使用耐火基质材料增材制造复杂物体的制作方法

文档序号:26190654发布日期:2021-08-06 18:43阅读:114来源:国知局
使用耐火基质材料增材制造复杂物体的制作方法

相关申请的交叉引用

本申请要求2018年7月31日提交的美国临时申请62/769,588的权益,其公开内容通过引用整体结合到本文中。

关于联邦资助的研究和开发的声明

本发明根据美国能源部授予的合同号de-ac05-00or22725在政府支持下产生。美国政府拥有本发明的某些权利。

本发明涉及使用耐火材料增材制造复杂物体,用于各种能量相关的应用。



背景技术:

当今全世界的大多数能源系统设计成使热转化成电。例如,可由化石燃料、太阳热方法或核裂变或聚变产生热能。热力学第二定律规定,为了从热力发动机提取最大效率,必须要有高工作温度。允许热转化成电的大多数途径,例如兰金循环或布雷顿循环,需要热流体。达到高效率的能力需要高流体温度。这继而需要由能够承受这些高温的材料制成的组件。这些材料可分别在化石或裂变能源系统中形成燃烧容器或反应堆芯,以及管道、热交换器和能量转换组件。因此,能够耐高温的耐火材料在这些应用中是理想的。

虽然现今可以由耐火金属或陶瓷制造简单的几何形状(例如,管道),但不容易制造较高复杂性的组件,例如热交换器、法兰和涡轮机。用耐火金属和陶瓷制造复杂组件的能力将大大改善这些能源系统的热效率,远远超出用常规手段(例如高温镍基超合金)可能提供的。因此,仍持续需要用于由耐火材料制造组件的方法,所述耐火材料包括例如陶瓷和金属,所述组件具有用于能源系统和其它应用的复杂三维几何形状。



技术实现要素:

提供了一种用耐火基质材料制造三维物体的方法。所述方法主要包括由粉末基耐火基质材料增材制造生坯,并通过化学气相沉积(例如化学气相渗透(cvi))使生坯致密化。根据特定应用,耐火基质材料可包括耐火陶瓷或耐火金属。cvi处理增加了基质材料的密度,提供了气密涂层,并且可在极高的温度下形成具有极佳机械完整性的物体。

在一个实施方案中,所述方法包括提供合适耐火基质材料的粉末原料,例如碳化硅(sic)、碳化锆(zrc)、石墨(c)、钼(mo)或钨(w)。所述方法包括使粘合剂选择性沉积在粉末原料的连续层上,以制造具有接近正形成物体的净形状的尺寸稳定生坯,所述生坯任选包括底切、悬垂或内部容积。生坯在cvi反应容器内加热以脱粘,并且引入前体气体,以使基质材料致密化。所得物体包括具有极佳耐高温性的实质纯的微结构。实例物体包括热交换器、涡轮机、法兰,只举几个例子。

在另一个实施方案中,提供了一种制造一体化核燃料元件的方法。所述方法包括使用非燃料基质粉末粘合剂-喷射印刷燃料包壳。所述方法还包括用核燃料颗粒填充包壳,并振动填密(vibro-packing)另外的基质粉末,以在其中产生燃料密实体。所述方法还包括对现在已填充的包壳进行cvi,以在其中密封核燃料。所得核燃料元件可包括在其中一体化形成的冷却通道,以允许冷却流体(例如氦(he)气)流动,并且可由具有良好中子透明性的材料(例如sic)形成。核燃料颗粒可包括超过现有方法的填充分数(packingfraction),并且核燃料元件可在远低于烧结现有燃料基质材料所需温度的温度下制造。

在另一个实施方案中,一体化核燃料元件可包括可堆叠成棱柱形块的六边形构造,其中基质保持燃料成分,并提供一体化包层结构。堆叠时,每个核燃料元件的冷却通道与竖直相邻的核燃料元件的冷却通道流体连通。致密化且高纯的耐火包壳可在中子辐射的同时承受反应堆芯内的正常工作温度,例如高温气体冷却反应堆(htfr)反应堆中的800℃和1200℃之间的温度。此外,冷却通道的形状和表面特征可用优化的几何形状制造,以改善其中核燃料的冷却,因为将热能最佳地传递到冷却气体。进一步的实施方案包括核燃料元件内的可燃吸收剂和/或中子减速剂。

如本文所述,本发明方法容易适应于在需要高耐热性的应用中制造具有复杂几何形状的物体。增材制造生坯通常在室温下进行,并且cvi炉在远低于烧结温度的温度下工作。在其中包含核燃料的实施方案中,发现核燃料颗粒的填充分数大于50%,超过在经压制和烧结核燃料中发现的填充密度,从而产生较小的核燃料组合件。

通过参考实施方案和附图的描述,将更充分地了解和理解本发明的这些和其它特征。

在详细说明本发明的实施方案之前,应了解,本发明不限于在以下描述中阐明或以下附图中所示的操作细节或构造细节和组件的布置。本发明可在各种其它实施方案中实现,并且可以本文未明确公开的替代方式来实践或执行。另外,应了解,本文所用的用语和术语是为了描述的目的,不应视为限制。“包括”和“包含”及其变体的使用意在包括随后列出的项目及其等同物以及另外的项目及其等同物。此外,可在各种实施方案的描述中使用列举。除非另外明确说明,否则列举的使用不应解释为使本发明限于组件的任何具体顺序或数量。列举的使用也不应解释为从本发明的范围排除可能与所列举步骤或组件组合或合并成所列举步骤或组件的任何另外的步骤或组件。

附图说明

图1为根据本发明的一个实施方案使用耐火材料制造物体的流程图。

图2为在cvi加工致密且气密外层后的sic样品的横截面。

图3a和3b为根据本发明的一个实施方案制造的实例物体(热交换器和涡轮机叶片)。

图4为示出一体化核燃料元件的增材制造的过程图。

图5包括根据另外的实施方案的一体化核燃料元件的顶部透视图。

图6包括图5的一体化核燃料元件的底部透视图。

图7为在制造过程的不同阶段核燃料包壳的图解。

图8为耐火材料的电子显微相片和粒度分布。

图9为显示在加热期间生坯的代表性重量演变的曲线图。

具体实施方式

如本文中讨论,当前的实施方案主要涉及一种使用耐火基质材料制造各种物体的方法。所述方法包括由粉末基耐火基质材料增材制造生坯,然后通过cvi致密化。所述制造方法主要在以下第i部分讨论,然后在下文第ii部分描述根据这种方法形成的一体化核燃料元件。尽管与核燃料元件相关地描述,但本发明方法有效地适用于其中复杂的三维物体需要高耐热性的任何应用,包括例如热交换器、法兰和涡轮机叶片。类似地,就象核燃料可埋入耐火基质内一样,其它组成和装置也可以并入基质中。

i.制造方法

根据一个实施方案的方法包括使用耐火基质材料制造三维物体。参考图1,所述方法主要包括:(a)选择耐火原料,(b)使用耐火原料增材制造生坯,(c)引入用于cvi的耐火气态前体,(d)生坯的cvi,以致密化和去除粘合剂,及(e)完成具有复杂三维几何形状的最终部件。以下分别讨论每个这样的操作。

在步骤10的选择耐火原料包括选择耐火陶瓷粉末原料或耐火金属粉末原料。合适的耐火陶瓷可包括例如sic、c或zrc,而合适的耐火金属可包括例如mo或w。在步骤12,根据增材制造方法形成生坯,以制造三维物体。在当前的实施方案中,根据粘合剂-喷射印刷方法形成生坯。在粘合剂-喷射印刷方法中,耐火材料的粉末床在环境温度下用粘合剂图案逐层印刷,如任选阐述于授予sachs等人的美国专利5,204,055和授予cima等人的美国专利5,387,380,其公开内容通过引用整体结合到本文中。更具体地讲,粉末原料以连续的层逐个叠加地沉积。在沉积粉末原料的每一层后,根据正形成的三维物体的计算机模型(例如,cad模型),将液体粘合剂材料(例如聚合物粘合剂)选择性供到粉末原料层。

一旦完成三维物体,就去除未结合的粉末,产生由可去除聚合物粘合剂保持在一起的接近净成形的生坯。生坯可具有数重量%级的粘合剂含量,例如1–5%,密度为其理论限度的约30–55%。例如,在一个实施方案,生坯为大于30重量%sic(或其它耐火材料)的尺寸稳定的物体,在其它实施方案还可为任选大于50重量%sic(或其它耐火材料)的尺寸稳定的物体。在步骤14,选择用于cvi的气态耐火材料前体,使得成品可包括高纯且均匀的基质。例如,用于sic生坯的cvi的气态耐火材料前体可包括甲基三氯硅烷(mts),它通过mts分解产生sic。再比如,用于zrc生坯的气态耐火材料前体可包括四氯化锆(zrcl4)气体,用于石墨(c)生坯的气态耐火材料前体可包括甲烷(ch4)气体,用于w生坯的cvi的气态耐火材料前体可包括六氟化钨(wf6)气体,并且用于mo生坯的cvi的气态耐火材料前体可包括六氟化钼(mof6)或五氯化钼(mocl5)气体。然而,在其它实施方案中,可通过以粉末形式印刷一种材料并用cvi在粉末周围沉积另一种材料来获得复合基质。

在步骤16,将生坯放在cvi炉(反应容器)中,在其中容许气态前体和可以为惰性(例如ar)或其他(例如h2)的载气进入。选择炉内的压力和温度以及气态前体的组成、分压和流速,以允许气态前体在生坯的孔内扩散。更具体地讲,cvi涉及气态前体(例如,mts或wf6)的温度分解以及经分解前体在基质材料(例如,sic或w)的孔内渗透和然后吸收。sic的cvi方法涉及850℃和1300℃、1000℃和1200℃之间、任选1100℃的过程温度,这远低于在现有方法中烧结所需的温度(~2000℃)。值得注意的是,随着cvi炉内温度升高,粘合剂离解并在cvi过程开始之前去除。cvi方法最初均匀地使生坯致密化,并且随着生坯内的孔变得封闭,cvi在三维物体的所有内表面和外表面上选择性沉积完全致密的涂层。在一些实施方案中,致密化的生坯可包括大于85%重量sic的密度,并且在其它实施方案中大于90%重量sic。这个现象在图2进一步说明,该图包括具有复杂几何形状的粘合剂-喷射印刷sic样品的横截面。横截面包括致密且气密的外层,其厚度为20至200μm级,进一步任选为50至100μm级。同样如图2的插图所示,连续的cvisic基质沉积在sic粉末周围,使得微结构既包括原始3d印刷的sic粉末,又包括连续的cvisic基质。

在步骤18描绘了最终部件的完成。由于通过增材制造形成生坯,因此,成品可具有几乎任何几何形状,包括悬垂、底切和内部容积。例如,如图3a中所示,生坯可包括具有多通道主回路22和螺旋副回路24(或者反之亦然)的热交换器20,它们各自限定了根据常规方法不易形成的复杂内部容积。或者例如如图3b中所示,可用本发明方法形成涡轮机叶片26或根据常规方法难以或不能制造的其它物体。

ii.一体化核燃料元件

现在将描述一体化核燃料元件及其制造方法。如下所述,一体化核燃料元件主要包括由3d印刷耐火基质材料形成并在其中包含均匀分散的燃料颗粒(例如triso核燃料颗粒)的cvi致密化燃料包壳,燃料包壳任选成形为棱柱形燃料块。

如图4–7中所示,通过从耐火粉末原料粘合剂-喷射印刷刚性包壳30,形成一体化核燃料元件。包壳30可包括具有至少一个用于核燃料的内部容积(或腔)32和任选至少一个冷却通道34的任何构造。在所示的实施方案中,内部容积34被限定在外侧壁36、内侧壁38、底座40和盖42之间,内部容积32可通过盖42中的一个或多个开口44进入。在本实施方案中包壳30包括六边形构造,但在其它实施方案中可包括其它构造,包括例如圆柱形或任何其它构造,包括轴向和径向不对称的那些。在图4所示的实施方案中,单个冷却通道34竖直延伸穿过包壳30的中心,从而使底座40与盖42互连,使得内部容积32同心围绕冷却通道34。在图5和6的实施方案中,多个冷却通道34竖直延伸穿过包壳30,但与图4的冷却通道的不同之处在于,图5和6的冷却通道为非线形或曲线形,发散和/或会聚,并且任选将冷却气体从包壳以相对于竖直的非零角度传送。由于粘合剂-喷射印刷方法可适应悬垂、底切和内部容积,因此,内部容积和冷却通道可有效地实现任何几何形状,且图4–6的几何形状是为了说明目的而描绘。图7显示了图5和图6的核燃料包壳的通用制造步骤,最左边的图显示了燃料包壳的cad模型,中间图显示了3d印刷的包壳,最右边的图显示了cvi致密化的燃料包壳(为披露起见没有燃料颗粒)。

包壳通常由非燃料耐火粉末原料形成。实例包括sic、c、zrc、mo和w。图8显示了适用于制造燃料包壳的sic粉末形态和尺寸分布。替代形态和替代尺寸分布范围内的耐火粉末可用于替代应用。在这个实施方案中,sic粉末为来自sigmaaldrich的纯度>99.5%的α-sic(六方相)原料。根据粘合剂-喷射印刷方法,使粉末原料以连续层沉积,且根据包壳的cad模型,液体粘合剂选择性供到粉末原料的每一层。在所示的实施方案中,包壳用来自exonecompany(northhuntingdon,pa)的innovent粘合剂喷射系统进行3d印刷。然而,可用多种替代的粘合剂-喷射印刷机来形成包壳。在印刷后,粉末床可经历粘合剂固化步骤,粘合剂固化步骤驱除大部分水性或有机系溶剂。例如,可在空气中在大约190℃下加热粉末床约6小时。

一旦完全印刷包壳,就去除未结合的粉末,产生例如在图4左侧所示的接近净成形的生坯。在生坯形成之后且在cvi之前,将燃料颗粒46加到内部燃料腔。燃料颗粒可包括铀或其它易裂变元素,并且可以为裸燃料芯核或经涂覆颗粒,例如三结构各向同性(triso)颗粒、双结构各向同性(biso)颗粒,和包含易裂变铀的裸含铀(例如,uo2、uc、un或其组合)球(燃料芯核)。进一步任选,燃料颗粒可包括裸燃料芯核和经涂覆颗粒的组合。根据任何所需的技术(例如从料斗)将燃料颗粒加到内腔,直到基本上充满。然后将另外的基质粉末原料加到内腔,它比燃料颗粒小至少一个数量级,以占据相邻燃料颗粒之间的空隙,同时还在开口44处涂覆暴露的燃料颗粒。进一步任选,可振动填密所述另外的基质粉末原料,以确保在化学气相渗透之前最大限度地致密化。

在用燃料颗粒和任选的另外的基质材料填充和振动填密包壳后,将包壳插入cvi炉内,并升高到对于特定cvi过程理想的温度。例如,在850℃和1300℃之间、1000℃和1200℃之间、任选1100℃的温度对于用mts沉积sic理想,而温度<750℃对于用wf6沉积w理想。随着cvi炉中温度升高,聚合物粘合剂在~200℃开始离解,在500℃完全离解。在离解期间,cvi炉容器中的连续惰性气体流清除粘合剂离解产物。一旦处于目标cvi温度,就在cvi炉内引入气态前体,以允许在包壳的孔内沉积另外的基质材料。随着包壳内的孔变得封闭,cvi过程在包壳的所有内表面和外表面上选择性沉积完全致密的涂层。所得的包壳微结构包括高纯度且任选均匀的基质,同时将核燃料颗粒密封在其中。如图4中右侧所示,所得的一体化核燃料元件的横截面包括致密的燃料密实体,且在气密密封的耐火包壳中埋入铀燃料颗粒。在一些实施方案中,致密化包壳中基质材料的含量大于85%,在其它实施方案中进一步任选为90%,在其它实施方案中更进一步任选大于95%。此外,基质材料(例如,sic)可占一体化核燃料元件30的小于25%体积。图9显示在任选的固化步骤之后并且在ar中加热到高温时用水性粘合剂产生的生坯的重量演变。

一体化核燃料元件包括大致可堆叠的构造。当布置和堆叠时,每个核燃料元件的冷却通道与竖直相邻的核燃料元件的冷却通道流体连通。致密化且高纯的耐火包壳可承受反应堆芯内的正常工作温度,例如具有布雷顿闭合循环燃气涡轮机或其它能量转换装置的高温气体冷却反应堆(htfr)的反应堆芯。另外,核燃料元件内的核燃料包括超过常规燃料的增加的填充分数。例如,现有的方法(压制和烧结)提供最高45%的填充分数。相比之下,本发明的燃料包壳内的核燃料颗粒的填充分数可大于50%。因此,可使包括本发明的一体化核燃料元件的核燃料组合件更紧凑。此外,冷却通道可以制成具有优化的几何形状和表面特征,以改善其中核燃料密实体的冷却,因为将热能最佳地传递到冷却气体。

以上描述为本发明当前实施方案的描述。在不脱离附加权利要求中限定的本发明的精神和较宽方面的情况下,可作出各种改变和变化,这些改变和变化应按照专利法的法则来解释,包括等同原则。本公开为了说明目的而提出,并且不应解释为本发明所有实施方案的详尽描述,也不应使权利要求的范围限于结合这些实施方案示出或描述的特定要素。例如且没有限制,所描述发明的任何单个要素可由提供实质上相似的功能性或以其它方式提供充分操作的替代要素代替。这包括例如目前已知的替代要素,例如本领域技术人员当前可能已知的那些,以及将来可能开发的替代要素,例如本领域的技术人员在开发时可能认识到作为替代的那些。此外,所公开的实施方案包括一致描述并且可协作地提供许多益处的多个特征。本发明不只限于包括所有这些特征或提供所有陈述益处的那些实施方案,除了在所发布的权利要求中另外明确陈述的范围。以单数,例如用冠词“一”、“一个”、“该”或“所述”,对权利要求要素的任何引用均不应解释为将要素限于单数。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1