一种3D打印陶瓷材料两步光固化成型方法与流程

文档序号:17152759发布日期:2019-03-19 23:36阅读:794来源:国知局

本发明涉及3d打印技术领域,尤其涉及一种3d打印陶瓷材料两步光固化成型方法。



背景技术:

陶瓷材料,有着悠久且成熟的传统制备工艺,新的3d打印成型技术的出现使得陶瓷生产和制造紧跟着科技的发展而创新,给陶瓷的制备提供了一种新的成型思路,使得制备过程由原来的减材制作变成了增材制作,改变了陶瓷生产制备需要模具和机加工等切削设备来生产的传统成型工艺。使用3d打印制备陶瓷制品的成型方法主要有加热固化、氧化固化和光固化,其中光固化成型固化速度快,能量利用率高,有机挥发分少,是一种节能环保高效的固化成型方法。

申请号为201610895873.2的中国专利公开了一种用于光固化陶瓷3d打印的胶粘剂、其制备方法和应用,。用于光固化陶瓷3d打印的胶粘剂包括如下重量百分含量的下列组分:陶瓷粉体60-85%;光固化树脂5-14%;丙烯酸酯单体5-18%;uv光引发剂1-5%;其他助剂1-3%,采用光固化胶粘剂3d打印陶瓷,是陶瓷加工成型领域一项超前的技术,此过程不需要机械加工或模具开模,只需利用一台紫外光数字成型技术的3d打印机,就可以直接从计算机图形数据中生成形状特别复杂、图形特别精致的陶瓷构件,从而极大地缩短产品的研制周期。但是该方法主要存在着:成品不均匀、烧结后产品尺寸精度差以及制备成本高的技术缺陷,成为了本领域技术人员亟待解决的问题。

申请号为201710048156.0的中国专利公开了一种基于光固化成型的3d打印制备氮化硅陶瓷的方法,,所述组合物的原料包括:氮化硅陶瓷粉体、单体、光引发剂、分散剂、表面改性剂和消泡剂;所述单体选自:聚氨酯丙烯酸酯、聚氨酯六丙烯酸酯、季戊四醇丙烯酸酯、三丙二醇二丙烯酸酯、己二醇二丙烯酸酯以及聚氨酯二丙烯酸酯中的一种或多种。但是丙烯酸酯光引发后,收缩率较大,因此固化后陶瓷坯体内孔隙率大,内应力大,不利于后期烧结,而且光固化成型速度快,因此表面不易流平,仍存在许多问题。



技术实现要素:

为了解决上述技术问题,本发明提供了一种3d打印陶瓷材料两步光固化成型方法,采用两种固化体系的树脂及光引发剂,并分步固化,所得产品均匀,孔隙率小,烧结后不易开裂。

本发明的具体技术方案为:该方法包含以下步骤:

1)配置3d打印浆;

2)将浆料装入3d打印机进行打印;

3)采用紫外长波波段对浆料进行第一次光固化;

4)第一次固化结束3-11min后,采用紫外短波波段对浆料进行第二次光固化,得到陶瓷生坯;

5)将陶瓷生坯进行预排树脂后,进行烧结,得到陶瓷成品。

本发明首先采用长波固化,穿透力强,适于有色厚膜层快速固化,支撑打印出的陶瓷填料不坍塌,长波固化后,内部支撑作用良好,内部浆料和表面仍具有一定流动性,能够填充收缩造成的空隙,降低孔隙率,再短波固化,适于表面固化,因此,表面流平,并且能够降低内应力,有利于后期排胶烧结,产品表面平滑。

作为优选,所述步骤3)中紫外光源采用高压汞灯。

作为优选,所述步骤3)中高压汞灯装配340nm滤光片。

虽然高压汞灯的主要光源为365nm的紫外光,但是仍然会有一些其他波长的光漏出,采用滤光片能够有效拦截340nm以下波长的光,防止阳离子聚合光引发剂被提前引发。

作为优选,所述步骤4)中光源采用低压汞灯。

作为优选,所述步骤5)中预排树脂温度为600℃以上,时间为1-2h。

作为优选,所述步骤5)中烧结温度为1200-1400℃,时间为2-10h。

作为优选,所述步骤1)中浆料含有陶瓷填料、一种仅可进行自由基聚合的树脂材料和自由基聚合光引发剂、一种仅可进行阳离子聚合的树脂材料和阳离子聚合光引发剂。

自由基聚合固化,固化速度快,但树脂收缩率高,有氧气抑制作用,用于第一次固化支撑效果好,阳离子聚合树脂收缩率低,没有氧气抑制作用,用于第二次固化不会增加孔隙率,表面固化效果好。

作为优选,所述陶瓷填料为不吸光陶瓷原料,自由基聚合光引发剂为340nm以上光源激发的引发剂,阳离子聚合光引发剂为200-270nm光源激发的引发剂。

作为优选,所述陶瓷填料为木岱瓷土、高岭土、氧化铝和氧化锆的混合物,仅可进行自由基聚合的树脂材料为丙烯酸树脂、丙烯腈树脂、苯乙烯树脂和乙烯基酯树脂中的一种或几种混合,自由基聚合光引发剂为tpo、tpo-l、819中的一种或几种混合,仅可进行阳离子聚合的树脂材料为酚醛环氧树脂,阳离子聚合光引发剂为二芳基碘鎓盐、三芳基硫鎓盐中的一种或几种混合。

该类自由基聚合固化的树脂,难以被阳离子聚合光引发剂引发。这几种光引发剂的紫外利用率高,在长波波段有较好的吸光能力,有利于有色厚膜层快速固化。酚醛环氧树脂仅能被阳离子聚合光引发剂引发,收缩率低,与丙烯酸类树脂能够混溶,使用前无需再次混合。这几种阳离子聚合光引发剂在短波波段都能被有效引发,而且在340nm以上长波波段不显著吸收。

作为优选,所述浆料中还包括分散剂。

光固化树脂的黏度一般较大,加入分散剂一方面能够降低浆料黏度,帮助不同成分混溶,另一方面能够调节固化速率,不会导致成型件局部密度差异。

与现有技术对比,本发明的有益效果是:本发明先采用长波快速固化打印出的陶瓷浆料,支撑陶瓷粉体不坍塌,等待流平后,再短波二次固化,补充第一次固化造成的空隙,降低内应力,该方法操作简单,成本较低,制备效率高,有效降低了时间成本和人力成本,所得产品陶瓷颗粒分散均匀、表面光洁度好,提高了陶瓷产品的可靠性,是一种适于实际生产的3d打印陶瓷材料的成型方法。

具体实施方式

下面结合实施例对本发明作进一步的描述。

实施例1

将木岱瓷土、高岭土、氧化铝、氧化锆、丙烯酸树脂、tpo-l、酚醛环氧树脂、二芳基碘鎓盐和丙烯酸酯单体混合制浆;将浆料装入3d打印机进行打印;采用配有340nm滤光片的高压汞灯对浆料进行第一次光固化;第一次固化结束5min后,采用低压汞灯对浆料进行第二次光固化,得到陶瓷生坯;将陶瓷生坯进行缓慢加热至700℃预排树脂,加热时间2h,再在1400℃进行烧结8h,得到陶瓷成品。

所得陶瓷制品相对密度为93%,维氏硬度14.6gpa,烧结后坯体形变量小,表面平滑无开裂。

实施例2

将木岱瓷土、氧化铝、氧化锆、乙烯基酯树脂、tpo、酚醛环氧树脂、三芳基硫鎓盐和丙烯酸酯单体混合制浆;将浆料装入3d打印机进行打印;采用配有340nm滤光片的高压汞灯对浆料进行第一次光固化;第一次固化结束3min后,采用低压汞灯对浆料进行第二次光固化,得到陶瓷生坯;将陶瓷生坯进行缓慢加热至600℃预排树脂,加热时间1h,再在1200℃进行烧结10h,得到陶瓷成品。

所得陶瓷制品相对密度为95%,维氏硬度15.9gpa,烧结后坯体形变量小,表面平滑无开裂。

实施例3

将高岭土、氧化铝、氧化锆、丙烯腈树脂、苯乙烯树脂、819、酚醛环氧树脂、二芳基碘鎓盐、三芳基硫鎓盐和丙烯酸酯单体混合制浆;将浆料装入3d打印机进行打印;采用高压汞灯对浆料进行第一次光固化;第一次固化结束11min后,采用低压汞灯对浆料进行第二次光固化,得到陶瓷生坯;将陶瓷生坯进行缓慢加热至650℃预排树脂,加热时间1.5h,再在1300℃进行烧结2h,得到陶瓷成品。

所得陶瓷制品相对密度为98%,维氏硬度16.1gpa,烧结后坯体形变量小,表面平滑无开裂。

本发明中所用原料、设备,若无特别说明,均为本领域的常用原料、设备;本发明中所用方法,若无特别说明,均为本领域的常规方法。

以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变换,均仍属于本发明技术方案的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1