一种高导热高微孔电煅煤基炭砖及其制备方法与流程

文档序号:11318622阅读:233来源:国知局
一种高导热高微孔电煅煤基炭砖及其制备方法与流程

本发明属于电煅煤基炭砖技术领域。具体涉及一种高导热高微孔电煅煤基炭砖及其制备方法。



背景技术:

众所周知,炭砖的使用寿命决定着高炉的一代炉役。为保证高炉寿命,通常将导热系数、<1μm孔容积率及铁水溶蚀指数定为炭砖的关键性能指标。提高炭砖的导热能力,不仅可以缓解烘炉和投产初期温差应力对炉缸砌体的破坏,而且有利于在炭砖热面形成一层渣铁壳,阻止铁水和渣对炭砖的侵蚀。有研究表明,在铁水温度为1500℃和压力为0.66mpa条件下,铁水能够渗入孔径l.0μm以上的微孔中,故减小炭砖气孔直径和提高炭砖的微孔化程度将有利于缓解铁水的渗透,避免炭砖出现脆化层,延长炭砖寿命。炭砖直接与铁水相接触,在铁水中的溶蚀指数越低越好。因此,高导热、高微孔化率和高抗蚀是高炉用炭砖的主要发展方向。

电煅煤基炭砖是采用电煅无烟煤为主要原料的炭砖,由于电煅无烟煤是一种低石墨化碳且自身多孔,因此电煅煤基炭砖的导热系数和微孔特性差。目前,为提高电煅煤基炭砖的导热系数,国内外大多数科学研究者都采用添加高导热石墨物质,如“高炉用高导热炭砖及其制造方法”(cn1304329c)、“用于炼铁高炉炉衬、炉缸的热压烧成炭砖”(cn1293207c)、“高导热微孔模压炭砖及其生产方法”(cn1328219c)、“一种炼铁高炉炉衬用炭砖及其制备方法”(cn101514377b)、“一种高炉炉缸炉底用炭砖及其制备方法”(cn102432316a)、“一种高导热超微孔炭砖及其制备方法”(cn102992805b)、“一种高导热炭砖及其生产方法”(cn102992793a)、“一种高炉炉衬用炭砖及其制备方法”(cn103613393a)、“高导热炭砖”(cn104557065a)、“高导热高温模压炭砖”(cn103951440a)和“一种高导热超微孔炭砖及其制备方法”(cn102992805b)等专利技术,在炭砖的制备过程中添加超过30wt%的石墨物质,在一定程度上虽提高了炭砖的导热系数;但在高炉的实际生产环境条件下,这些石墨物质极易向铁水中溶解,从而在炭砖中留下孔洞,为铁水的渗透提供了通道,进而导致炭砖形成脆化层,在铁水的冲刷作用下造成炭砖结构性剥落。此外,石墨类物质的购买成本偏高,大比例添加石墨必定会造成炭砖制造成本提高,不利于高炉生产成本的降低。



技术实现要素:

本发明旨在克服现有技术缺陷,目的是提供一种工艺简单和易于工业化生产的的高导热高微孔电煅煤基炭砖的制备方法;用该方法制备的所述炭砖热导率高、微孔化率高和抗铁水侵蚀性能优异。

为实现上述目的,本发明采用的技术方案的具体步骤是:

第一步、将电煅无烟煤颗粒和电煅无烟煤细粉分别置于气氛炉中,于还原性气氛和800~1200℃条件下保温6~12小时,得到相应的活化电煅无烟煤颗粒和活化电煅无烟煤细粉。

第二步、按六水合硝酸镍∶无水乙醇的质量比为1∶(2~5),将六水合硝酸镍和无水乙醇混合,得到硝酸镍溶液。

第三步、以10~20wt%的活化电煅无烟煤细粉、4~10wt%的α-al2o3微粉、4~10wt%的硅粉、2~6wt%的铝镁合金粉、1~2wt%的炭黑和0.5~1wt%的碳化硼粉为基质,以60~70wt%的活化电煅无烟煤颗粒为骨料;先将所述基质共混3~6小时,得到基质细粉。

第四步、按所述骨料∶硝酸镍溶液∶热固性酚醛树脂的质量比为1∶(0.08~0.1)∶(0.1~0.3),先将所述骨料置入混碾机,之后加入所述硝酸镍溶液,混合5~10分钟,再加入所述热固性酚醛树脂,混碾10~15分钟;然后加入所述基质细粉,混碾15~30分钟,模压成型或振动成型。最后于110~180℃条件下干燥,在氮气气氛和1080~1280℃条件下保温12~24小时,制得高导热高微孔电煅煤基炭砖。

所述电煅无烟煤颗粒的级配为:5~3mm的占30~40wt%、3~1mm的占40~50wt%、1~0mm的占20~30wt%。

所述电煅无烟煤细粉的粒度小于0.074mm,电煅无烟煤细粉的碳含量>85wt%。

所述α-al2o3微粉的粒度小于0.005mm,α-al2o3微粉的al2o3含量为99wt%。

所述硅粉的粒度小于0.045mm,硅粉的si含量为98.3wt%。

所述铝镁合金粉的粒度小于0.074mm,铝镁合金粉中铝含量>98wt%,

所述炭黑的粒度小于30nm,炭黑中固定碳含量为99.5wt%。

所述碳化硼粉的粒度小于0.005mm,碳化硼粉中b4c含量>96wt%。

由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:

本发明将催化剂硝酸镍通过电煅煤无烟煤骨料直接在混料过程中引入,具有工艺简单、易于工业化生产特点。首先将电煅无烟煤颗粒和电煅煤无烟煤细粉分别置于气氛炉中进行预烧处理,电煅无烟煤中的非晶态碳被烧蚀掉,晶态碳的缺陷增多,从而提高了电煅无烟煤的石墨化度和反应活性,在含硅高温焙烧处理条件下,这种活化电煅煤无烟煤颗粒和活化电煅无烟煤细粉作为一种活性碳源,能与含硅气相物质反应生成高导热碳化硅晶须。同时,对活化的电煅无烟煤颗粒进行负载硝酸镍处理,在高温焙烧条件下,催化剂硝酸镍不仅能在电煅无烟煤颗粒上原位催化生长出高导热碳纳米管和β-sialon相,而且能降低炭砖内部的局部氧分压,促进基质中碳化硅晶须的生成。此外,基质细粉中的硅粉和铝镁合金粉在焙烧条件下与基质中的活性碳源(活化电煅无烟煤细粉和酚醛树脂裂解碳)原位形成碳化硅晶须和碳化铝、氮化铝陶瓷相;而炭黑和碳化硼粉则能进一步降低炭砖内部的氧分压,促进炭砖中sic晶须等陶瓷相的大量生成。

本发明制备的高导热高微孔电煅煤基炭砖,经过相对低的高温焙烧处理后,骨料上能生长出高导热的sic晶须、碳纳米管和β-sialon,这些陶瓷相一方面能填充骨料上的气孔,另一方面有助于降低骨料的界面热阻,提高骨料的传热能力。并且,基质中也会有大量sic晶须和aln、al3c4生成,一方面能堵塞基质与骨料间的间隙和气孔,另一方面与骨料上的陶瓷相形成一个高导热网络。由此,骨料和基质中的陶瓷相能显著提高高导热高微孔电煅煤基炭砖的微孔化率和导热系数。此外,电煅无烟煤经预烧处理后虽有部分晶态碳存在,但在烧成气氛下会转化为高抗蚀的sic晶须,并且结合电煅无烟煤的高抗蚀特性,所制备的高导热高微孔电煅煤基炭砖具有优异的抗铁水溶蚀性能。

本发明所制备的高导热高微孔电煅煤基炭砖经检测:导热系数>20w/(m·k);平均孔径<150nm;<1μm孔容积率>85%;抗铁水溶蚀指数<10%。

因此,本发明具有工艺简单和易于工业化生产的特点;所制备的高导热高微孔电煅煤基炭砖导热系数高、微孔化率高和抗铁水侵蚀性好。

附图说明

图1为本发明制备的一种高导热高微孔电煅煤基炭砖中原位形成的碳纳米管tem图;

图2为图1所示高导热高微孔电煅煤基炭砖中原位形成的β-sialon相sem图;

图3为图1所示高导热高微孔电煅煤基炭砖中原位形成的sic晶须sem图。

具体实施方式

下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。

为避免重复,先将本具体实施方式所涉及到的技术参数统一描述如下,实施例中不再赘述:

所述电煅无烟煤颗粒的级配为:5~3mm的占30~40wt%、3~1mm的占40~50wt%、1~0mm的占20~30wt%。

所述电煅无烟煤细粉的粒度小于0.074mm,电煅无烟煤细粉的碳含量>85wt%。

所述α-al2o3微粉的粒度小于0.005mm,α-al2o3微粉的al2o3含量为99wt%。

所述硅粉的粒度小于0.045mm,硅粉的si含量为98.3wt%。

所述铝镁合金粉的粒度小于0.074mm,铝镁合金粉中铝含量>98wt%。

所述炭黑的粒度小于30nm,炭黑中固定碳含量为99.5wt%。

所述碳化硼粉的粒度小于0.005mm,碳化硼粉中b4c含量>96wt%。

实施例1

一种高导热高微孔电煅煤基炭砖及其制备方法。本实施例所述制备方法的步骤是:

第一步、将电煅无烟煤颗粒和电煅无烟煤细粉分别置于气氛炉中,于还原性气氛和800~1050℃条件下保温6~12小时,得到相应的活化电煅无烟煤颗粒和活化电煅无烟煤细粉。

第二步、按六水合硝酸镍∶无水乙醇的质量比为1∶(2~3.5),将六水合硝酸镍和无水乙醇混合,得到硝酸镍溶液。

第三步、以10~12wt%的活化电煅无烟煤细粉、4~7wt%的α-al2o3微粉、7~10wt%的硅粉、5~6wt%的铝镁合金粉、1~2wt%的炭黑和0.5~1wt%的碳化硼粉为基质,以68~70wt%的活化电煅无烟煤颗粒为骨料;先将所述基质共混3~6小时,得到基质细粉。

第四步、按所述骨料∶硝酸镍溶液∶热固性酚醛树脂的质量比为1∶(0.08~0.1)∶(0.1~0.15),先将所述骨料置入混碾机,之后加入所述硝酸镍溶液,混合5~10分钟,再加入所述热固性酚醛树脂,混碾10~15分钟;然后加入所述基质细粉,混碾15~30分钟,模压成型或振动成型。最后于110~180℃条件下干燥,在氮气气氛和1080~1180℃条件下保温12~24小时,制得高导热高微孔电煅煤基炭砖。

本实施例1所制备的高导热高微孔电煅煤基炭砖经检测:导热系数为20~24w/(m·k);平均孔径为110~100nm;<1μm孔容积率为86~88%;抗铁水溶蚀指数为10~8%。

实施例2

一种高导热高微孔电煅煤基炭砖及其制备方法。本实施例所述制备方法的步骤是:

第一步、将电煅无烟煤颗粒和电煅无烟煤细粉分别置于气氛炉中,于还原性气氛和850~1100℃条件下保温6~12小时,得到相应的活化电煅无烟煤颗粒和活化电煅无烟煤细粉。

第二步、按六水合硝酸镍∶无水乙醇的质量比为1∶(2.5~4),将六水合硝酸镍和无水乙醇混合,得到硝酸镍溶液。

第三步、以12~14wt%的活化电煅无烟煤细粉、5~8wt%的α-al2o3微粉、6~9wt%的硅粉、4~5wt%的铝镁合金粉、1~2wt%的炭黑和0.5~1wt%的碳化硼粉为基质,以65~68wt%的活化电煅无烟煤颗粒为骨料;先将所述基质共混3~6小时,得到基质细粉。

第四步、按所述骨料∶硝酸镍溶液∶热固性酚醛树脂的质量比为1∶(0.08~0.1)∶(0.15~0.2),先将所述骨料置入混碾机,之后加入所述硝酸镍溶液,混合5~10分钟,再加入所述热固性酚醛树脂,混碾10~15分钟;然后加入所述基质细粉,混碾15~30分钟,模压成型或振动成型。最后于110~180℃条件下干燥,在氮气气氛和1180~1280℃条件下保温12~24小时,制得高导热高微孔电煅煤基炭砖。

本实施例1所制备的高导热高微孔电煅煤基炭砖经检测:导热系数为23~28w/(m·k);平均孔径为100~90nm;<1μm孔容积率为85~88%;抗铁水溶蚀指数为9~8%。

实施例3

一种高导热高微孔电煅煤基炭砖及其制备方法。本实施例所述制备方法的步骤是:

第一步、将电煅无烟煤颗粒和电煅无烟煤细粉分别置于气氛炉中,于还原性气氛和900~1150℃条件下保温6~12小时,得到相应的活化电煅无烟煤颗粒和活化电煅无烟煤细粉。

第二步、按六水合硝酸镍∶无水乙醇的质量比为1∶(3~4.5),将六水合硝酸镍和无水乙醇混合,得到硝酸镍溶液。

第三步、以14~17wt%的活化电煅无烟煤细粉、6~9wt%的α-al2o3微粉、5~8wt%的硅粉、3~4wt%的铝镁合金粉、1~2wt%的炭黑和0.5~1wt%的碳化硼粉为基质,以63~65wt%的活化电煅无烟煤颗粒为骨料;先将所述基质共混3~6小时,得到基质细粉。

第四步、按所述骨料∶硝酸镍溶液∶热固性酚醛树脂的质量比为1∶(0.08~0.1)∶(0.2~0.25),先将所述骨料置入混碾机,之后加入所述硝酸镍溶液,混合5~10分钟,再加入所述热固性酚醛树脂,混碾10~15分钟;然后加入所述基质细粉,混碾15~30分钟,模压成型或振动成型。最后于110~180℃条件下干燥,在氮气气氛和1080~1180℃条件下保温12~24小时,制得高导热高微孔电煅煤基炭砖。

本实施例1所制备的高导热高微孔电煅煤基炭砖经检测:导热系数为22~24w/(m·k);平均孔径为100~90nm;<1μm孔容积率为88~90%;抗铁水溶蚀指数为8~6%。

实施例4

一种高导热高微孔电煅煤基炭砖及其制备方法。本实施例所述制备方法的步骤是:

第一步、将电煅无烟煤颗粒和电煅无烟煤细粉分别置于气氛炉中,于还原性气氛和950~1200℃条件下保温6~12小时,得到相应的活化电煅无烟煤颗粒和活化电煅无烟煤细粉。

第二步、按六水合硝酸镍∶无水乙醇的质量比为1∶(3.5~5),将六水合硝酸镍和无水乙醇混合,得到硝酸镍溶液。

第三步、以17~20wt%的活化电煅无烟煤细粉、7~10wt%的α-al2o3微粉、4~7wt%的硅粉、2~3wt%的铝镁合金粉、1~2wt%的炭黑和0.5~1wt%的碳化硼粉为基质,以60~63wt%的活化电煅无烟煤颗粒为骨料;先将所述基质共混3~6小时,得到基质细粉。

第四步、按所述骨料∶硝酸镍溶液∶热固性酚醛树脂的质量比为1∶(0.08~0.1)∶(0.25~0.3),先将所述骨料置入混碾机,之后加入所述硝酸镍溶液,混合5~10分钟,再加入所述热固性酚醛树脂,混碾10~15分钟;然后加入所述基质细粉,混碾15~30分钟,模压成型或振动成型。最后于110~180℃条件下干燥,在氮气气氛和1180~1280℃条件下保温12~24小时,制得高导热高微孔电煅煤基炭砖。

本实施例1所制备的高导热高微孔电煅煤基炭砖经检测:导热系数为25~30w/(m·k);平均孔径为100~90nm;<1μm孔容积率为90~93%;抗铁水溶蚀指数为7~4%。

本具体实施方式与现有技术相比具有如下积极效果:

本发明将催化剂硝酸镍通过电煅煤无烟煤骨料直接在混料过程中引入,具有工艺简单、易于工业化生产特点。首先将电煅无烟煤颗粒和电煅煤无烟煤细粉分别置于气氛炉中进行预烧处理,电煅无烟煤中的非晶态碳被烧蚀掉,晶态碳的缺陷增多,从而提高了电煅无烟煤的石墨化度和反应活性,在含硅高温焙烧处理条件下,这种活化电煅煤无烟煤颗粒和活化电煅无烟煤细粉作为一种活性碳源,能与含硅气相物质反应生成高导热碳化硅晶须。同时,对活化的电煅无烟煤颗粒进行负载硝酸镍处理,在高温焙烧条件下,催化剂硝酸镍不仅能在电煅无烟煤颗粒上原位催化生长出高导热碳纳米管和β-sialon相,如图1所示,图1为本实施例1制备的一种高导热高微孔电煅煤基炭砖中原位形成的碳纳米管tem图,从图1可以看出,高导热高微孔电煅煤基炭砖中原位形成的碳纳米管,而且能降低炭砖内部的局部氧分压,促进基质中碳化硅晶须的生成。此外,基质细粉中的硅粉和铝镁合金粉在焙烧条件下与基质中的活性碳源(活化电煅无烟煤细粉和酚醛树脂裂解碳)原位形成碳化硅晶须和碳化铝、氮化铝陶瓷相;而炭黑和碳化硼粉则能进一步降低炭砖内部的氧分压,促进炭砖中sic晶须等陶瓷相的大量生成。

本具体实施方式制备的高导热高微孔电煅煤基炭砖,经过相对低的高温焙烧处理后,骨料上能生长出高导热的sic晶须、碳纳米管和β-sialon,如图2所示,图2为图1所示高导热高微孔电煅煤基炭砖中原位形成的β-sialon相sem图,从图2可见,高导热高微孔电煅煤基炭砖中原位形成的β-sialon相,这些陶瓷相一方面能填充骨料上的气孔,另一方面有助于降低骨料的界面热阻,提高骨料的传热能力。并且,基质中也会有大量sic晶须和aln、al3c4生成,如图3所示,图3为图1所示高导热高微孔电煅煤基炭砖中原位形成的sic晶须sem图。从图3可见高导热高微孔电煅煤基炭砖中原位形成的sic晶须,一方面能堵塞基质与骨料间的间隙和气孔,另一方面与骨料上的陶瓷相形成一个高导热网络。由此,骨料和基质中的陶瓷相能显著提高高导热高微孔电煅煤基炭砖的微孔化率和导热系数。此外,电煅无烟煤经预烧处理后虽有部分晶态碳存在,但在烧成气氛下会转化为高抗蚀的sic晶须,并且结合电煅无烟煤的高抗蚀特性,所制备的高导热高微孔电煅煤基炭砖具有优异的抗铁水溶蚀性能。

本具体实施方式所制备的高导热高微孔电煅煤基炭砖经检测:导热系数>20w/(m·k);平均孔径<150nm;<1μm孔容积率>85%;抗铁水溶蚀指数<10%。

因此,本具体实施方式具有工艺简单和易于工业化生产的特点;所制备的炭砖导热系数高、微孔化率高和抗铁水侵蚀性好。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1