向超合金制品赋予耐磨性的制作方法

文档序号:15615290发布日期:2018-10-09 21:13阅读:126来源:国知局
本发明涉及用于向超合金制品赋予耐磨性的组合物,具体地涉及将合金耐磨板或垫以冶金方式结合到超合金制品的组合物,诸如涡轮叶片的z凹口接触表面。
背景技术
:燃气涡轮发动机广泛用于各种工业、发电、船舶和运输应用,其中使用的涡轮叶片包括带有所谓的z凹口的罩,z凹口为涡轮叶片罩中具有“z”形状的构形。相邻的叶片在z凹口处互锁。因为这些z凹口为相邻涡轮叶片之间的接触点,因此z凹口的接触面将经受磨损和溶蚀。涡轮叶片通常由具有高含量镍和/或钴的超合金铸造而成。通过焊接技术由镍基超合金和其它超合金制成铺面、再铺面和修复部件存在严峻的技术挑战。例如,大线能量焊接叠层工艺可不利地向基材施加热影响区并改变热影响区附近的材料特性,这通常导致叶片在该区域变脆。热喷涂工艺要求大量清洁工作,这不仅效率低并且可能有损坏基材的风险,并且所得的结合主要为机械结合,不如真正的冶金结合。在一些应用中,z凹口的接触面用耐磨垫或板再铺面。目前可用的垫在高温下表现出可接受的耐磨性。然而,如果在涡轮叶片的制造或修理期间,叶片经受高于1200℃的温度超过2小时,这些耐磨垫可能变差和/或从叶片上掉落。对于需要经由热等静压和复原步骤在远高于1200℃的温度下进行修复的叶片,这是严重问题。在此类情况下,每次修复叶片时移除耐磨垫,这将导致成本增加和涡轮机停机时间延长。技术实现要素:鉴于这些缺点,提供了用于向超合金制品包括涡轮叶片的z凹口赋予耐磨性的合金组合物。在一些实施方案中,在超合金修理和/或复原期间,合金组合物表现出高温变形稳定性。在一个方面,提供了复合预型件以用于向超合金制品赋予耐磨性。在一些实施方案中,复合预型件可用于将合金耐磨板或垫以冶金方式结合到超合金制品,诸如涡轮叶片的z凹口接触表面。在一些实施方案中,复合预型件包含粉末合金组合物,该粉末合金组合物包含1-30重量%的镍、0.05-2重量%的铁、15-25重量%的铬、10-30重量%的钼、0-1重量%的碳、1-5重量%的硅、0.05-2重量%的硼、0-5重量%的钨、0-3重量%的钽、0-0.1重量%的锰、0-3重量%的铝、0-0.1重量%的钇、和余量钴。在一些实施方案中,本文所述的粉末合金组合物可与有机载体相关联,以施用于超合金制品的一个或多个表面。在一些实施方案中,复合预型件包含粉末合金组合物,该粉末合金组合物包含25-35重量%的钴、0.1-1重量%的铁、12-20重量%的铬、10-20重量%的钼、0-0.1重量%的碳、0.5-3重量%的硅、0.5-3重量%的硼、0-0.1重量%的锰、0-0.1重量%的钨、0-2重量%的钽、0.5-3重量%的铝、0-0.1重量%的钇,并且余量为镍。在另一方面,提供了向镍基超合金制品赋予耐磨性的方法。在一些实施方案中,一种方法包括提供包含粉末合金组合物的复合预型件以及提供钴基合金的耐磨板或垫,其中粉末合金组合物包含1-30重量%的镍、0.05-2重量%的铁、15-25重量%的铬、10-30重量%的钼、0-1重量%的碳、1-5重量%的硅、0.05-2重量%的硼、0-5重量%的钨、0-3重量%的钽、0-0.1重量%的锰、0-3重量%的铝、0-0.1重量%的钇,并且余量为镍。复合预型件定位在耐磨板与镍基超合金制品的表面之间以形成组件。该组件被加热以通过由粉末合金组合物形成的结合合金将耐磨板以冶金方式结合到镍基超合金制品的表面。在一些实施方案中,用于结合耐磨板的复合预型件包含25-35重量%的钴、0.1-1重量%的铁、12-20重量%的铬、10-20重量%的钼、0-0.1重量%的碳、0.5-3重量%的硅、0.5-3重量%的硼、0-0.1重量%的锰、0-0.1重量%的钨、0-2重量%的钽、0.5-3重量%的铝、0-0.1重量%的钇,并且余量为镍。这些和其它非限制性实施方案在以下具体实施方式中进一步描述。附图说明图1为示出根据一些实施方案的z凹口接触表面与合金耐磨垫之间的复合预型件的布置的示意图。图2为根据本文实施例1将钴合金耐磨垫以冶金方式结合到z凹口接触表面的横截面光学显微镜图。图3为根据本文实施例1的钴合金耐磨垫和z凹口接触表面经后续老化和复原后的横截面光学显微镜图。具体实施方式参考以下具体实施方式和实例以及前述和下述内容可更容易地理解本文所述的实施例。然而,本文所述的元素、设备和方法并不限于具体实施方式和实例中所述的具体实施例。应当认识到,这些实施例仅示例性地说明本发明的原理。在不脱离本发明精神和范围的情况下,多种修改和变更对于本领域技术人员而言将是显而易见的。i.复合预型件在一个方面,提供了复合预型件以用于向超合金制品赋予耐磨性。复合预型件可用于将合金耐磨板或垫以冶金方式结合到超合金制品。复合预型件可包含粉末合金组合物,该粉末合金组合物包含1-30重量%的镍、0.05-2重量%的铁、15-25重量%的铬、10-30重量%的钼、0-1重量%的碳、1-5重量%的硅、0.05-2重量%的硼、0-5重量%的钨、0-3重量%的钽、0-0.1重量%的锰、0-3重量%的铝、0-0.1重量%的钇、和余量钴。在一些实施方案中,复合预型件的钴基粉末合金具有选自表i的组合物。表i-复合预型件的粉末合金在一些实施方案中,复合预型件的粉末合金具有选自表ii的组合物。表ii-复合预型件的粉末合金或者,复合预型件可包含粉末合金组合物,该粉末合金组合物包含25-35重量%的钴、0.1-1重量%的铁、12-20重量%的铬、10-20重量%的钼、0-0.1重量%的碳、0.5-3重量%的硅、0.5-3重量%的硼、0-0.1重量%的锰、0-0.1重量%的钨、0-2重量%的钽、0.5-3重量%的铝、0-0.1重量%的钇,并且余量为镍。在一些实施方案中,复合预型件的粉末合金具有选自表iii的组合物。表iii-复合预型件的粉末合金在一些实施方案中,以单种预合金化粉末的形式提供本文所述的复合预型件的粉末合金组合物。在其它实施方案中,粉末合金组合物可由两种或更多种粉末组分的混合物形成。两种或更多种粉末组分可组合或共混,以形成具有本文所述的参数中任一种的粉末合金组合物。例如,两种或更多种粉末组分可混合,以提供具有本文中表i-iii的参数的粉末合金组合物。在一些实施方案中,钴粉末合金组分和钴硬钎焊粉末合金组分按照各种比例组合或混合,以提供复合预型件的粉末合金组合物。在一些实施方案中,钴粉末合金组分为cocrmosi合金或cocrmosib合金。具体地,在一些实施方案中,钴粉末合金组分可具有选自表iv的组合物。表iv-钴粉末合金组分合金co重量%cr重量%mo重量%si重量%b重量%cocrmosi余量5-2022-321-4-cocrmosib余量5-2022-321-40.05-0.5此外,在一些实施方案中,钴硬钎焊粉末合金组分具有表v中提供的组合物。表v-钴硬钎焊合金组分co重量%cr重量%ni重量%w重量%ta重量%b重量%c重量%余量20-295-153-100-51-40-1表iv中的钴粉末合金以及表v中的钴硬钎焊合金可按照各种比例混合,以提供具有选自本文表i和ii的参数的复合预型件的粉末合金组合物。在一些实施方案中,例如,选自表iv的钴粉末合金组分以粉末合金组合的10-90重量%的量存在。另外,表v的钴硬钎焊合金组分可以粉末合金组合的30-70重量%的量存在。在一些实施方案中,粉末合金组合物中钴合金与钴硬钎焊合金的比在9:1至1:3或从9:1至1:1的范围内。在一些实施方案中,在制备复合预型件的粉末合金组合物时,可用镍硬钎焊合金组分来替代钴硬钎焊合金组分。例如,镍硬钎焊合金可与钴粉末合金组合,以提供具有选自本文表iii的组合物的复合预型件的粉末合金组合物。在一些实施方案中,与钴粉末合金组合的镍硬钎焊合金具有表vi中提供的组合物。表vi-镍硬钎焊合金组分ni重量%co重量%cr重量%b重量%ta重量%al重量%y重量%余量5-1510-201-40-50-50-0.1余量7-1210-152-32-32.5-50-0.1在一些实施方案中,镍硬钎焊合金以粉末合金组合的30-70重量%的量存在。粉末合金组合物中钴合金与镍硬钎焊合金的比可在9:1至1:3或从9:1至1:1的范围内。复合预型件的钴粉末合金、钴硬钎焊合金和/或镍硬钎焊合金可具有任何所需的粒度。粒度可根据各种标准选择,包括在有机载体中的分散性和充填特性,以提供所需密度的复合预型件。在一些实施方案中,粉末合金组合物的一种或多种组分的平均粒度可在10μm至150μm或40μm至125μm的范围内。在一些实施方案中,粉末合金组合物可与有机载体相关联,以施用于超合金制品的一个或多个表面。可采用与本发明目的一致的任何有机载体。在一些实施方案中,用于粉末合金组合物的合适有机载体包括纤维聚合物基质。如以下示例中进一步详述,纤维聚合物基质可形成其中分散有粉末合金组合物的柔性布。柔性聚合物布可具有与本发明目的一致的任何厚度。例如,柔性聚合物布可通常具有0.2-4mm或1-2mm的厚度。可在基质构造中使用能够采用纤维或长丝形态的任何聚合物种类。合适的聚合物种类可包括含氟聚合物、聚酰胺、聚酯、聚烯烃或它们的混合物。在一些实施例中,例如,纤维聚合物基质由原纤化聚四氟乙烯(ptfe)形成。在此类实施方案中,ptfe纤维或原纤可提供其中分散并截留有粉末合金组合物的互连网络基质。此外,可将原纤化ptfe与其他聚合物纤维(诸如聚酰胺和聚酯)组合以修改或定制纤维基质的特性。纤维聚合物基质通常占复合预型件的不到1.5重量%。在一些实施方案中,例如,纤维聚合物基质占复合预型件的1.0-1.5重量%或0.5-1.0重量%。复合预型件可通过各种技术制造,以将粉末合金组合物分散在纤维聚合物基质中。在一些实施方案中,复合预型件的制造方式为:将聚合物粉末、钴合金粉末、钴硬钎焊合金粉末和/或镍硬钎焊合金粉末组合,然后机械加工混合物以原纤化聚合物粉末并将合金粉末截留在所得纤维聚合物基质中。在一个具体实施方案中,例如,粉末合金组合物的组分与3-15体积%的ptfe粉末混合,然后进行机械加工以原纤化ptfe并将粉末合金组合物截留在纤维ptfe基质中。如本文所述,粉末合金组合物的组分可选自上表iv-vi。粉末混合物的机械加工可包括球磨、轧制、拉伸、伸长、挤出、散布或它们的组合。在一些实施方案中,所得ptfe柔性复合预型件经受冷等静压。本文所述的复合预型件可根据美国专利3,743,556、3,864,124、3,916,506、4,194,040和5,352,526中的一者或多者的公开内容制备,所述专利中的每一个全文以引用方式并入本文。如以下实施例中所述,在一些实施方案中,由其中设置有粉末合金组合物的聚合物载体形成的复合预型件可表现出结合到超合金制品的耐磨垫密度的至少50%的生坯密度。在一些实施方案中,复合预型件的生坯密度可为耐磨垫密度的至少60%或至少65%。复合预型件的生坯密度还可为耐磨垫密度的50-75%或60-70%。复合预型件的较大生坯密度可有助于在耐磨垫与超合金制品之间形成强效冶金结合。较大生坯密度还可有助于减小或消除根据本文所述的方法通过加热复合预型件形成的结合合金中的孔隙率。或者,粉末合金组合物可与液体载体相关联,以施用于超合金制品的一个或多个表面。可根据特定粉末合金组合物和特性采用水性和/或有机载体。ii.向超合金制品赋予耐磨性的方法在另一方面,提供了向镍基超合金制品赋予耐磨性的方法。在一些实施方案中,一种方法包括提供包含粉末合金组合物的复合预型件以及提供钴基合金的耐磨板或垫,其中粉末合金组合物包含1-30重量%的镍、0.05-2重量%的铁、15-25重量%的铬、10-30重量%的钼、0-1重量%的碳、1-5重量%的硅、0.05-2重量%的硼、0-5重量%的钨、0-3重量%的钽、0-0.1重量%的锰、0-3重量%的铝、0-0.1重量%的钇,并且余量为镍。复合预型件定位在耐磨板与镍基合金制品的表面之间以形成组件。该组件被加热以通过由粉末合金组合物形成的结合合金将耐磨板以冶金方式结合到镍基超合金制品的表面。在一些实施方案中,复合预型件的粉末合金组合物具有选自本文表i和ii的参数。或者,复合预型件的粉末合金组合物可包含25-35重量%的钴、0.1-1重量%的铁、12-20重量%的铬、10-20重量%的钼、0-0.1重量%的碳、0.5-3重量%的硅、0.5-3重量%的硼、0-0.1重量%的锰、0-0.1重量%的钨、0-2重量%的钽、0.5-3重量%的铝、0-0.1重量%的钇,并且余量为镍。例如,粉末合金组合物可具有选自本文表iii的参数。复合预型件可具有上文部分i中所述的任何特性和构造。在一些实施方案中,复合预型件包含用于粉末合金组合物的聚合物载体。具有类似布的特性的柔性聚合物基质可有利于将复合预型件施加于镍基超合金制品变化的几何结构和/或曲率的表面。此外,复合预型件可表现出如上所述的高生坯密度。复合预型件可用于将一个或多个耐磨垫结合到镍基超合金制品的任何接触或耐磨表面。耐磨表面设计和几何结构可由镍基超合金制品的功能导出。在一些实施方案中,镍基超合金制品可包括涡轮叶片,其中耐磨垫结合到z凹口的接触表面。在一些实施方案中,在耐磨板与镍基超合金制品的表面之间施加单个复合预型件。或者,可在耐磨垫与镍基超合金部件的表面之间施加多个复合预型件。例如,可在耐磨垫与超合金表面之间以分层形式施加复合预型件。将复合预型件分层可允许生产任何所需厚度的结合合金。在施用复合预型件之前,可通过化学和/或机械方式清洁诸如通过氟离子清洁镍基超合金制品的表面。通过在耐磨垫与镍基超合金制品的表面之间施加一个或多个复合预型件形成组件。该组件被加热以通过由粉末合金组合物形成的结合合金将耐磨板以冶金方式结合到镍基超合金制品的表面。加热组件分解了聚合物纤维基质,并且结合合金由复合预型件的粉末合金组合物形成。如本文所述,粉末合金组合物可由多种粉末组分(包括钴粉末合金)与钴硬钎焊合金或镍硬钎焊合金组合而形成。组件通常被加热至超过钴硬钎焊粉末合金组分或镍硬钎焊粉末合金组分的熔点但低于钴粉末合金组分的熔点的温度。钴硬钎焊合金或镍硬钎焊合金的熔融流动特性可允许在耐磨板与镍基超合金制品之间形成无孔或基本上无孔的界面。加热温度和加热时间段取决于镍基超合金部件和复合预型件的具体组成参数。在一些实施方案中,例如,组件在真空下被加热至1200-1230℃的温度5-30分钟的时间段。在一些实施方案中,加热在1100-1150℃下继续1-4小时。耐磨板的钴基合金可具有与本发明目的一致的任何组合物。在一些实施方案中,形成耐磨板的钴基合金为cocrmosi合金。例如,耐磨垫的钴基合金可具有选自表vii的组合物。表vii-耐磨垫的钴合金在一些实施方案中,耐磨垫的钴基合金具有选自表viii的组合物。表viii-耐磨垫的钴合金在一些实施方案中,耐磨垫由用于在超过1200℃或1220℃的温度下承受变形的钴基合金形成。例如,钴基合金耐磨垫可在超过1200℃或1220℃的温度下承受变形或软化超过2小时或更长时间段。耐磨垫的高温稳定性可使得在涡轮叶片修复流程期间耐磨垫不发生劣化,修复流程包括在超过1200℃温度下的热等静压和复原步骤,同时保持与镍基超合金制品的强效冶金结合。在另一方面,在耐磨垫已以冶金方式结合到镍基超合金制品之后,可将本文部分i中的复合预型件施加于耐磨垫的表面。复合预型件随后被加热以在耐磨垫上形成合金耐磨层。这样,耐磨垫的耐磨性可得到增强和/或修复。例如,在镍基超合金制品在其工作环境中使用之后,耐磨垫可能磨损。可通过施加本文的一个或多个复合预型件然后再加热以形成合金耐磨层来修复耐磨垫。合金耐磨层可取代在镍基超合金制品的使用期间丢失或劣化的耐磨垫的材料。可将任何组合物和/或特性的复合预型件施用于钴基合金耐磨垫的表面以便恢复和/或增强耐磨性。如本文所述,粉末合金组合物可由单独的粉末组分(包括钴粉末合金与钴硬钎焊合金或镍硬钎焊合金的组合或混合物)形成。在一些实施方案中,粉末合金组合物的单个组分可与单独的载体相关联。例如,钴粉末合金可定位在第一有机载体中,并且钴硬钎焊粉末合金或镍硬钎焊粉末合金可定位在第二有机载体中。在一些实施方案中,第一有机载体为第一聚合物片材,并且第二有机载体为第二聚合物片材。第一片材和第二片材分层以提供复合预型件。分层的复合预型件定位在耐磨垫与镍基超合金部件的表面之间以形成组件。该组件被加热以通过由粉末合金组合物形成的结合合金将耐磨板以冶金方式结合到镍基超合金制品的表面。在另一个方面,可在液体载体中提供粉末合金组合物,以施用于镍基超合金的一个或多个表面。在一些实施方案中,粉末合金组合物的所有组分可在单个液体载体中。例如,可将钴合金粉末组分与钴硬钎焊粉末组分或镍硬钎焊粉末组分添加到液体载体中。在其它实施方案中,可将粉末合金组合物的单个粉末组分添加到单独的液体载体中并且施用于镍基超合金的一个或多个表面。在以下非限制性实例中对这些和其他实施例进行进一步说明。实施例1-z凹口耐磨堆焊按如下方式提供钴基合金耐磨垫并将其以冶金方式结合到涡轮叶片的z凹口的接触表面。z凹口接触表面和相关的涡轮叶片由基本上类似于rene80的组合物的镍基超合金形成。通过提供选自上表i的组合物2的粉末合金形成复合预型件。粉末合金组合物为65重量%的钴粉末合金和35重量%的钴硬钎焊粉末合金的混合物。钴粉末合金为具有如下标称组成的cocrmosi合金:0.5-2重量%的铁、16-19重量%的铬、28-30重量%的钼、0.01-0.1重量%的碳、3-4重量%的硅、0-0.2重量%的硼、0-0.1重量%的锰、和余量钴。钴硬钎焊粉末合金具有如下标称组成:9-11重量%的镍、24-26重量%的铬、0.5-1重量%的碳、2-3重量%的硼、6-8重量%的钨、3-4重量%的钽、和余量钴。粉末合金组合物与5-15体积%的ptfe粉末混合。对混合物进行机械加工以原纤化ptfe并截留粉末合金组合物,然后进行轧制,由此将复合预型件形成为厚度为1-2mm的类似于布的柔性片材。如图1所示,将复合预型件11定位在每个z凹口接触表面10与耐磨垫12之间,以形成组件13。本实施例中采用的耐磨垫由具有如下标称组成的钴基合金形成:1-2重量%的镍、1-2重量%的铁、17-19重量%的铬、27-29重量%的钼、0-0.1重量%的碳、3-4重量%的硅、和余量钴。复合预型件表现出钴合金耐磨垫密度的68-69%的生坯密度。在真空和1200-1220℃的温度下加热组件5-20分钟,然后在1100-1150℃下1-3小时。该热处理经由结合由粉末合金组合物形成的合金,将钴合金耐磨垫以冶金方式结合到z凹口接触表面。图2为一个以冶金方式结合到z凹口接触表面的钴合金耐磨垫的横截面光学显微镜图。如图2所示,结合区域20表现出小于5体积%的孔隙率。使耐磨垫和相关联的z凹口接触表面在1200-1210℃下经受超合金老化和复原4小时的时间段。图3为一个钴合金耐磨垫和z凹口接触表面经后续老化和复原后的横截面光学显微镜图。耐磨垫与z凹口接触面之间保持强效冶金结合。此外,钴合金耐磨垫在老化和复原过程中不表现出任何变形、变差或软化。针对实现本发明多个目的,现已描述了本发明的多个实施例。应当认识到,这些实施例仅示例性地说明本发明的原理。在不脱离本发明精神和范围的情况下,其多种修改和变更对于本领域技术人员而言将是显而易见的。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1