连续送进三床变压吸附系统的制作方法

文档序号:3432310阅读:215来源:国知局
专利名称:连续送进三床变压吸附系统的制作方法
技术领域
本发明涉及一种变压吸附(PSA)系统,用于使用供给气流的连续送进而使得包含有氢气等所需要纯气体的不纯的供给气流纯化。
背景技术
在化学处理工业中,对于高纯气体,例如对于氢气的需要在不断增加,例如在钢的退火、硅制造、油脂的氢化、玻璃制造、氢化裂解、甲醇生产、羰基醇生产以及异构化过程中。这样不断增加的需求需要效率很高的分离处理用于从各种送进的混合物中生产出H2。
为了获得高效的PSA分离处理,PSA系统的成本和生产费用都必须降低。
一种降低PSA系统成本的方法是降低吸附剂物料量和PSA处理中床的数量。另外,可以使用预先循环和PSA处理中的吸附剂获得进一步改善。然而,H2送进气体包含一些污染物,例如送给气流会包含CO2(20%到25%)和较少量的H2O(<0.5%),CH4(<3%),CO(<1%)和N2(<1%)。这样具有大范围组成变化的吸附物组合对于吸附剂的有效选择、吸附器中吸附剂的构造以及单独吸附层和多吸附床系统的选择从而获得有效的H2-PSA处理,都是很大的挑战。
美国专利No.6,551,380 B1涉及一种气体分离设备和工艺,其具有用于接收送进气体的第一PSA单元,包含第一和第二成分。第一PSA单元产生主要包含第一成分的第一生产气体,而第一送出气体包含至少部分第一成分和第二成分。压缩机与第一PSA单元连在一起从而压缩第一送出气体,形成压缩的送出气体,压缩的送出气体向下游到达吸附体单元,吸附体单元采用溶剂从压缩的送出气体中除去至少部分的第二成分,形式浓缩的压缩排出气体。第二PSA单元接收浓缩的压缩排出气体,并且制造主要包含第一成分的第二生产气体以及废弃的或者送往转化燃烧器的第二送出气体。
美国专利No.6,521,143 B1涉及一种用于同时制造H2/CO比例小于2.5的合成气产品以及氢气产品的工艺。该工艺包括增加适量的二氧化碳供应给副转化器以便(a)从主转化器的流出物以及(b)从副转化炉的流出物,提取出二氧化碳。还提供了用于施行该工艺的设备。
美国专利No.6,503,299 B2涉及一种两床PSA处理,用于从包含主要成分和一种多种杂质的送进气体中回收纯度超过99%气态的的主要成分。这种处理包括(a)送进气体通过第一吸附床以除去一种或多种杂质;(b)在第一床中实施PSA循环;(c)将流出的气体单独地从第一床送到至少两个分离储罐之内,用于随后床的净化和加压;(d)在第一储罐中以高于第二储罐中气体混合物主要成分的浓度储存气体混合物;(e)在其中的再生步骤过程中,主要成分的混合物从第一吸附床中的第二储罐回流;(f)在其中的再生步骤过程中,主要成分的混合物从第一吸附床中的第一储罐回流;(g)同时和非同时地在第二床中进行(a)到(f)的步骤;以及(h)回收生产的气流。
美国专利No.6,340,382 B1涉及一种PSA处理工艺,用于纯化包含60摩尔%到90摩尔%氢以及如CO2、CH4、N2和CO等杂质的合成气流。该公开的PSA处理工艺还提供了从送进气流吸附基本上所有氮气及其它污染物的方法;其中送进气流以超大气压力通过多个吸附剂床,并且各个吸附床至少包含CaX、LiA、LiX或者包含混合阳离子沸石的钙,沸石具有摩尔量2.0-2.5的SiO2/Al2O3。这种处理按顺序包括使得带有产品氢的吸附剂床加压、减压、净化以及再加压,以及从床上以99.9%或者更大的纯度回收产品氢。
美国专利No.6,402,813 B2涉及包含一种或多种气体杂质的气流,杂质包括二氧化碳、水汽、H2S、醇、SO2和饱和或者非饱和的C1-C8、线形的、支化的或者环状的烃类,它接触到一些不同的多孔碳吸附剂,即具有不同性能和特征的活性炭。该气体为空气、氮气、通过重新形成或者分裂氨水或燃烧气体制造的氢气、或者发酵气体。
美国专利No.6,483,001 B2涉及一种PSA设备和处理工艺,用于从包含重碳氢化合物(即具有至少六个碳的烃类)中生产纯化氢。该设备包括至少一个包含至少三层的床。分层的吸附区包括的送进端带有低表面积吸附剂(20到400m2/g),其构成床总长度的2到20%的,随后是一层中间表面积吸附剂(425到800m2/g),其构成床总长度的25到40%,以及最后一层高表面积吸附剂(825到2000m2/g),其构成床总长度的40到78%。
美国专利No.6,027,549涉及一种处理工艺,用于从包含气体混合物的二氧化碳中吸附二氧化碳,包括使得气体混合物与密度在大约0.56到0.61g/cc(35到381bs./ft3)范围的活性碳吸附剂相接触,以及将二氧化碳吸附在活性碳吸附剂上。
美国专利No.5,294,247涉及一种工艺方法,用于从稀释的精炼排出气体中回收氢气,使用真空摇摆吸附处理工艺以及同时并流减压以在真空和逆流减压的影响下为另一床提供净化气体,并排出空隙空间气体和/或吸附气体到周围环境中。
美国专利No.6,454,838 B1涉及一种PSA处理工艺,包括提供具有六个床的PSA设备,以及在四个步骤中均衡六个床中每一个的压力,其中在处理的过程中,六个床中的至少一个一直提供排出气体。该处理工艺特别适合于从包含氢气和甲烷、二氧化碳、一氧化碳、氮气和水汽中的至少一种的送进的气体混合物中纯化氢气。
美国专利No.6,379,431 B1涉及一种PSA处理工艺,包括具有多个床的吸附设备以及在整个处理工艺中同时用反向气流净化至少两个床。
床的数量和压力均衡步骤的数量没有特别地限制,但是对于十床,四个压力均衡步骤的处理是有利的。另外,对于其它的十床,公开了四个压力均衡步骤的处理,它没有同时用反向电流净化至少两个床,但是它的十个床中的平均至少两个通过同时从各个床的送进端向排出气体线路提供排出气体从而同时进行再生。
美国专利No.5,912,422涉及一种用于从气体混合物中分离氢气的处理工艺,其中气体混合物被一氧化碳污染并且包含下述组中的至少一种其它的杂质二氧化碳和饱和或非饱和的,线形的,支化的或者环状的C1-C8烃类,该处理工艺包括使得要纯化的气体混合物在吸附区域中至少接触一种第一吸附剂,选择成至少是用于二氧化碳和C1-C8烃类以及一种第二吸附剂,其为与锂交换至少80%的八面型的沸石,其Si/Al比例小于1.5,从而至少用于去除一氧化碳(CO)。
美国专利No.6,210,466 B1涉及一种克服PSA单元容积历史限制的用于多种气体分离的处理工艺。现在可以在单个综合工艺序列中实现超过大约11万标准立方米每小时(100百万标准立方英尺每天)的容积。相应的重要的设备减少导致与PSA工艺中接受的原理偏离,即净化步骤的长度必须等于或小于吸附步骤的长度。通过相对于吸附步骤增加净化时间,并结合从其它一个或多个吸附床向一列吸附床中的任何吸附床提供净化气体,并且在提供-净化步骤的过程中,其它吸附床同时提供净化气体给基本上所有吸附床进行净化步骤,使得单个列的容积可以大大增加,而回收或性能的损失会最小。这个发现的优点是那些非常地大规模的PSA单元现在可以构造为单列的设备,成本显著低于两个或更多平行列设备的成本。
美国专利No.5,753,010涉及一种用于增加产品回收或者降低用于氢气制造的蒸汽甲烷转化器和变压吸附系统尺寸的方法。PSA减压和净化排出气体中氢气的主要部分,即否则会在转化器作为燃料燃烧的部分,被回收并循环到PSA系统中以提供额外的高纯度氢气产品。实现它是通过在吸附剂隔膜分离器中处理选出的减压和净化的部分排出气体,从而增加循环到PSA系统中的氢气含量。减压和净化排出气体的包含较低浓度氢气的剩余部分用于转化器中的燃料值。
美国专利No.3,430,418涉及一种隔热的变压处理工艺,用于通过以特别流动次序连接的至少四个吸附剂床,从带有氢气的混合物中有选择地吸附例如二氧化碳、水和光脂肪族烃成分。
美国专利No.3,564,816涉及一种用于分离气体混合物的PSA处理工艺,其中至少四个吸附剂床相连接,从而使得吸附物负荷床在分阶段的程序中与两个其它的床进行压力均衡。
美国专利No.6,558,451 B2涉及一种的紧凑的多床PSA设备,通过使用非活性的加压吸附器床净化吸附的氮气,从而有效地制造高浓度氧气并且保持在最低的噪音水平。
美国专利No.6,428,607 B1涉及一种PSA处理工艺,用于分离包含至少一种可吸附性更强的成分和至少一种可吸附性不强的成分的加压送进气体。该处理工艺包含(a)引入加压送进气体到包含一种或多种固态吸附剂的吸附器床送进端之内,固态吸附剂优先吸附更强的可吸附成分并且从吸附器床的产品端收回不太强的可吸附成分富集的第一吸附器排出气体,其中第一吸附器排出气体被用作最终的产品气体;(b)停止引入加压送进气体到吸附器床之内,同时从吸附器床的产品端收回不太强的可吸附成分富集的第二吸附器排出气体,其中吸附器床中的压力下降而第二吸附器排出气体被用作辅助的最终产品气体;(c)通过收回由其而来的附加气体而使得吸附器床减压到最低的床压;(d)通过引入再次加压的气体进入床内使得吸附器床再增压,其中再次加压气体的至少一部分是由加压送进气体提供;以及(e)以循环的方式重复步骤(a)至(d)。在该处理循环步骤中不需要净化或者再加压最终产品气体。
美国专利No.5,084,075涉及一种用三床真空摇摆吸附技术从空气中回收氮气的方法,其中在回收氮循环气流和氮气产品以前床不用氮气进行冲洗。
本发明的一个目的是提供多床PSA系统,优选三床PSA系统,可以处理连续的带杂质的气流,从而产生高纯气体成分而不使用贮罐在PSA循环的压力变化步骤的过程中收集排出气体。
本发明的另一个目的是提供一种紧凑的三床PSA系统,可以以相对现有技术PSA处理工艺更低的吸附压力、更低的床尺寸因素(bsf)以及更低的成本操作连续供应的气体。
本发明的另一个目的是提供新颖的三床PSA系统,用于从包含氢气成分的连续的混合气流制造氢气。
本发明的其它目的和优点将根据以下与附图相关的说明而变得更清楚。

发明内容
本发明提供了一种变压吸附处理方法,用于在多床系统中分离包含至少一种较强吸附性成分以及至少一种不太强吸附性产品气体成分的加压供给送进气体,所述方法包括连续送进供给气体进入包含至少一种固体吸附剂的吸附器床的送进端,固体吸附剂优先吸附较强吸附性的成分并且从吸附器床的出口端收回最不强吸附性的产品成分,在循环中通过各步骤进行生产,其中连续送进的供应气体向着顺序并流的方向通过各个吸附器床从而使用PSA循环中的连续送进气体、加压步骤,压力均衡步骤,恒定产品气体步骤以及净化步骤来制造气体产品。
该处理方法的产品气体优选为氢气,但是该处理方法也可以扩展至供给送进物的其它的分离处理,例如氦气净化、天然气升级、从合成气或者包含CO2的其它资源中生产CO2,或者其它用于H2和CO共同产品生产的PSA处理方法。本发明的一个新的特征是在多床PSA系统中使用了连续送进的供给气体,优选为三床H2PSA系统,该系统使用了具有更低吸附压力的更短的床,产品加压与吸附压力的最佳比例范围从大约0.20到大约0.35,对于12步骤循环适用的吸附压力为从20psig到900psig,而对于其它的循环步骤适用的吸附压力为从50psig到900psig。需要上述产品加压的最优量从而使得以高回收率生产高纯度氢气中床的尺寸因素最小。产品加压的量被定义为在产品加压步骤的过程中靠吸附压力而分开床压力的变化。


参考附图叙述本发明。
图1为根据本发明的用于三床PSA系统的示意流程图。
图2为当进行本发明十二步骤三床PSA系统的第一实施例的各个步骤时,吸附床的一系列的示意图。
图3为十二步骤三床PSA系统的处理压力分布图。
图4为在产品加压/吸附压力的过程中三床PSA系统的床尺寸因素相对床压力变化的曲线图。
图5为当进行本发明的9步骤三床PSA系统的第二实施例的各个步骤时,吸附床的一系列的示意图。
图6为当进行本发明的9步骤三床PSA系统的第三实施例的各个步骤时,吸附床的一系列的示意图。
具体实施例方式
在本发明第一和优选实施方式中,新的PSA系统使用十二步骤三吸附床PSA循环,除了净化和产品加压步骤外具有两个压力均衡步骤。该PSA处理工艺还使用连续供应气体送进而没有使用贮罐,并且在高压均衡步骤之前使用产品加压步骤。三床PSA循环比现有技术PSA处理工艺具有更低的床尺寸因素。
本发明的另一实施例使用九步骤三床PSA系统,其具有与送进加压步骤相重叠的高压均衡步骤而没有产品加压步骤。
本发明的另一实施例使用九步骤三床PSA系统,其具有产品加压步骤而没有高压均衡步骤。
十二步骤三床氢气PSA系统与九步骤三床系统的实施例相比,主要优点是减少了床的尺寸因素。
适当的吸附剂例如不同体积密度的活性碳及其它沸石材料例如Li-X沸石、CaX(2.0)等可以用于三床PSA分离处理中而没有偏离本发明的范围。例如,代替使用VSA6沸石,三床PSA处理工艺也可以使用CaX(2.0)以及天然产生的结晶沸石分子滤网,例如菱沸石、毛沸石以及八面沸石。此外,沸石包含锂/碱土金属A和X沸石(Chao等的美国专利No.5,413,625;5,174,979;5,698,013;5,454,857和4,859,217)也可以用于本发明。
同样,各个PSA床中的各个分层吸附剂区域可以用同样类型的吸附剂层替换。例如,各个床中的单层沸石可以用不同的吸附剂的多层(例如VSA 6可以用在其顶部带有VSA6的13X的第一层替代)替换。另外,沸石层可以替换为在单独区域中包含不同吸附剂材料的复合吸附层,其中在各个区域中的可应用的加工条件下,温度条件会有利于特别的吸附材料的吸附性能。复合吸附层设计的更详细情况由Notaro等的美国专利US.5,674,311中给出。
图1和2示出了十二步骤三床PSA系统,包含三个吸附器床,17个ON/OFF阀,5个控制阀(CV)以及相关的管件和配件。控制阀用于在处理工艺的特定步骤中控制流速或者压力CV-1在第一泄料过程中控制床外的流动速率;CV-2控制床提供净化的速率;CV-3控制床均衡的速率;CV-4控制床接收产品加压气体的速率;以及CV-5使得床在产品生产的过程中保持在恒压下。
在图1-3中示出了本发明使用三床PSA处理的PSA处理工艺的实施例,在表1中示出了其运行状态并在表2中示出了其阀的切换逻辑。以下显示的结果是由PSA试验场使用干燥后成分为77.4%的H2,19.24%的CO2,0.66%的CO,1.99%的CH4以及0.70的N2的送进混合物而获得的。同样在表中,总的床尺寸因素是每天每吨制造的H2所需吸附剂的总量。
表1PSA处理工艺性能以及操作条件循环时间(s) 480床的第一层的吸附剂氧化铝氧化铝的量(1b/TPD H2) 1.053×103床第三层的吸附剂 活性碳活性碳的量(1b/TPD H2)2.804×103床第三层的吸附剂 VSA6沸石沸石的量(1b/TPD H2) 2.063×103高压 9,324×102kPa低压 1.360×102kPa送进流(Kmo1/s.m2)1.5814×10-2氢气纯度 99.99%氢气回收 75%床的总尺寸因素(1b/TPD H2)5.920×103温度 311.2kTPD=吨(2000 1bPa=S.I.压力单元(1.0)大气压=1.01325巴=101.32表2十二步骤三床氢气PSA处理工艺的阀门启动程序


AD吸附/产品生产PG接收净化ED1第一均衡下降EU1第一均衡上升PPG提供净化气体EU2第二均衡上升ED2第二均衡下降PP使用R气体(RG)产品加压BD泄料 FD送进加压AD吸附/产品生产,ED1第一均衡下降,PPG提供净化气体,ED2第二均衡下降,BD泄料,PG接收净化,EU1第一均衡上升,以及PP使用R气体(RG)产品加压参考图1-3以及表2,现在根据一个完整的PSA循环叙述三床十二步骤PSA处理工艺。
步骤No.1送进气体被引入床1的底部,同时氢气产品从顶部(AD1)取出。床2从床3接收净化气体。在步骤1开始时,床1中的压力接近吸附压力。阀1被打开,从而使得送进气体可以进入到床1的底部,并且阀10被打开,从而使得产品氢气可以到床1的顶部之外。然而,不进行产品生产直到床1到达吸附压力。此时CV-5打开并且控制床中的压力进行恒压的产品生产。阀8a和9a打开从而使得净化气体可以从床3通过控制阀CV-2流到床2。阀5和13保持打开从而使得净化气体可以流出床2的底部。
步骤No.2床1在第二吸附步骤(AD2)中。床3进行第二均衡下降,而床2从床3接收气体并且进行第一均衡上升。在步骤2开始时,阀1和10保持打开从而使得产品生产从床1继续。阀8a和9a同样保持打开从而使得在床2和3之间产生均衡。然而,均衡气流通过控制阀CV-3而不是CV-2。阀5和13关闭。
步骤No.3床1在第三吸附步骤(AD3)中。床2从产品集合管中接收产品加压气体。床3进行第一逆流泄料。在步骤3开始时,阀1和10保持打开从而使得产品生产从床1继续。阀8a和9a关闭。阀8b打开从而使得产品气体给床2加压。阀6打开从而使得床3进行逆流泄料。阀CV-1控制泄料气体的流量。
步骤No.4床1进行第一均衡下降(ED1)而床2从床1接收气体并且与送进加压相重叠进行第二均衡上升。床3进行第二逆流泄料。在步骤4开始时,阀1、8b和10关闭。阀7c和8a打开从而使得在床1和2之间通过控制阀CV3产生均衡。阀2打开从而在床2中送进加压。阀13打开并且阀CV-1关闭。
步骤No.5床1给床3提供净化气体(PPG),而床2进行第一吸附步骤。在步骤5开始时,阀7c和8a关闭。阀2保持打开,从而使得送进气体可以进入到床2的底部,并且阀11被打开,从而使得产品氢气可以到床2的顶部之外。然而,不进行产品生产直到床2到达吸附压力。此时CV-5打开并且控制床中的压力进行恒压的产品生产。阀7a和9a打开从而使得净化气体可以从床1通过控制阀CV-2流到床3。阀6和13保持打开从而使得净化气体可以流出床3的底部。
步骤No.6床1进行第一均衡下降(ED2)而床3从床1接收气体并且进行第一均衡上升。床2进行第二吸附步骤。在步骤6开始时,阀2和11保持打开从而使得产品生产从床2继续。阀7a和9a同样保持打开从而使得在床1和3之间产生均衡。然而,均衡气流通过控制阀CV-3而不是CV-2。阀6和13关闭。
步骤No.7床1进行第一逆流泄料(BD1)。床2进行第三吸附步骤而床3从产品集合管接收产品加压气体。在步骤7开始时,阀2和11保持打开从而使得产品生产从床2继续。阀7a和9a关闭。阀9b打开从而使得产品气体给床3加压。阀4打开从而使得床1进行逆流泄料。阀CV-1控制泄料气体的流速。
步骤No.8床1进行第二逆流泄料(BD2)。床2进行第一均衡下降,而床3从床2接收气体并且与送进加压相重叠进行第二均衡上升。在步骤8开始时,阀2、9b和12关闭。阀8a和9a打开从而使得在床3和2之间通过控制阀CV-3产生均衡。阀3打开从而在床3中进行送进加压。阀4保持打开并且床1继续进行逆流泄料。阀13打开并且阀门CV-1关闭。
步骤No.9床1从床3接收净化气体(PG),而床3进行第一吸附步骤。在步骤9开始时,阀9a关闭。阀3保持打开,从而使得送进气体可以进入到床3的底部,并且阀12被打开,从而使得产品氢气可以到床3的顶部之外。然而,不进行产品生产直到床3到达吸附压力。此时CV-5打开并且控制床中的压力以进行恒压的产品生产。阀7c打开并且阀8a保持打开从而使得净化气体可以从床2通过控制阀CV-2流到床1。阀4和13保持打开从而使得净化气体可以流出床1的底部。
步骤No.10床1进行第一均衡上升(EU2)而床2提供气体给床1并且进行第二均衡下降。床3进行第二吸附步骤。在步骤10开始时,阀3和12保持打开从而使得产品生产从床3继续。阀7c和8a同样保持打开从而使得在床2和1之间产生均衡。然而,均衡气流通过控制阀CV-3而不是CV-2。阀4和13关闭。
步骤No.11床1从产品集合管接收产品气体用于产品加压。床2进行第一逆流泄料。床3进行第三吸附步骤。在步骤11开始时,阀3和12保持打开从而使得产品生产从床3继续。阀7c和8a关闭。阀7b打开从而使得产品气体给床1加压。阀5打开从而使得床2进行逆流泄料。阀CV-1控制泄料气体的流速。
步骤No.12床1与送进加压相重叠进行第二均衡上升(EU2/FD),而床3提供气体给床1并且进行第一均衡下降。床2进行第二逆流泄料。在步骤12开始时,阀3、7b和12关闭。阀7a和9a打开从而使得在床3和1之间通过控制阀CV-3产生均衡。阀1打开从而可以在床1中进行送进加压。阀5保持打开并且床2继续进行逆流泄料。阀13打开并且阀CV-1关闭。
从图2和表2可以知道,三床并行操作,并且在总循环时间的1/3过程中,一个床在进行吸附步骤,而其它床在进行净化、均衡、逆流泄料或者产品加压中的一项。
根据试验工场和PSA模拟结果,需要最优量的产品加压和高压均衡气体从而在本发明的三床PSA处理工艺中获得高的H2回收。同样,因为产品加压步骤(见图2)在高压均衡步骤(ED1)之前,然后使用过多的产品加压气体将会导致高压均衡步骤中回收的气体量降低。因为驱动力(气压梯度)随着用于产品加压气体量的增加而降低,具有用于PSA处理工艺的最优量的产品加压气体和高压均衡气体,以获得高的H2回收(低的床尺寸因素)。图4示出了在图1和2的PSA处理工艺中使用的各种量的产品加压气体的床尺寸因素(bsf)的曲线图。
参考图4,点B-E示出了当用于PSA处理工艺的产品加压气体的量变化时,图1和2所示的十二步骤PSA处理工艺的数据。点E示出了产品加压的最优的量,从而实现最小的床尺寸因素(bsf)。在图4中,产品加压的量通过为在产品加压步骤的过程中靠吸附压力而分开床压力的变化来确定。
12步骤三床PSA系统的一些新颖的特征是除了净化和产品加压步骤外使用了两个压力均衡步骤,在压力均衡步骤之前使用产品加压步骤,使用连续供应送进气体和恒压产品气体步骤。
在有限的不使用产品加压或者高压均衡的情况下,图2的PSA处理工艺缩减为两个不同的9步骤处理工艺。例如,如果从图2中的十二步骤PSA循环中省略步骤3,7和11(即没有产品加压的情况),则最终的PSA循环缩减为图5所示的9步骤循环。该循环(图5)具有高压均衡步骤但是没有产品加压步骤。这是图4上的点A。或者,如果省略步骤4,8和12(即没有高压均衡),则最终的循环缩减为图6所示的9步骤PSA循环。该循环(图6)具有产品加压步骤但是没有高压均衡步骤。这是图4上的点F。根据本发明的教导,当产品加压与吸附压力的比例范围从0.20到0.35的时候,图1和2所示的三床PSA处理工艺具有增强的H2回收(更低的床尺寸因素)。另外,产品加压和吸附压力的这个最佳比例适用的吸附压力在十二步骤PSA系统为从20psig到900psig,而在9步骤PSA系统为从50psig到900psig。
应当理解可以进行PSA系统参数的其它变化而不背离本发明。因此,希望由随附的权利要求确定本发明的范围。
权利要求
1.一种变压吸附(PSA)处理方法,用于在多床系统中分离包含至少一种较强吸附性成分以及至少一种不太强吸附性产品气体成分的加压送进供给气体,所述方法包括连续送进供给气体进入包含至少一种固体吸附剂的吸附器床的送进输入端,固体吸附剂优先吸附较强吸附性的成分并且从吸附器床的出口端收回最不强吸附性的产品成分,在循环中通过各步骤进行生产,其中连续送进的供应气体向着相继并流的方向通过各个吸附器床从而使用PSA循环中的连续送进气体、加压步骤、压力均衡步骤、恒定产品气体步骤、泄料步骤以及净化步骤制造气体产品。
2.如权利要求1所述的变压吸附处理方法,其特征在于其中该PSA处理包含三床并且各步骤的循环包括十二步骤循环,并且各个循环具有连续进料步骤、两个压力均衡步骤以及净化和产品加压步骤。
3.如权利要求1所述的变压吸附处理方法,其特征在于其中该PSA处理包含三床并且各步骤的循环包含9步骤循环,并且各个循环具有连续进料步骤、压力均衡步骤以及净化和产品加压步骤。
4.如权利要求1所述的变压吸附处理方法,其特征在于其中该PSA处理包含三床并且各步骤的循环包含9步骤循环,并且各个循环具有连续进料步骤、产品加压步骤以及均衡和净化步骤。
5.如权利要求2所述的变压吸附处理方法,其特征在于其中产品加压步骤发生在高压均衡步骤之前。
6.如权利要求1所述的变压吸附处理方法,其特征在于其中产品气体从下组中选出,所述组包括氢气、氦气、天然气、CO2以及共同生产的氢气和CO。
7.如权利要求2所述的变压吸附处理方法,其特征在于其中产品气体为氢气。
8.如权利要求7所述的变压吸附处理方法,其特征在于包括吸附压力步骤并且其中产品加压与吸附压力的比例范围从大约0.20到大约0.35,用于从大约20psig到大约900psig的吸附压力。
9.如权利要求1所述的变压吸附处理方法,其特征在于其中各个吸附床包括带有沸石材料的活性碳。
10.一种变压吸附处理方法,用于在三床系统中分离包含至少一种较强吸附性成分以及至少一种不太强吸附性产品气体成分的加压送进供给气体,所述方法包括连续送进供给气体进入包含至少一种固体吸附剂的吸附器床的送进输入端,固体吸附剂优先吸附较强吸附性的成分并且从吸附器床的出口端收回最不强吸附性的产品成分,按照下面循环表的十二步骤循环
其中AD吸附/产品生产,ED1第一均衡下降,PPG提供净化气体,ED2第二均衡下降,BD泄料,PG接收净化,EU1第一均衡上升,EU2第二均衡上升,PP使用R气体(RG)产品加压,以及FD送进加压。
11.如权利要求10所述的变压吸附处理方法,其特征在于其中产品为氢气,并且步骤1大约90秒,步骤2大约24秒,步骤3大约35秒,步骤4大约11秒,步骤5大约90秒,步骤6大约24秒,步骤7大约35秒,步骤8大约11秒,步骤9大约90秒,步骤10大约24秒,步骤11大约35秒以及步骤12大约11秒。
12.如权利要求10所述的变压吸附处理方法,其特征在于其中产品加压与吸附压力的比例范围从大约0.20到大约0.35,用于从大约20psig到大约900psig的吸附压力。
13.一种变压吸附处理方法,用于在三床系统中分离包含至少一种较强吸附性成分以及至少一种不太强吸附性产品气体成分的加压送进供给气体,所述方法包括连续送进供给气体进入包含至少一种固体吸附剂的吸附器床的送进输入端,固体吸附剂优先吸附较强吸附性的成分并且从吸附器床的出口端收回最不强吸附性的产品成分,按照下面循环表的9步骤循环
其中AD吸附/产品加压生产,ED1第一均衡下降,PPG提供净化气体,ED2第二均衡下降,BD泄料,PG接收净化,EU1第一均衡上升,EU2第二均衡上升,以及FDI送进加压。
14.一种变压吸附处理方法,用于在三床系统中分离包含至少一种较强吸附性成分以及至少一种不太强吸附性产品气体成分的加压送进供给气体,所述方法包括连续送进供给气体进入包含至少一种固体吸附剂的吸附器床的送进输入端,固体吸附剂优先吸附较强吸附性的成分并且从吸附器床的出口端收回最不强吸附性的产品成分,按照下面循环表的9步骤循环
其中AD吸附/产品生产,ED1第一均衡下降,PPG提供净化气体,ED2第二均衡下降,BD泄料,PG接收净化,EU1第一均衡上升,以及PP使用R气体(RG)产品加压。
15.如权利要求4、13或者14所述的变压吸附处理方法,其特征在于其中产品气体为氢气,该处理方法包括吸附压力步骤,并且产品加压与吸附压力的比例范围从大约0.20到大约0.35,用于从大约50psig到大约900psig的吸附压力。
16.如权利要求7、10或者15所述的变压吸附处理方法,其特征在于其中各个吸附床包括活性碳、沸石材料以及氧化铝。
全文摘要
一种三床(1,2,3)变压吸附系统,在多步骤并且优选十二步骤的处理循环中提供恒定的连续供给气体,优选地包括氢气成分,可以制造恒流的净化气体产品,优选为氢气。
文档编号C01B23/00GK1984705SQ200580023875
公开日2007年6月20日 申请日期2005年5月18日 优先权日2004年5月19日
发明者M·S·A·巴克什, A·C·罗辛斯基 申请人:普莱克斯技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1