MgFe复合铸件结合界面的强化方法与流程

文档序号:15615223发布日期:2018-10-09 21:12阅读:512来源:国知局

本发明涉及复合铸件结合界面的强化技术,尤其涉及一种mgfe复合铸件结合界面的强化方法。



背景技术:

镁合金具有低密度、高比强度、高比刚度、高阻尼性及易回收利用等优点。然而,镁合金存在耐蚀性差、高温强度和抗蠕变性差等缺点,影响了其更广泛的应用。铁基材料是现今工业中应用最广的结构材料,具有优良的强度、耐磨性以及较低的成本。

镁合金和铁基材料二者性能互补性很强,在某些环境中二者的复合结构能够在保留各自性能特点的同时克服单一材料性能上的不足,可以有效地降低结构件重量,实现节能、环保,且有助于进一步拓宽镁合金的应用领域。

对于mgfe的液固复合铸造,其可靠连接受制于mg、fe弱反应低互溶问题:mg和fe熔点相差约900℃,这两种金属很难同时处于熔融态。二者相互溶解度极小,基本不发生冶金反应。

专利cn104384701a公开了基于感应加热及电磁成形的镁合金/碳钢管件复合连接方法,是利用温热电磁成形的方法提高镁合金成形性能,同时将电磁感应加热和电磁成形复合使用,利用同一个线圈实现感应加热与成形功能,来提高异种金属管的连接效率,便于实现自动化控制,同时成形时复合了温热成形与电磁成形工艺,提高了连接成形性能。专利cn102853689a公开了内衬钢复合镁合金散热器及其制法,发明产品包括钢管、镁合金环架和镁合金散热片;钢管外部与镁合金环架紧密接合,在镁合金环架上设有镁合金散热片;该发明产品制法是先按照散热器的外形尺寸及工艺要求制造所需的压铸用模具;把模具固定在压铸机上,放入带有内螺纹连接丝扣的钢管,合上模具,钢管外壁和模具内腔构成镁合金散热器腔体;向压铸机通惰性气体加压,由模具的浇注口压入镁合金;待镁合金结壳,在高压下补缩、凝固、成型;把成型件从压铸机中取出,经过打磨、上漆、烘干流程,制成内衬钢复合镁合金散热器成品。



技术实现要素:

针对现有技术中存在的mgfe结合强度不足的缺陷,本发明提供了一种mgfe复合铸件结合界面的强化方法,该方法在铁基材料结合表面利用选区激光熔化技术制备fe基点阵材料,然后利用液固复合铸造工艺实现铁基材料与镁金的结合。

为了解决上述技术问题,本发明采用了如下技术方案:

mgfe复合铸件结合界面的强化方法,包括如下步骤:

(1)在铁基材料的结合表面采用选区激光熔化技术制备fe基点阵材料;

(2)化学除油—酸洗钝化—化学镀铜工艺对点阵材料表面进行处理;

(3)将铁基材料固定在铸型中,将镁合金熔体浇注到铸型内,在铸造过程中进行超声振荡处理,以实现mgfe之间的牢固结合。

作为本发明的一种优选方案,采用碱性脱脂—酸洗浸蚀—活化—化学镀铜工艺对点阵材料表面进行处理。

作为本发明的另一种优选方案,进行钝化处理工艺的硝酸水溶液中硝酸体积比为20%~50%,时间15~45min。

作为本发明的一种改进方案,超声振荡工艺参数为:超声振荡频率35~70khz,输出功率50~150w,振荡时间30~65s。

作为本发明的另一种改进方案,点阵材料结构类型为金字塔型或四面体型。

作为本发明的进一步改进方案,点阵材料结构参数为:杆长0.8~2.5mm,杆径0.3~1.5mm,杆间夹角30~60°。

本发明的技术效果是:本发明将选区激光熔化增材制造及点阵材料应用于mgfe液固复合铸造,点阵材料由在空间周期排列的结点和连接结点的杆单元组成,具有高比表面、高孔隙率,结构及功能可设计,具有比金属泡沫和蜂窝材料更高的比强度、比刚度。选区激光熔化可以制造复杂的点阵结构,致密度高,技术成熟。本发明充分利用fe基点阵材料的高比表面积及与镁合金形成的三维互嵌结构,可以大幅度强化结合界面的冶金结合与机械结合作用,进而实现mgfe液固复合铸造结合界面的可靠连接。

具体实施方式

下面结合具体实施方式对本发明作进一步详细地描述。

mgfe复合铸件结合界面的强化方法,包括如下步骤:

(1)在铁基材料的结合表面采用选区激光熔化技术制备fe基点阵材料;

(2)化学除油—酸洗钝化—化学镀铜工艺对点阵材料表面进行处理;

(3)将铁基材料固定在铸型中,将镁合金熔体浇注到铸型内,在铸造过程中进行超声振荡处理,以实现mgfe之间的牢固结合。

其中,采用碱性脱脂—酸洗浸蚀—活化—化学镀铜工艺对点阵材料表面进行处理。进行钝化处理工艺的硝酸水溶液中硝酸体积比为20%~50%,时间15~45min。超声振荡工艺参数为:超声振荡频率35~70khz,输出功率50~150w,振荡时间30~65s。点阵材料结构类型为金字塔型或四面体型。杆长0.8~2.5mm,杆径0.3~1.5mm,杆间夹角30~60°。

实施例1

点阵材料为304不锈钢,类型为金字塔型,杆长1.2mm,杆径0.4mm,杆间夹角45°。选区激光熔化成型工艺参数:激光功率110w,扫描速率650mm/s,光斑直径60μm,粉层厚度0.02mm,扫描间距80μm,采用逐行扫描方式,制备fe基点阵材料。

fe基点阵材料表面处理如下:采用65g/lnaoh,22g/lna3po4,23g/lna2co3,5g/lna2sio3,表面活化剂4ml/l,余为水,进行化学除油;采用110g/lnaoh,60g/lkmno4,90g/lna2co3,余为水,在85℃下进行酸洗,之后采用硝酸体积比为25%的硝酸水溶液,溶液温度38℃,时间33min进行钝化处理。采用硫酸铜(cus045h20)16g/l,酒石酸钾钠(nakc4h4o6·4h2o)14g/l,edta·2na19.5g/l,氯化镍(nic12·6h2o)0.2g/l,甲醛(37%)12ml/l,naoh用作调节ph值,余为水,ph11.5~12.5,进行化学镀。

复合铸造工艺参数:在sf6和co2混合保护气氛中,az91d镁合金熔体温度700℃,超声振荡频率40khz,输出功率80w,振荡时间65s。

实施例2

点阵材料为314不锈钢,类型为四面体型,杆长2mm,杆径0.6mm,杆间夹角45°。选区激光熔化成型工艺参数激光功率120w,扫描速率300mm/s,光斑直径65μm,粉层厚度0.025mm,扫描间距90μm,采用逐行扫描方式,制备fe基点阵材料。

fe基点阵材料表面处理如下:采用70g/lnaoh,24g/lna3po4,25g/lna2co3,7g/lna2sio3,表面活化剂5ml/l,余为水,进行化学除油;采用120g/lnaoh,70g/lkmno4,95g/lna2co3,余为水,在90℃下进行酸洗,之后采用硝酸体积比32%的硝酸水溶液,溶液温度30℃,时间45min进行钝化处理。采用硫酸铜(cus045h20)15g/l,酒石酸钾钠(nakc4h4o6·4h2o)16g/l,edta·2na19.5g/l,氯化镍(nic12·6h2o)0.3g/l,甲醛(37%)14ml/l,余为水,naoh用作调节ph值,ph11.5~12.5进行化学镀。

复合铸造工艺参数:在sf6和co2混合保护气氛中,am60b镁合金熔体温度720℃,超声振荡频率42khz,输出功率80w,振荡时间60s。

检测知,实施例1与实施例2的mgfe界面剪切强度分别可达227mpa和231mpa。

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1