合成SiC纳米线增韧多层结构SiC-C/C复合材料的方法与流程

文档序号:19924930发布日期:2020-02-14 16:48阅读:238来源:国知局
合成SiC纳米线增韧多层结构SiC-C/C复合材料的方法与流程

本发明属于sic-c/c复合材料的方法,涉及一种合成sic纳米线增韧多层结构sic-c/c复合材料的方法,具体涉及一种采用溶胶凝胶法原位合成sic纳米线增韧多层结构sic-c/c复合材料的方法。



背景技术:

c/c复合材料作为一种新型碳材料,其研究和开发主要集中在航天、航空等高精尖技术领域。c/c复合材料具有高导热、耐摩擦、耐磨损、低密度、低蠕变等特性,但其层间力学性能较差,同时在高温含氧冲刷条件下,易于氧化、不耐烧蚀,导致材料性能大幅下降,在很大程度上限制了该材料的广泛应用。另一方面,c/c复合材料做为当前高性能军机和大中型民机刹车装置中的关键材料,其耐磨性仍有很大的提升空间。因此,改性c/c复合材料可进一步提高其层间力学性能、高温抗烧蚀性能以及耐摩擦性能,一直是科研工作者努力的方向与目标。

sic材料具有与碳材料相近的热物理性能、优异的抗氧化抗摩擦性能,一直作为c/c复合材料改性的首选材料。目前国内外制备sic-c/c复合材料多采用lsi(熔融渗硅法),中南大学肖鹏、李专釆用cvi结合lsi工艺制备出力学性能和摩擦磨损性能均较优异的c/c-sic制动闸片。但是此种方法sic相与c基体是掺杂在一起的,sic相的分布不可控制。而本发明可以设计将sic相与c基体交替叠加形成多层结构,利用复相界面消耗裂纹能量,抵制裂纹扩展,从而增强材料整体力学性能。而sic相的存在又可以增强材料抗烧蚀性与耐磨性。同时本发明可以在材料内部同步形成sic纳米线,进一步提升材料综合性能。

而当前制备sic纳米线的方法,如2007年bechelany等通过加热分解聚丙烯,同时加热硅和二氧化硅的混合物在石墨衬底上生长出了碳化硅纳米线。不仅温度需求高,也难以制备出sic与c多层结构。因此本发明兼具两种改性方法,将大大提升c/c复合材料的使用性能。



技术实现要素:

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种合成sic纳米线增韧多层结构sic-c/c复合材料的方法,一种溶胶凝胶法原位合成sic纳米线增韧sic与c基体交叠分布的多层结构的方法。

技术方案

一种合成sic纳米线增韧多层结构sic-c/c复合材料的方法,其特征在于步骤如下:

步骤1:在硅溶胶中滴加盐酸,调整ph小于7至酸性;

步骤2、制备碳毡-硅干凝胶体系:将碳纤维预制体放入硅溶胶中浸渍24-72h;取出预制体,放入恒温箱中烘干12-24h,恒温箱温度为60-80℃;最后取出碳纤维预制体,自然降至常温,得到碳毡-硅干凝胶体系;

步骤3、沉积热解碳:

①将浸渍干燥后的碳毡-硅干凝胶体系放入石墨夹具中,填装在cvi炉中,对炉体抽真空,冲入氩气,调至常压,反复若干次,使得炉体内的空气排干净;

②打开加热开关,氩气保护下,升温4h,使得温度达到900~1100℃;所述氩气流量为1500ml/min;

③打开碳源气体气阀,流量调至80l/min,保持氩气流量不变,保温约3-5h;

④关闭碳源气体气阀,保持氩气流量不变,直至温度降至常温,关闭氩气气阀,关闭总电源,取出沉积后的复合材料;

重复步骤2~步骤3多次,从而在碳毡内部形成硅凝胶层与c层的反复交替的多层结构;

步骤4、致密化:置入等温cvi炉中,反复抽真空冲入氩气以排净空气;将氩气气氛下4-5h升至900-1100℃,打开碳源气体气阀,保温24-48h,然后关闭碳源气体气阀,降温至室温;

步骤5、热处理生长sic基体及纳米线:采用石墨纸包覆得到的材料,放入横式热处理炉中,抽真空,关闭真空阀,冲入氩气,如此反复若干次,排除炉内空气;

升温4-5h,至1400-1600℃,氩气保护下,氩气流量为70-100ml/min;

保持氩气流量不变,保温6-12h;

保持氩气流量不变,直至温度降至常温,关闭氩气,得到sic纳米线增韧的多层结构sic-c/c复合材料。

重复步骤2~步骤34-5次,从而在碳毡内部形成硅凝胶层与c层的反复交替的多层结构。

所述硅溶胶采用正硅酸乙酯、无水乙醇和去离子水混合制成的硅溶胶。

有益效果

本发明提出的一种合成sic纳米线增韧多层结构sic-c/c复合材料的方法,通过采用溶胶凝胶法,原位合成sic纳米线增韧多层结构sic-c/c复合材料。溶胶-凝胶法(sol-gel)是以无机物或金属醇盐作为前驱体,经溶胶、凝胶烧结固化制备出分子乃至纳米亚结构材料的方法。本发明通过溶胶凝胶法在碳毡内部原位合成sic相基体及sic纳米线,通过复相界面对裂纹的偏转,纳米线的拔出、脱粘、桥联等作用消耗裂纹能量,提升材料整体力学性能,同时利用sic相的特性增强材料的抗氧化、抗烧蚀性能。本发明制备方法简单、无污染、成本低廉,对c/c复合材料的整体力学性能、抗烧蚀性、耐磨性能都有显著的提升,亦可应用于其他纤维增强复合材料中,具有很好的经济效益与社会效益。

附图说明

图1:多层结构示意图

图2:裂纹扩展示意图

具体实施方式

现结合实施例、附图对本发明作进一步描述:

实施例1

(1)量取适量正硅酸乙酯、无水乙醇及去离子水在烧杯中混合,搅拌若干小时,再滴入若干滴盐酸后,调节ph值小于7至酸性,最后再水浴搅拌若干小时,获得硅溶胶。正硅酸乙酯、无水乙醇及去离子水300:150:57毫升

(2)将碳纤维预制体放入制备好的溶胶中浸渍24h;取出预制体,放入恒温箱中烘干12h,恒温箱温度为60℃;最后取出试样,将试样自然降至常温,即可得到碳毡-硅干凝胶体系。

(3)①将浸渍干燥后的硅凝胶-碳毡放入石墨夹具中,填装在cvi炉中,对炉体抽真空,冲入氩气,调至常压,反复若干次,将炉体内的空气排干净。

②设定温控程序,启动程序并打开加热开关。升温阶段,升温4h,至900℃,氩气保护下,氩气流量为1500ml/min。

③保温阶段,当温度升至预设温度,打开碳源气体气阀,流量调至80l/min,保持氩气流量不变,保温约3h。

④降温阶段,关闭碳源气体气阀,停止程序,保持氩气流量不变,直至温度降至常温,关闭氩气气阀,关闭总电源,取出样品。

(4)①重复(2)-(3)步骤4次,从而在碳毡内部形成硅凝胶层(经热处理可得到sic)与c层的反复交替的多层结构。

②将样品装入模具放入等温cvi炉中,反复抽真空冲入氩气以排净空气。氩气气氛下4h升至900℃,打开碳源气体气阀,保温24h,然后关闭碳源气体气阀,降温至室温,取出样品。

(5)①将得到的材料用石墨纸包好,放入横式热处理炉中,抽真空,关闭真空阀,冲入氩气,如此反复若干次,排除炉内空气。

②设定温控程序,启动程序并打开加热开关。升温阶段,升温4h,至1400℃,氩气保护下,氩气流量为70ml/min。

③保温阶段,当温度升至预设温度,保持氩气流量不变,保温6h。

④降温阶段,停止程序,保持氩气流量不变,直至温度降至常温,关闭氩气气阀,关闭总电源,取出样品,得到sic纳米线增韧的多层结构sic-c/c复合材料。

实施例2

(1)量取适量正硅酸乙酯、无水乙醇及去离子水在烧杯中混合,搅拌若干小时,再滴入若干滴盐酸后,调节ph值小于7至酸性,最后再水浴搅拌若干小时,获得硅溶胶。

(2)将碳纤维预制体放入制备好的溶胶中浸渍72h;取出预制体,放入恒温箱中烘干24h,恒温箱温度为80℃;最后取出试样,将试样自然降至常温,即可得到碳毡-硅干凝胶体系。

(3)①将浸渍干燥后的硅凝胶-碳毡放入石墨夹具中,填装在cvi炉中,对炉体抽真空,冲入氩气,调至常压,反复若干次,将炉体内的空气排干净。

②设定温控程序,启动程序并打开加热开关。升温阶段,升温4h,至1100℃,氩气保护下,氩气流量为1500ml/min。

③保温阶段,当温度升至预设温度,打开碳源气体气阀,流量调至80l/min,保持氩气流量不变,保温约5h。

④降温阶段,关闭碳源气体气阀,停止程序,保持氩气流量不变,直至温度降至常温,关闭氩气气阀,关闭总电源,取出样品。

(4)①重复(2)-(3)步骤5次,从而在碳毡内部形成硅凝胶层(经热处理可得到sic)与c层的反复交替的多层结构。

②将样品装入模具放入等温cvi炉中,反复抽真空冲入氩气以排净空气。氩气气氛下5h升至1100℃,打开碳源气体气阀,保温48h,然后关闭碳源气体气阀,降温至室温,取出样品。

(5)①将得到的材料用石墨纸包好,放入横式热处理炉中,抽真空,关闭真空阀,冲入氩气,如此反复若干次,排除炉内空气。

②设定温控程序,启动程序并打开加热开关。升温阶段,升温5h,至1600℃,氩气保护下,氩气流量为100ml/min。

③保温阶段,当温度升至预设温度,保持氩气流量不变,保温12h。

④降温阶段,停止程序,保持氩气流量不变,直至温度降至常温,关闭氩气气阀,关闭总电源,取出样品,得到sic纳米线增韧的多层结构sic-c/c复合材料。

所有实施事例中si(oc2h5)4分析纯,ch3ch2oh分析纯,ch4>99.9%,ar>99.999%,h2>99.999%。

本发明通过纳米线及多层结构极大程度上提高了c/c复合材料的韧性、层间剪切性能、耐摩擦性能以及抗烧蚀性能,对c/c复合材料的高机械性能、高耐磨及抗烧蚀应用具有重要意义。本发明利用溶胶凝胶原位生成sic纳米线,通过基体中纳米线脱粘、断裂、拔出等机制消耗裂纹能量阻碍裂纹继续拓展,同时增强复合材料层间剪切性能。在引入sic纳米线的基础上,增大引入硅溶胶的含量,在碳毡内部形成如图1的sic与c基体交替堆叠的多层结构。在这种结构中,由于sic与c基体弹性特征不同,裂纹易扩展至两相界面处,如图2所示,裂纹偏转产生分支从而消耗能量,使材料抵抗裂纹扩展的能力增强。sic纳米线还会在两相间起到桥联作用,增大两相结合力,提升复相界面对裂纹的削弱。同时由于sic相的硬度、耐磨性、耐烧蚀性,所得材料的耐磨性及抗烧蚀性能也会有所提升。在这种多层结构结构中,各亚层成分、结构、厚度、层数等参数都可进行设计调节,因此可设计性强。本发明制备方法简单、无污染、成本低廉,对c/c复合材料的整体力学性能、耐磨性、抗烧蚀性都有显著的提升,亦可应用于其他纤维增强复合材料中,具有很好的经济效益与社会效益。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1