一种具有无滞后大电致应变的BNT基三元无铅铁电陶瓷及制备的制作方法

文档序号:11669952阅读:943来源:国知局

本发明涉及一种具有无滞后大电致应变的bnt基三元无铅铁电陶瓷及制备,即新型(1-x-y)na0.5bi0.5tio3-xbatio3-ybi(mg0.5ti0.5)o3三元无铅铁电陶瓷,属于陶瓷技术领域。

技术背景

具有大的电场诱导应变的铁电陶瓷被广泛应用于微位移器,制动器,机敏材料及其它器件方面。铅基铁电陶瓷如pb(zr,ti)o3,pb(mg,nb)o3具有大的电致应变特性,一直占据电致应变器件市场的主导地位。但是其大的铅含量污染环境,有害人体健康,与环境友好型社会背道而驰。因此目前研究和开发无铅基铁电陶瓷具有很重要的意义。

随着现代科学技术的蓬勃发展,新型微位移器件在精密光学、微电子学、航空航天、精密机床、微型马达、生物医学和扫描隧道效应显微镜等高技术领域的需求量日益增长,对精密元器件在加工过程中的定位精确性提出了更高要求。然而,外界环境因素如:温度、震动、噪声的变化都会对器件的微加工造成影响。因此,具有体积小、承载力大、位移分辨率高、响应速度快,并且不发热、不产生噪音、低能耗、无电磁干扰等优点的电致伸缩材料在微驱动和微控制技术中占有愈来愈重要的地位,引起国内外科研人员的广泛关注。随着应用需求的提高,特别是在天文学、光学的领域对能够微秒速度地调节光角度、光路程的位移元件提出更高要求,电致伸缩材料的研究得到了高度重视。目前,研究得最多的电致伸缩陶瓷是弛豫型铁电体陶瓷材料。虽然电致伸缩效应在固体电介质中普遍存在,但是其大小不同。从应用上看,在相对较低的电场条件下就能产生相对较大的应变,而且应变与电场的关系没有滞后,重复性要好,同时还要求温度效应小。由于应变正比于介电常数的平方,又由于铁电体在其相变温度附近具有很大的介电常数,所以铁电体在其相变温度附近应该有较大的应变。

电致伸缩是一个四阶张量,存在于各种对称性的固体中;它是离子偏离平衡位置生产极化的一个标志,从而形成晶格常数的变化,即产生应变。自从cross等在0.9pb(mg1/3nb2/3)o3–0.1pbtio3弛豫铁电体中观察到大的电致伸缩以来,铁电体成为制作致动器和微位移器的关键材料之一。近年来,研究者一直在无铅铁电体系中寻找具有大应变、小滞后和高温度稳定性的电致伸缩材料。

bi1/2na1/2tio3(nbt)是一种abo3型复合钙钛矿结构的铁电材料。在性能方面,bnt基铁电铁电陶瓷具有良好的温度稳定性,优异的铁电性能,较高的频率常数,较小的介电系数,很大的各向异性,特别适用于高频使用。nbt是一种典型的a位复合钙钛矿结构弛豫铁电体。早在1998年,chiang等在nbt–bt体系中观察到0.25%的小滞后电致应变。jo等提出,nbt基体系大的电致应变,是由于nbt基体系中存在特殊的极性微区(polarnanoregions,pnrs),施加电场后转变为铁电态,而电场撤除后恢复到极化前的状态。han等将nbt基体系的pnrs分为非遍历态(低温)和遍历态(高温):遍历态pnrs只能在电场的诱导下形成长程序,但电场撤除后则恢复非极性平衡态,从而产生无滞后的大电致应变。目前,遍历态与非遍历态之间的转变已成为解释nbt基体系介电和铁电行为的主要观点,尽管其他研究者提出了一些其它的解释。为获得大的、无滞后的电致应变,研究者致力于获得具有非遍历态与遍历态pnrs共存结构的nbt基体系。

基于上面的考虑,我们以处于四方相区的na0.5bi0.5tio3-batio3二元固溶体系为基底材料,加入立方相的bi(mg0.5ti0.5)o3构成三元无铅固溶体系(1-x-y)0.875na0.5bi0.5tio3-xbatio3-ybi(mg0.5ti0.5)o3。通过这种设计,我们希望能够构造处于遍历态的铁电陶瓷,获得具有零滞后和大应变系数的电致应变材料。



技术实现要素:

本发明的目的是获得一种无滞后大电致应变的新型bnt基多元无铅铁电陶瓷体系。

为达到发明目的,本发明一种具有无滞后大电致应变的bnt基三元无铅铁电陶瓷,其特征在于,含有na0.5bi0.5tio3、batio3和bi(mg0.5ti0.5)o3,通过引进钙钛矿结构batio3和bimg0.5ti0.5o3,与bi0.5na0.5tio3形成三元无铅体系,体系具有四方和赝立方钙钛矿相共存结构;可在室温附近获得遍历态弛豫铁电体。

本发明得到的无铅铁电陶瓷的化学通式为(1-x-y)bi0.5na0.5tio3-xbatio3-ybimg0.5ti0.5o3(0.10≤x≤0.14,0.04≤y≤0.10),可用(1-x-y)bnt-xbt-ybmt表示。

本发明采用传统的陶瓷制备工艺,所述通式为(1-x-y)bi0.5na0.5tio3-xbatio3-ybimg0.5ti0.5o3的无铅铁电陶瓷可以采用的原料为化学纯或电子级na2co3、bi2o3、tio2、baco3、(mgco3)4·mg(oh)2·5h2o等。具体制备方法为,根据化学通式的化学摩尔计量比称量原料,将原料在乙醇中球磨12h,以使原料充分混合均匀,将混合均匀的原料烘干后装入氧化铝坩埚内,在800-950℃进行煅烧,保温时间2h;煅烧后的粉料再经过12h的球磨磨细,烘干,掺入黏结剂pvb,压制成坯体(如在400mpa的压力下压制成直径为11.5mm的圆片),坯体在650℃排胶后,以3℃/min的速率升温至1100℃~1200℃进行烧结,保温1~3h,获得(1-x-y)bnt-xbt-ybmt陶瓷。烧结后的陶瓷片被上银电极,用于对样品进行各项性能的测试。

本发明通过bnt基三元无铅体系的构建,成功实现了对bnt基电致伸缩滞后性能的改良,电致应变提高,应变s在0.2%~0.3%内不等,而电致伸缩系数达到(2.0~2.8)×10-2m4/c2。本发明通过构建(1-x-y)bi0.5na0.5tio3-xbatio3-ybimg0.5ti0.5o3三元无铅固溶体,获得了电致应变s为0.30%,电致伸缩系数q33达到2.8×10-2m4/c2的无滞后的应变材料,实现了与铅基0.9pb(mgl/3nb2/3)o3-0.1pbtio3陶瓷应变性能可比拟的无铅铁电陶瓷。

附图说明

图1为本发明成分组成为x=0.12,y=0.04电滞伸缩曲线。

具体实施方式

下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。

制备本发明所述的通式为(1-x-y)bi0.5na0.5tio3-xbatio3-ybimg0.5ti0.5o3的无铅铁电陶瓷,可以采用化学纯或电子级na2co3,bi2o3,tio2,baco3,(mgco3)4·mg(oh)2·5h2o等为原料,按照传统的陶瓷制备工艺制得。具体制备方法为,根据化学通式和化学计量比称量原料,将原料在乙醇中球磨12h,以使原料充分混合均匀,将混合均匀的原料烘干后装入氧化铝坩埚内,在800-950℃进行煅烧,保温时间2h。煅烧合成的粉料再经过12h的球磨磨细。

在烘干的粉料中加粘结剂,在400mpa的压力下成型,压制成直径11.5mm,厚度1.5mm左右的成型物。将成型物排胶,最后在1100-1200℃下烧结2h,烧结后的陶瓷片被上银电极然后对样品进行各项性能的测试。采用配有电致伸缩的铁电测试仪(premierii,radianttechnologies,usa),测试电致应变。

按照上述方法制备的无铅铁电陶瓷的配方如下:

实施例1:

配方:

0.84bi0.5na0.5tio3-0.12batio3-0.04bimg0.5ti0.5o3

工艺:煅烧温度850℃,烧结温度1150℃。

实施例2:

配方:

0.80bi0.5na0.5tio3-0.14batio3-0.06bimg0.5ti0.5o3

工艺:煅烧温度900℃,烧结温度1100℃。

实施例3:

配方:

0.80bi0.5na0.5tio3-0.10batio3-0.10bimg0.5ti0.5o3

工艺:煅烧温度850℃,烧结温度1150℃。

实施例4:

配方:

0.79bi0.5na0.5tio3-0.13batio3-0.08bimg0.5ti0.5o3

工艺:煅烧温度900℃,烧结温度1200℃。

各实施例性能表:

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1