一种20CrMnMoA钢锥齿轮轴的热处理工艺的制作方法

文档序号:15984505发布日期:2018-11-17 00:43阅读:1133来源:国知局

本发明涉及机械部件的加工技术领域,特别涉及一种20crmnmoa钢锥齿轮轴的热处理工艺。

背景技术

近年来随着国民经济的发展,轴类、锥齿轮轴类零件的需求越来越多,其寿命和承载能力直接影响着机械生产厂家的经济效益,提高轴类、锥齿轮轴类零件的承载能力和使用寿命在机械行业越来越重要。常用的锥齿轮轴、轴和渗碳件需经过锻造、切削后,再进行正火、渗碳淬火和低温回火等工艺热处理,得到了浅表层为坚硬的渗碳层、心部为具有良好综合力学性能的组织,结构组织中含有马氏体、残余奥氏体以及块状碳化物等,这些组织以及淬火产生的残余应力对轴和渗碳件的力学性能如硬度、扭转强度等有着决定作用。

20crmnmoa钢比20crmnti钢的强度、淬透性高,但冲击韧性略低。主要用作渗碳钢,渗碳后可降温直接淬火,弯曲强度较高、耐磨性能好。可在淬火低温回火或调质后使用,切削加工性中等。用于制造拖拉机行业中截面较大的重负荷渗碳件及受力较大的齿轮轴、齿轮轴轴、蜗杆等。

锥齿轮轴需要在循环载荷、冲击载荷、很大接触应力和严重磨损的条件下工作的,因此要求表面硬而耐磨,心部强而韧,具有高的疲劳极限。因此,需要优化20crmnmoa钢热处理工艺,制备出高强度、高冲击韧性、高拉伸性能的锥齿轮轴。



技术实现要素:

本发明的目的在于提供一种20crmnmoa钢锥齿轮轴的热处理工艺,旨在制备出高强度、高冲击韧性、高拉伸性能的锥齿轮轴。

本发明提供一种20crmnmoa钢锥齿轮轴的热处理工艺,所述20crmnmoa钢锥齿轮轴化学元素成分及其质量百分含量为:c:0.17%~0.23%,si:0.17%~0.37%,mn:0.8%~1.3%,cr:1.0%~1.3%,ti:0.04%~0.12%,mo:0.20%~0.30%,ni<0.03%,cu<0.03%,p<0.035%,s<0.035%,所述余量为铁,所述热处理工艺包括以下步骤:

s1:渗碳:采用到温加热的方式,待气体渗碳炉加热到920-930℃,,将锥齿轮轴垂直叠放入炉中,排气,保温2.5h,保温时滴煤油160-180滴/分钟,渗层达到要求后降温到830±10℃;

s2:保温:保温均热2h;

s3:两级淬火:在820-850℃之间的温度下向将锥齿轮轴垂直浸入氯化钙溶液中,将锥齿轮轴急速降温至210-240℃后,将锥齿轮轴升温至700-750℃,保温1h,再将锥齿轮轴浸入液氮中淬火至-20℃-0℃;

s4:清洗干燥:对锥齿轮轴进行喷清洗液清洗,洗去锥齿轮轴表面的氯化钙溶液,再喷淋防锈液后干燥;

s5:正火处理;

s6:回火处理后经过机械加工制得成品锥齿轮轴。

作为本发明的进一步改进,步骤s3中氯化钙淬火时间为4-8s,液氮淬火时间为10-20s。

作为本发明的进一步改进,步骤s3中氯化钙淬火时间为6s,液氮淬火时间为15s。

作为本发明的进一步改进,20crmnmoa钢锥齿轮轴的轴表面部基体为极细的针状马氏体,残余奥氏体含量在2.6~3.2%,心部基体为较细的板条马氏体,残余奥氏体含量在10~15%。

作为本发明的进一步改进,20crmnmoa钢锥齿轮轴的残余奥氏体再结晶的晶粒度级别为13-15级。

与现有技术相比,本发明具有以下有益效果:

1.本发明的两级淬火工艺首次按采用氯化钙溶液作为淬火剂,急速使锥齿轮轴冷却降温,使表层的奥氏体转变马氏体,表层的体积膨胀,在锥齿轮轴的表层形成压应力,减少淬火裂纹的产生,再通过升温到700-750℃的方式使20crmnmoa钢锥齿轮轴内残余奥氏体的再结晶,进一步细化锥齿轮轴内部组织,最后采用液氮淬火至零度以下,锥齿轮轴的残余奥氏体进一步转化成马氏体,最终制得的20crmnmoa钢锥齿轮轴的轴表面部残余奥氏体含量在2.6~3.2,显著提高锥齿轮轴硬度、强度、冲击韧性和拉伸性能。

2.本发明采用先通过氯化钙溶液这种在600℃时冷却速度最大的淬火剂对锥齿轮轴进行短时间极冷淬火,细化金属晶粒,通过再结晶后再采用液氮进一步较长时间淬火,这样获得锥齿轮轴的轮部基体为极细的针状马氏体,心部基体为较细的板条马氏体,残余奥氏体的晶粒度达到较高级别,晶粒细小,组织排列顺序性高,屈服强度大,既能提高锥齿轮轴的强度又能改善锥齿轮轴的拉伸性能和韧性。

3.本发明两级淬火工艺中的升温过程一方面使残余奥氏体发生再结晶,另一方面一部分马氏体转变为奥氏体,增加了锥齿轮轴中残余奥氏体的含量,特别是心部的残余奥氏体的含量,轮部的残余奥氏体含量在2.6~3.2,心部的残余奥氏体的含量在残余奥氏体含量在10~15%,这种金相结构的锥齿轮轴的轴表面部具有较高的硬度、耐磨性和抗高温热裂性能,心部具有较高的冲击韧性和抗冲击性能。

具体实施方式

下面将结合具体实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明披露了一种20crmnmoa钢锥齿轮轴的热处理工艺,具体实施方式如下。

实施例1

一种20crmnmoa钢锥齿轮轴的热处理工艺,20crmnmoa钢锥齿轮轴化学元素成分及其质量百分含量为:c:0.17%,si:0.17%,mn:0.8%,cr:1.0%,ti:0.04%,mo:0.20%,ni<0.03%,cu<0.03%,p<0.035%,s<0.035%,,所述余量为铁,所述热处理工艺包括以下步骤:

s1:渗碳:采用到温加热的方式,待气体渗碳炉加热到920-930℃,将锥齿轮轴垂直叠放入炉中,排气,保温2.5h,保温时滴煤油160-180滴/分钟,渗层达到要求后降温到830±10℃;

s2:保温:保温均热2h;

s3:两级淬火:在820-850℃之间的温度下向将锥齿轮轴垂直浸入氯化钙溶液中,将锥齿轮轴急速降温4s至210-240℃后,将锥齿轮轴升温至700-750℃,保温1h,再将锥齿轮轴浸入液氮中淬火10s至-20℃-0℃;

s4:清洗干燥:对锥齿轮轴进行喷清洗液清洗,洗去锥齿轮轴表面的氯化钙溶液,再喷淋防锈液后干燥;

s5:正火处理;

s6:回火处理后经过机械加工制得成品锥齿轮轴。

经过检测20crmnmoa钢锥齿轮轴的轴表面部基体为极细的针状马氏体,残余奥氏体含量在3.2%,心部基体为较细的板条马氏体,残余奥氏体含量在10%,20crmnmoa钢锥齿轮轴的残余奥氏体再结晶的晶粒度级别为14级。

实施例2

一种20crmnmoa钢锥齿轮轴的热处理工艺,20crmnmoa钢锥齿轮轴化学元素成分及其质量百分含量为:c:0.23%,si:0.37%,mn:1.3%,cr:1.3%,ti:0.12%,mo:0.30%,ni<0.03%,cu<0.03%,p<0.035%,s<0.035%,,所述余量为铁,所述热处理工艺包括以下步骤:

s1:渗碳:采用到温加热的方式,待气体渗碳炉加热到920-930℃,将锥齿轮轴垂直叠放入炉中,排气,保温2.5h,保温时滴煤油160-180滴/分钟,渗层达到要求后降温到830±10℃;

s2:保温:保温均热2h;

s3:两级淬火:在820-850℃之间的温度下向将锥齿轮轴垂直浸入氯化钙溶液中,将锥齿轮轴急速降温8s至210-240℃后,将锥齿轮轴升温至700-750℃,保温1h,再将锥齿轮轴浸入液氮中淬火20s至-20℃-0℃;

s4:清洗干燥:对锥齿轮轴进行喷清洗液清洗,洗去锥齿轮轴表面的氯化钙溶液,再喷淋防锈液后干燥;

s5:正火处理;

s6:回火处理后经过机械加工制得成品锥齿轮轴。

经过检测所述20crmnmoa钢锥齿轮轴的轴表面部基体为极细的针状马氏体,残余奥氏体含量在2.6%,心部基体为较细的板条马氏体,残余奥氏体含量在15%。,20crmnmoa钢锥齿轮轴的残余奥氏体再结晶的晶粒度级别为13级。

实施例3

一种20crmnmoa钢锥齿轮轴的热处理工艺,20crmnmoa钢锥齿轮轴化学元素成分及其质量百分含量为:c:0.21%,si:0.26%,mn:0.11%,cr:1.2%,ti:0.08%,mo:0.25%,ni<0.03%,cu<0.03%,p<0.035%,s<0.035%,,所述余量为铁,所述热处理工艺包括以下步骤:

s1:渗碳:采用到温加热的方式,待气体渗碳炉加热到920-930℃,将锥齿轮轴垂直叠放入炉中,排气,保温2.5h,保温时滴煤油160-180滴/分钟,渗层达到要求后降温到830±10℃;

s2:保温:保温均热2h;

s3:两级淬火:在820-850℃之间的温度下向将锥齿轮轴垂直浸入氯化钙溶液中,将锥齿轮轴急速降温6s至210-240℃后,将锥齿轮轴升温至700-750℃,保温1h,再将锥齿轮轴浸入液氮中淬火15s至-20℃-0℃;

s4:清洗干燥:对锥齿轮轴进行喷清洗液清洗,洗去锥齿轮轴表面的氯化钙溶液,再喷淋防锈液后干燥;

s5:正火处理;

s6:回火处理后经过机械加工制得成品锥齿轮轴。

经过检测,20crmnmoa钢锥齿轮轴的轴表面部基体为极细的针状马氏体,残余奥氏体含量在2.8%,心部基体为较细的板条马氏体,残余奥氏体含量在12%,20crmnmoa钢锥齿轮轴的残余奥氏体再结晶的晶粒度级别为15级。

表1为锥齿轮轴的硬度和力学性能测试结果。

表1锥齿轮轴的性能指标

实施例1-3的结果表明,本发明提供的锥齿轮轴通过氯化钙溶液这种在600℃时冷却速度最大的淬火剂对锥齿轮轴进行短时间极冷淬火,细化金属晶粒,通过再结晶后再采用液氮进一步较长时间淬火,这样获得锥齿轮轴的轮部基体为极细的针状马氏体,心部基体为较细的板条马氏体,残余奥氏体的晶粒度达到较高级别,晶粒细小,组织排列顺序性高,屈服强度大,既能提高锥齿轮轴的强度又能改善锥齿轮轴的拉伸性能和韧性,因此本发明的锥齿轮轴具有高硬度、高拉伸/屈服强度和高的冲击韧性。

以上对本发明所提供的一种20crmnmoa钢锥齿轮轴的热处理工艺。本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1