一种新型二维硫化铬材料的制备方法与流程

文档序号:20917184发布日期:2020-05-29 13:41阅读:1397来源:国知局
一种新型二维硫化铬材料的制备方法与流程

本发明涉及二维材料的制备领域,具体涉及一种新型二维硫化铬材料的制备方法。



背景技术:

自2004年以来,受石墨烯的影响,二维材料成为凝聚态物理、材料科学、光电信息科学等领域的研究热点。

二维纳米材料如石墨烯、tmds、h-bn、黑磷、硅烯等二维原子晶体层状材料具有独特的光电特性,比如石墨烯的极高载流子迁移率和热导性能等,tmds的能谷、自旋电子态等物性,原子级平整的h-bn的电绝缘性,黑磷材料随层数变化的能隙可调性、各项异性、旋光性等,硅烯的量子自旋霍尔效应等。

二维材料在信息、微纳电子等方面具有潜在的应用前景,对其特性进行操控,可开发出新型的电子学、光电子器件;二维材料的平面特征,使其更易于集成于现有的半导体工艺技术。

对于二维的硫化铬材料,理论报道[j.phys.chem.c116,8983(2012);appl.phys.lett.104,022116(2014);j.phys.chem.c118,7242(2014);j.alloyscompd.47,47020554(2015)]表明单层的crs2的能带结构与二维的mos2相似,具有能谷散射(valleypolarization)等光电特性。理论研究表明随着二维的crs2材料的层数不同,其能带宽度从约0.5ev到1.3ev变化,这一能量范围覆盖了光谱中从可见光到中红外光的波段,对远程通讯、传感器、太阳能电池等一系列光电技术的发展具有重大意义。同时,这一能量范围也与现有半导体技术中的硅和以及三五族半导体的带隙相匹配,使得具有这一带隙的材料具有极大的研究价值和应用潜力。现有技术中尽管有这些理论研究,但是还没有公开报道实验上制备出二维硫化铬材料。



技术实现要素:

本发明的目的在于针对现有技术的不足,提供一种新型二维硫化铬材料的制备方法,能够降低形成二维硫化铬材料的温度,提高其制备效率和产量。

本发明所提供的技术方案为:

一种新型二维硫化铬材料的制备方法,包括:

1)使用铬源在衬底上沉积,形成铬源薄膜;

2)在铬源薄膜上铺设能够降低硫化铬形成能的材料;

3)使用硫源与铬源薄膜进行硫化,形成二维硫化铬材料;所述硫化时衬底采用分段升温及恒温处理。

本发明所述步骤1)中铬源薄膜的厚度为0.1-50nm,优选为为1-30nm,进一步优选为5-25nm。

本发明所述步骤1)中沉积可以采用物理气相沉积、化学气相沉积、电子束沉积、分子束沉积等常规的薄膜制备技术。作为优选,所述步骤1)中沉积时衬底的温度保持在20-500℃,采用真空磁控溅射方法或电子束蒸镀方法。

本发明中能够降低硫化铬形成能的材料包括:金属(例如金、钛、镍等),非金属(例如碲、碘),以及含有钠离子、钾离子的盐(例如nacl、ki等)。

作为优选,所述材料选自金、钛、镍、碲、碘、钠盐、钾盐中一种或几种。

本发明中所述铬源薄膜与材料的质量比为1:0.5-3。质量比也大致相当于铬源薄膜厚度与能够降低硫化铬形成能的材料的铺设厚度之比。

本发明中所述铬源是指含有铬元素的化合物(固态、液态或气态),或者单质铬。

作为优选,所述铬源为金属铬。考虑到金属铬熔点很高、较难于形成气态物质的问题,在制备二维硫化铬的过程中采用能够降低二维硫化铬形成能的材料;能够降低二硫化铬形成能的材料的功能在于与金属铬结合能够降低金属铬的熔点,同时对形成二维硫化铬材料具有催化作用。

本发明中所述硫源是指容易形成气态的含硫的固态、气态或液态物质,或者单质硫。作为优选,所述硫源为气态的硫粉或h2s气体。

本发明中所述步骤3)中硫源通过载气传质到衬底上的铬源薄膜。作为优选,所述载气为n2或ar。除了载气外,视情况还可能通有还原性的氢气,以防止金属氧化。

本发明所述步骤3)中分段升温及恒温处理是指包含多段升温及恒温,可以选择1~5段。其中两段热处理如下:先升温处理-恒温处理-再升温处理-再恒温处理。作为优选,所述硫化时衬底采用两段升温及两段恒温处理,第一段恒温的温度为200-500℃,第二段恒温的温度为400-950℃。两段升温速率可以不同,可以分别为2-80℃/分钟。

本发明中所述衬底包括绝缘材料、半导体材料、贵金属、石墨或石墨烯。其中的半导体材料和绝缘体材料包括但不局限于zrb2、sic、sio2、bn、si3n4、hfo2、al2o3、蓝宝石、云母、氧化石墨烯、zno、mgo、si、ge、gan、gaas、inp中的一种或两种以上的组合;贵金属包括au、pt、pd、ir等,是指不与cr形成合金、不与s反应的金属。

本发明还提供一种新型二维硫化铬材料的制备方法,包括:

1)将铬源与能够降低硫化铬形成能的材料混合在一起,使混合物形成第一气态前驱体;

2)处理硫源使其形成第二气态前驱体;

3)将第一气态前驱体与第二气态前驱体传质到衬底上进行硫化,形成二维硫化铬材料。

本发明中所述形成第一气态前驱体与第二气态前驱体的方法可以采用加热或能量粒子束处理。使得混合物和硫源接受能量变成气态的材料,即形成气态前驱体;其中的能量粒子束包括激光、等离子体、电子束等。

本发明所述第一气态前驱体与第二气态前驱体通过载气传质到衬底上。作为优选,所述载气为n2或ar。

本发明中能够降低硫化铬形成能的材料包括:金属(例如金、钛、镍等),非金属(例如碲、碘),以及含有钠离子、钾离子的盐(例如nacl、ki等)。

作为优选,所述材料选自金、钛、镍、碲、碘、钠盐、钾盐中一种或几种。

本发明中所述铬源与材料的质量比为1:0.5-3。

本发明中所述铬源为金属铬。

本发明中所述硫源为硫粉。

本发明中所述步骤3)硫化时衬底的温度控制在400-950℃。

本发明中所述衬底包括绝缘材料、半导体材料、贵金属、石墨或石墨烯。其中的半导体材料和绝缘体材料包括但不局限于zrb2、sic、sio2、bn、si3n4、hfo2、al2o3、蓝宝石、云母、氧化石墨烯、zno、mgo、si、ge、gan、gaas、inp中的一种或两种以上的组合;贵金属包括au、pt、pd、ir等,是指不与cr形成合金、不与s反应的金属。

同现有技术相比,本发明的有益效果体现在:

本发明制备二维硫化铬材料的方法简单,能够降低形成二维硫化铬材料的温度,提高其制备效率和产量。

附图说明

图1为单层二维硫化铬材料的结构示意图;

图2为实施例1中制备的二维crs2薄膜的sem图;

图3为实施例1中制备的二维crs2薄膜的x-射线光电子能谱(xps)图谱;

图4为实施例2中制备的二维crs2薄膜的sem图;

图5为实施例3中制备的二维crs2薄膜的sem图;

图6为对比例1中制备的二维crs2薄膜的sem图;

图7为实施例4中制备的二维crs2薄膜的sem图;

图8为实施例5中制备的二维crs2薄膜的sem图;

图9为实施例6中制备的二维crs2薄膜的sem图;

图10为实施例6中制备的二维crs2薄膜的raman图;

图11为对比例2中制备的二维crs2薄膜的sem图。

具体实施方式

下面结合具体的实施例对本发明作进一步说明。

本发明中的二维硫化铬材料含有铬和硫元素,其原子结构呈平面状,单层的二维硫化铬由硫-铬-硫三原子层组成的三明治结构,如附图1所示。单层的二维硫化铬堆砌成不同层数的二维硫化铬材料,其化学结构式为crs2。本发明中的二维硫化铬材料包括层数为1-100层的硫化铬薄膜材料。进一步优选为1-50层。

实施例1

首先利用高纯度单质铬靶材,采用真空磁控溅射方法溅射到硅片上,得到铬薄膜厚度约为5nm。

然后,将金粉(约0.1克)铺设在溅射有金属铬薄膜(相当于0.2克)的衬底上,衬底与单质硫一起装入高温炉,衬底与单质硫相隔一定的距离。衬底的温度先以5℃/分钟升到300℃,维持恒温4分钟,然后以25℃/分钟升到400℃,维持恒温约15分钟,使cr硫化成二维crs2薄膜。

单质硫粉的温度从反应开始温度一直保持在130℃左右。整个过程高温炉保持在低压(比如压强约为1.0×103pa),整个过程通入惰性气体如氩气作为载气,流量约为60sccm。

硫化反应结束后让高温炉以降温速率40℃/分钟降至室温而得到二维crs2薄膜。二维crs2薄膜进行sem表征,如图2所示,可知引入金粉后,在较低400℃下进行硫化反应,也可以得到大量的二维的crs2。

针对实施例1所制备的二维crs2薄膜进行x-射线光电子能谱表征,如图3所示,该图谱表明产物含有cr和s,同时比较已有其它含cr和s的化合物分析得知产物为crs2,说明本发明得到了二维的crs2。

实施例2

首先利用高纯度单质铬靶材,采用真空磁控溅射方法溅射到高定向裂解石墨hopg的衬底,得到铬薄膜厚度约为25nm。

然后,将碲粉(约2克)铺设在溅射有金属铬薄膜(相当于1克)的衬底上,衬底与单质硫一起装入高温炉,衬底与单质硫相隔一定的距离。衬底的温度先用20℃/分钟升到400℃,维持恒温20分钟,然后用30℃/分钟分钟升到650℃,维持恒温约30分钟,使cr硫化成二维crs2薄膜。

单质硫粉的温度从反应开始温度一直保持在130℃左右。整个过程高温炉保持在常压,整个过程通入惰性气体氩气作为载气,流量约为50sccm。

硫化反应结束后让高温炉以降温速率10℃/分钟降至室温而得到的二维crs2薄膜。二维crs2薄膜进行sem表征,如图4所示。

实施例3

首先利用高纯度单质铬靶材,采用真空磁控溅射方法溅射到云母衬底,得到铬薄膜厚度约为10nm。

然后,将ki粉(约1.2克)铺设在溅射有金属铬薄膜(相当于0.4克)的衬底上,衬底与单质硫一起装入高温炉,衬底与单质硫相隔一定的距离。衬底的温度先用20℃/分钟升到400℃,保持40分钟,然后用60℃/分钟分钟升到950℃,保持约20分钟,使cr硫化成二维crs2薄膜。

单质硫粉的温度从反应开始温度一直保持在130℃左右。整个过程高温炉保持在低压(比如压强约为3.0×103pa),整个过程通入惰性气体如氮气作为载气,流量约为20sccm。

硫化反应结束后让高温炉以降温速率40℃/分钟降至室温而得到的二维crs2薄膜。二维crs2薄膜进行sem表征,如图5所示。

对比例1

首先利用高纯度单质铬靶材,采用真空磁控溅射方法溅射到硅片上,得到铬薄膜厚度约为2nm。

然后,将溅射有金属铬薄膜的衬底和单质硫粉装入高温炉,衬底与单质硫相隔一定的距离。衬底的温度先以2℃/分钟升到200℃,保持2分钟,然后以30℃/分钟升到950℃,保持一定约20分钟,使cr硫化成二维crs2薄膜。

单质硫粉的温度从反应开始温度一直保持在130℃左右。整个过程高温炉保持在低压(比如压强约为1.0×104pa),整个过程通入惰性气体如氩气作为载气,流量约为30sccm。

硫化反应结束后让高温炉以降温速率50℃/分钟降至室温而得到二维crs2薄膜。二维crs2薄膜进行sem表征,如图6所示,由于制备过程中没有引入上述实施例的金粉、碲粉或者ki粉,在950℃硫化时,与实施例1-3相比所得的产物较少。

通过实施例1-3以及对比例1比较可知,使用能够降低二维硫化铬形成能的金属如金、非金属如碲以及含钠离子或钾离子的盐如ki,可以使得在衬底温度400-950℃下均可以制备得到二维硫化铬薄膜,并提高其制备效率和产量。

实施例4

将金属铬粉和碲粉(重量比为1:2)放置于同一坩埚,硫粉置于另一坩埚,分别采用能量粒子束使得混合物和硫粉接受能量变成气态的材料。

反应炉的真空度控制在1.0×10-5pa下,控制盛有铬粉和硫粉的坩埚温度,使铬粉和硫粉气化,气化的铬和硫通过载气氮气传质到半导体云母衬底上,反应形成二维的crs2。在反应过程中,衬底的温度控制在400℃,保持约50分钟,然后衬底以降温速率40℃/分钟降至室温。从而得到的二维crs2薄膜。

二维crs2薄膜进行sem表征,如图7所示。

实施例5

将金属铬粉和金粉(重量比为1:0.5)放置于的同一坩埚混合,而硫粉置于另一坩埚,采用加热的方式。

反应炉的真空度控制在1.0×10-3pa下,控制盛有铬粉和硫粉的坩埚温度,使铬粉和硫粉气化,气化的铬和硫通过载气氮气传质到绝缘的蓝宝石衬底上,反应形成二维的crs2。在反应过程中,衬底的温度控制在800℃,保持约40分钟,然后衬底以降温速率80℃/分钟降至室温。从而得到二维crs2薄膜。二维crs2薄膜进行sem表征,如图8所示。

实施例6

将金属铬粉和nacl(重量比1:3)放置于同一坩埚混合,而硫粉置于另一坩埚,采用加热的方式。

反应炉的真空度控制在1.0×10-2pa下,控制盛有铬粉和硫粉的坩埚温度,使铬粉和硫粉气化,气化的铬和硫通过载气氮气传质到硅衬底上,反应形成二维的crs2。在反应过程中,催化衬底的温度控制在950℃,保持约5分钟,然后衬底自然降温至室温。从而得到二维crs2薄膜。二维crs2薄膜进行sem表征,如图9所示;进行raman表征如图10所示。

对比例2

将金属铬粉和硫粉分别放置于不同的坩埚,分别采用能量粒子束技术使得铬粉和硫粉接受能量变成气态的材料。

反应炉的真空度控制在3.0×10-5pa下,控制盛有铬粉和硫粉的坩埚温度,使铬粉和硫粉气化,气化的铬和硫通过载气氮气传质到半导体硅片衬底上,反应形成二维的crs2。在反应过程中,衬底的温度控制在950℃,保持约50分钟,然后衬底以降温速率40℃/分钟降至室温。从而得到的二维crs2薄膜。

二维crs2薄膜进行sem表征,如图11所示,由于制备过程中没有引入碲粉、碲粉或nacl,在950℃硫化时,与实施例4-6相比所得的产物较少。

通过实施例4-6以及对比例2比较可知,在有能够降低二维硫化铬形成能的物质条件下,均能够在400-950℃下制备得到二维硫化铬薄膜,并且可以提高其制备效率和产量。

尽管本发明只在实施例1提供xps研究结果,在实施例6提供了raman谱,但是通过其它实施例所获得的样品也具有相同的xps和raman谱特性。

以上实施例简单地说明了制备本发明的二维crs2薄膜的基本原理,其中的各个参数都可以依据所需制备的crs2薄膜而进行调解,并且不同实施例中参数可以相互参考。这些实施例的目的是为了更好地理解本发明的思想,而不是限制本发明的权利要求范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1