构常用的方法之一。priecel等采用浸渍法合成了金树枝状纳米材料。由于贵金属价格昂贵,制备过程操作复杂,条件较为苛刻,从而限制了它的大量生产。jo等采用电置换反应,成功合成pd-ag双金属树突结构。采用该方法合成pd-ag双金属树突结构反应过程复杂且很难精确控制生成物成分。王新军课题组通过水热法合成了铜、银及其合金树枝状纳米材料(2012年河南师范大学硕士学位论文,分类号o614)。该方法的反应温度、ph值和反应时间均对材料结构有影响,需要严格控制。目前,合成枝状金属纳米材料的方法大都需要使用高温、高压、复杂的反应设备或较长的反应时间,不利于大量生产。因而,寻找一种简单、经济、具有普适性的制备方法合成金属枝杈状结构仍然是一项非常艰巨的任务。



技术实现要素:

本发明的目的之一在于提供一种含铜及非贵金属枝杈状纳米材料的制备方法。该方法通过淀粉的加入,利用淀粉包裹金属,通过超声搅拌得到枝杈状纳米材料。本发明原料价廉易得,制备过程简单方便,反应耗时少,操作安全,并且可以合成具有多种组成的非贵金属金属树枝状纳米材料。得到的树枝状金属纳米材料形貌规则、大小均匀,将在电化学及催化等领域拥有广阔的应用前景。

本发明的目的之二在于提供一种含铜非贵金属枝杈状纳米材料。很多报道都用贵金属来合成枝杈状结构,本发明用廉价的铜与非贵金属合成树枝状纳米材料,铜在此发明中起到决定性作用,淀粉包裹非贵金属利用铜和非贵金属之间的协同作用得到枝杈状纳米材料。

本发明的技术方案为:

本发明提供的含铜及非贵金属枝杈状纳米材料是由可溶性淀粉将非贵金属纳米颗粒分散后形成的树枝状纳米材料,其形貌单一,大小均匀。所述的树枝状纳米结构的组分为铜及其它非贵金属,其中另外的金属组分为非贵金属ni、co、fe、zn、cd或cr中的一种或两种。

本发明的技术方案是:

一种含铜及非贵金属的枝杈状纳米材料的制备方法,该方法包括如下步骤:

(1)将可溶性淀粉加入到水溶液中,放入带有冷凝回流装置的油浴锅里搅拌,升温到90-120℃保温15-40分钟,降到室温;其中,每100毫升水加1-3克可溶性淀粉,

(2)取步骤(1)得到的淀粉溶液,向其中加入铜前驱体,使溶液中铜离子浓度为3.79-18.22mm;然后加入非贵金属的前驱体,使此时溶液中非贵金属总离子浓度为3.93-19.92mm,25℃下超声分散5-10分钟,得到均一的反应体系溶液;其中,摩尔比铜离子:非贵金属离子=1~5:5~1;所述的铜前驱体为可溶性铜盐;所述的非贵金属前驱体为非贵金属的氯化物、硝酸盐、醋酸盐或硫酸盐,所述的非贵金属为ni、co、fe、zn、cd或cr;

(3)向步骤(2)所得的反应体系溶液中加入硼氢化钠;其中,每10ml溶液加入0.002-0.004g硼氢化钠;

(4)将步骤(3)反应后的溶液于室温下离心分离,而后去除上清液,沉淀物经去离子水洗涤,冷冻干燥后得枝杈状的纳米材料。

所述的铜前驱体为氯化铜、硝酸铜、醋酸铜、硫酸铜或铜的配合物,优先选择氯化铜。

所述的非贵金属前驱体优先选择为非贵金属的氯化物。

所述的超声波分散的频率为40赫兹。

所述的步骤(4)中离心分离时的转速为8000~10000r/min。

上述的催化剂:所得树枝状纳米结构枝杈长度为200~500nm,彼此交叉连接,所得树枝状纳米结构催化水解放氢产率为2458ml·min–1g–1

所述的可溶性淀粉具体为土豆淀粉、玉米淀粉、红薯淀粉或大米淀粉。

本发明的优点在于:

1、本发明制备的枝杈状含铜及非贵金属纳米材料采用的原料均属于已经工业化生产的普通化工原料,廉价易得,无毒。

2、本发明由可溶性淀粉联结金属形成枝杈状结构,制作可溶性淀粉原料丰富,工艺简单,价格便宜。

3、制备工艺对设备要求低,操作步骤简单,方便易行,时间成本低,在室温下进行不需控制温度。

4、所得树枝状纳米结构枝杈长度为200~500nm,彼此交叉连接,以淀粉作为表面活性剂的合金催化剂颗粒尺寸小且分布均匀,平均直径约为5nm,约为以去离子水为溶剂的合金催化剂的十分之一。所得树枝状纳米结构催化水解放氢产率为2458ml·min–1g–1这个值比贵金属与过渡金属的组合pt3co(1380ml·min-1·g-1)和pt3ni(1388ml·min-1·g-1)高,催化氨硼烷水解之后,催化剂的形貌仍为树枝状,不会被破坏。

附图说明

下面结合附图和具体实施对本发明进一步说明。

图1为实施例1中枝杈状钴铜纳米结构xrd图谱。

图2为实施例1中枝杈状钴铜纳米结构扫描电镜照片。

图3为实施例1中枝杈状钴铜纳米结构透射电镜照片。

图4为对比例1中镍钴催化剂的透射电镜照片。

图5为实施例1-9中枝杈状钴铜纳米结构催化氨硼烷水解放氢图。

图6为实施例10中枝杈状镍铜纳米结构xrd图谱。

图7为实施例10中枝杈状镍铜纳米结构扫描电镜照片。

图8为实施例10中枝杈状镍铜纳米结构透射电镜照片。

图9为实施例10-18中枝杈状镍铜纳米结构催化氨硼烷水解放氢图。

具体实施方式

实施例1

(1)将可溶性淀粉(土豆淀粉,以下实施例同)加入到1l水溶液中,使其浓度为每100毫升水含有2克可溶性淀粉,放入带有冷凝回流装置的油浴锅里搅拌,升温到95℃保温15分钟,降到室温,备用;

(2)取10ml步骤(1)所得淀粉溶液,其中加入19.55mg(0.082mmol)氯化钴和10.15mg(0.043mmol)氯化铜,25℃超声(频率为40赫兹)5分钟,使氯化钴和氯化铜在淀粉溶液中分布均匀;

(3)向步骤(2)溶液中加入2.68毫克硼氢化钠超声反应两分钟;

(4)将步骤(3)反应后的溶液转移至离心管中,室温下离心分离(转速10000r/min),用水洗三次后,倒掉上清液,沉淀物放到冰箱(-18℃)中冷冻1小时;

(4)将离心管从冰箱取出放到真空冷冻抽干机中,待液体被抽干取出样品得到树枝状的钴铜纳米结构。

附图1中的xrd测试表明产物为钴铜合金,且衍射峰非常清晰、尖锐,说明合金结晶度很好;附图2为产物枝杈状钴铜纳米材料的sem照片,可以看出呈枝杈状,枝杈长度为200~500nm,彼此交叉连接;经tem图(图3)看出淀粉包在钴铜纳米颗粒外面,且颗粒分布均匀,材料整体为枝杈状结构。图5为实施例1中枝杈状钴铜纳米结构催化氨硼烷水解通过多通道微量气体计量装置(型号rock-solar-ⅰ)测试的放氢图,通过放氢图看出枝杈状钴铜纳米材料可以用作催化剂催化氨硼烷水解,产氢速率为2458ml·min–1g–1

实施例2-9中氯化钴和氯化铜用量见表1,其它实验操作及药品用量与实施例1相同。

表1实施例2-9中氯化钴和氯化铜用量

实施例2-9所得枝杈状结构形貌同实施例1,其xrd检测结果同样证明钴铜合金结晶度良好,其催化放氢结果见附图5。

实施例10

(1)将可溶性淀粉加入到1l水溶液中,使其浓度为每100毫升水含有2克可溶性淀粉,放入带有冷凝回流装置的油浴锅里搅拌,升温到95℃保温15分钟,降到室温,备用;

(2)取10ml步骤(1)所得淀粉溶液,其中加入14.57毫克氯化镍和15.13毫克氯化铜,25℃超声(频率为40赫兹)5分钟,使氯化镍和氯化铜在淀粉溶液中分布均匀;

(3)向步骤(2)溶液中加入2.68毫克硼氢化钠超声反应两分钟;

(4)将步骤(3)反应后的溶液转移至离心管中,室温下离心分离,用水和洗三次后,倒掉上清液,放到冰箱中冷冻1小时;

(4)将离心管从冰箱取出放到真空冷冻抽干机中,待液体被抽干取出样品得到树枝状的镍铜纳米结构。

附图6中的xrd测试表明产物为镍铜合金,且衍射峰非常清晰、尖锐,说明合金结晶度很好;附图7为产物枝杈状镍铜纳米材料的sem照片,可以看出呈枝杈状,枝杈长度为200~500nm,彼此交叉连接;经tem图(图8)看出淀粉包在镍铜合金外面,且颗粒分布均匀,材料整体为枝杈状结构。图9为实施例10中枝杈状镍铜合金催化氨硼烷水解放氢图,通过放氢图看出枝杈状镍铜合金可以用作催化剂催化氨硼烷水解,产氢速率为2155ml·min–1g–1

实施例11-18中氯化镍和氯化铜用量见表2,其它实验操作及药品用量与实施例10相同。

表2实施例11-18中氯化镍和氯化铜用量

实施例11-18所得枝杈状结构形貌同实施例10,其xrd检测结果同样证明镍铜合金结晶度良好,其催化放氢结果见附图9。

实施例19

(1)将9.975氯化镍、9.975毫克氯化钴和1.015毫克氯化铜加入到10ml淀粉溶液中,超声5分钟,使氯化钴和氯化铜在淀粉溶液中分布均匀;

(2)向溶液中加入0.0268克硼氢化钠反应2分钟;

(3)将反应后的溶液转移至离心管中,离心分离,水和酒精洗3次后倒掉上清液后放到冰箱中冷冻1小时;

(4)将离心管从冰箱取出放到真空冷冻抽干机中,待液体被抽干取出样品得到树枝状的钴铜纳米结构。

实施例20

将实施例19中步骤(1)氯化镍、氯化钴和氯化铜用量分别改为7.28mg、7.28mg和15.14mg,其他的各项操作均与实施例19相同,得到产物同实施例1。

实施例21

将实施例19中步骤(1)氯化镍、氯化钴和氯化铜用量分别改为7.35mg、14.71mg和7.64mg,其他的各项操作均与实施例19相同,得到产物同实施例1。

实施例22

将实施例19中步骤(1)氯化镍、氯化钴和氯化铜用量分别改为14.71mg、7.35mg和7.64mg,其他的各项操作均与实施例19相同,得到产物同实施例1。

实施例23

将实施例1中的氯盐换成硝酸盐,总的质量不变摩尔比改变。实验步骤相同

实施例24

将实施例1中的氯盐换成醋酸盐,总的质量不变摩尔比改变。实验步骤相同

实施例25

将实施例1中的氯盐换成硫酸盐,总的质量不变摩尔比改变。实验步骤相同

对比例1

(1)将19.8毫克氯化钴和9.9毫克氯化镍加入到10ml淀粉溶液中,超声5分钟,使氯化钴和氯化镍在淀粉溶液中分布均匀;

(2)向溶液中加入2.68毫克硼氢化钠反应2分钟;

(3)将反应后的溶液转移至离心管中,离心分离,水和酒精洗3次后倒掉上清液后放到冰箱中冷冻1小时;

(4)将离心管从冰箱取出放到真空冷冻抽干机中,待液体被抽干取出样品得到树枝状的钴铜纳米结构。

经tem图(图4)看出钴铜纳米材料颗粒均匀,但不为枝杈状结构。

对比例2

将对比例1中的钴盐换成锌盐和镉盐,总的质量不变摩尔比改变。实验步骤相同

对比例3

将对比例1中的镍盐换成锌盐和镉盐,总的质量不变摩尔比改变。实验步骤相同

通过对以上实施例所得样品进行形貌分析,我们可以看出:本发明得到的材料的形貌与所用金属盐的类型无关;得到的材料的相貌只与是否加入淀粉有重要联系:加入淀粉就形成枝杈状的结构,不加入淀粉则不可以形成枝杈状机构。最终得到的枝杈状结构催化剂催化氨硼烷水解的性能很好,产氢速率可达2458ml·min–1g–1

本发明未尽事宜为公知技术。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1