基于3D打印的低温共烧陶瓷超硬磨料聚合体的制备方法与流程

文档序号:21688239发布日期:2020-07-31 22:04阅读:445来源:国知局

本发明涉及基于3d打印的低温共烧陶瓷超硬磨料聚合体的制备方法,属于增材制造和超硬材料制备领域。



背景技术:

航空航天、国防军工和高端装备制造领域,因其行业属性特殊,其所涉及的材料往往需要满足高硬度、高耐磨性和可靠的连接强度等要求。金刚石具有超高硬度,因而耐磨损性能卓越。与金刚石相比,立方氮化硼(cbn)是人工合成的新型超硬材料,与黑色金属的亲和力小,因而有比金刚石更加宽泛的加工适用范围。金刚石和cbn在已知超硬材料中应用最为广泛。

陶瓷材料具有硬度高、耐磨损、化学惰性好等特点,在航空航天、电子信息、生物制药和机械制造等领域,均得到了广泛的应用。传统结构陶瓷的烧制温度均在1200℃以上,为了防止金刚石和cbn发生相变,超硬磨料与低温陶瓷组成复合材料是目前的研究热点之一。

鉴于应用于特殊领域的核心部件的特殊公用,不仅需要满足高硬度、高耐磨性和可靠的连接强度,还需要成型为复杂空间结构件,这对传统加工方式提出了巨大挑战。3d打印技术依靠“离散-堆积”原理为依据,以粉末为原料,从无到有实现复杂结构零件的成型,大大提高了复杂空间结构件的成型问题。在3d打印陶瓷材料时,成品往往出现孔隙率高、结构强度差等问题。这不利于超硬磨料陶瓷复合材料的力学性能。

目前,在增材制造领域内,超硬磨料低温共烧陶瓷结合剂与超硬磨料结合的相关研究报道还属于本技术领域中的空白领域。



技术实现要素:

本发明针对现有技术中存在的问题,公开了一种基于3d打印的低温共烧陶瓷超硬磨料聚合体的制备方法,本发明的方法通过简单的方法即可将低温共烧陶瓷结合剂与超硬磨料制备成聚合体,该聚合体经3d打印后,可实现复杂空间结构件的快速成型,解决了航空航天、国防军工和高端装备制造领域中的核心零部件往往具有复杂的空间结构和高硬度、高耐磨和高连接强度的技术缺陷。

本发明是这样实现的:

一种基于3d打印的低温共烧陶瓷超硬磨料聚合体的制备方法,其特征在于,所述的制备方法为:

步骤一、制备3d打印成型的低温共烧陶瓷结合剂:将微晶玻璃料粉末和陶瓷粉末按比例混合,以无水乙醇为介质,球磨1~12h,经干燥和过筛后,得用于3d打印成型的低温共烧陶瓷结合剂;

步骤二、将低温共烧陶瓷结合剂、超硬磨料和粘接剂按照40:100:10比例混合,置于3d打印设备中成型,得待烧聚合体;

步骤三、将得到的待烧聚合体,置于700~1000℃环境下,升温速率2~20℃/min,保温0.5~3h,制备得到基于3d打印成型的低温共烧陶瓷结合剂超硬磨料聚合体。

进一步,所述的步骤一的具体步骤为:

1.1、按比例称量的微晶玻璃原料并混合均匀,球磨1~12h,置于1200~1500℃环境下熔炼0.5~4h,经水淬、干燥、破碎后,球磨1~12h,得微晶玻璃粉末;

1.2、按比例称量的陶瓷原料并混合均匀,球磨1~12h,得陶瓷粉末;

1.3、将微晶玻璃料粉末和陶瓷粉末按1:9~9:1的比例混合,以无水乙醇为介质,球磨1~12h,经干燥和过筛后,得用于3d打印成型的低温共烧陶瓷结合剂。

进一步,所述的微晶玻璃原料包含sio2、al2o3、b2o3以及na2o、k2o、cao、zno中的一种或者多种组合;其中各成分的质量比为50~60%sio2、5~10%al2o3、10~20%b2o3、5~10%na2o、5~10%k2o、5~10%cao、5~10%zno。

进一步,所述的陶瓷原料包含al2o3、zro2中的一种或者二者组合,其中各成分的质量比为0~100%al2o3、0~50%zro2。

进一步,所述的步骤二中的超硬磨料为金刚石和立方氮化硼中的一种或两种组合。

进一步,所述的粘结剂为聚丙烯酸胺、2-羟乙基纤维素、聚乙二醇、邻苯二甲酸二丁酯、氨水、液体石蜡、固体石蜡、糊精、硬脂酸、聚乙烯醇和丙烯酸中的一种或几种混合。

本发明与现有技术的有益效果在于:

本发明的3d打印材料以及利用该材料的3d打印技术能够有效解决复杂结构件的成型问题。低温共烧陶瓷结合剂可与超硬磨料形成可靠连接,提高结合强度。微晶玻璃由sio2、al2o3、b2o3、na2o、cao等,经高温熔炼而成。陶瓷材料主要由al2o3等组成。烧结过程中低温共烧陶瓷中的微晶玻璃可渗透于陶瓷颗粒和超硬磨料颗粒之间的缝隙,从而提高所制备聚合体的致密程度。

本发明基于3d打印成型的低温共烧陶瓷结合剂超硬磨料聚合体具有制备方法简便的特点。经3d打印后,可实现复杂空间结构件的快速成型。低温共烧陶瓷结合剂超硬磨料聚合体中,利用低温共烧陶瓷材料由微晶玻璃和陶瓷组成,不同于结构陶瓷,“晶界迁移-颈接-晶界消失”的烧结原理,低温共烧陶瓷在烧结过程中,微晶陶瓷在高温阶段成液相分布,可渗透于各个陶瓷颗粒缝隙之间,降低孔隙率,可有效提高所制备材料的致密程度,因此超硬磨料与低温共烧陶瓷间界面结合强度高、材料致密程度好。

具体实施方式

为使本发明的目的、技术方案及效果更加清楚,明确,以下列举实例对本发明进一步详细说明。应当指出此处所描述的具体实施仅用以解释本发明,并不用于限定本发明。

实施例1:

按如下比例称量微晶玻璃原料:50%sio2、5%al2o3、10%b2o3、5%na2o、10%k2o、10%cao、10%zno,混合均匀,熔炼温度1400℃,熔炼1h,经水淬、干燥、破碎后,球磨6h后得微晶玻璃料。将如下比例称量的陶瓷原料:50%al2o3和50%zro2,混合均匀,球磨6h后的陶瓷料。将微晶玻璃料和陶瓷料按1:1混合,在无水乙醇介质下球磨6h,经干燥和过筛后,得低温共烧陶瓷结合剂。将cbn、低温共烧陶瓷结合剂和丙烯酸按40:100:10混合,充分混合均匀后置于3d打印设备中得到待烧聚合体。聚合体烧制温度为900℃,升温速率5℃/min,保温1h,得本发明的基于3d打印成型的低温共烧陶瓷结合剂超硬磨料聚合体。

测试结果:抗弯强度:89.2mpa;密度:3.3g/mm3

实施例2:

按如下比例称量微晶玻璃原料:50%sio2、10%al2o3、20%b2o3、5%na2o、5%k2o、5%cao、5%zno,混合均匀,熔炼温度1300℃,熔炼1.5h,经水淬、干燥、破碎后,球磨5h后得微晶玻璃料。将如下比例称量的陶瓷原料:90%al2o3和10%zro2,混合均匀,球磨6h后的陶瓷料。将微晶玻璃料和陶瓷料按2:1混合,在无水乙醇介质下球磨6h,经干燥和过筛后,得低温共烧陶瓷结合剂。将cbn、低温共烧陶瓷结合剂和丙烯酸按40:100:10混合,充分混合均匀后置于3d打印设备中得到待烧聚合体。聚合体烧制温度为950℃,升温速率5℃/min,保温1h,得本发明的基于3d打印成型的低温共烧陶瓷结合剂超硬磨料聚合体。

测试结果:抗弯强度:91.1mpa;维氏硬度:4.3gpa;密度:3.9g/mm3

实施例3:

按如下比例称量微晶玻璃原料:60%sio2、5%al2o3、10%b2o3、10%na2o、5%k2o、5%cao、5%zno2,混合均匀,熔炼温度1500℃,熔炼1.5h,经水淬、干燥、破碎后,球磨5h后得微晶玻璃料。将如下比例称量的陶瓷原料:100%al2o3,球磨6h后的陶瓷料。将微晶玻璃料和陶瓷料按1:1混合,在无水乙醇介质下球磨6h,经干燥和过筛后,得低温共烧陶瓷结合剂。将cbn、低温共烧陶瓷结合剂和丙烯酸按40:100:10混合,充分混合均匀后置于3d打印设备中得到待烧聚合体。聚合体烧制温度为800℃,升温速率15℃/min,保温1.5h,得本发明的基于3d打印成型的低温共烧陶瓷结合剂超硬磨料聚合体。

测试结果:抗弯强度:90.0mpa;密度:3.4g/mm3

对照例

按如下比例称量微晶玻璃原料:60%sio2、5%al2o3、10%b2o3、10%na2o、5%k2o、5%cao、5%zno2,混合均匀,熔炼温度1500℃,熔炼1.5h,经水淬、干燥、破碎后,球磨5h后得微晶玻璃料。将如下比例称量的陶瓷原料:100%al2o3,球磨6h后的陶瓷料。将微晶玻璃料和陶瓷料按1:1混合,在无水乙醇介质下球磨6h,经干燥和过筛后,得低温共烧陶瓷结合剂。将cbn、低温共烧陶瓷结合剂和丙烯酸按40:100:10混合,充分混合均匀后置于3d打印设备中得到待烧聚合体。聚合体烧制温度为800℃,升温速率15℃/min,保温1.5h,得本发明的基于3d打印成型的低温共烧陶瓷结合剂超硬磨料聚合体。

测试结果:抗弯强度:55.7mpa;密度:3.0g/mm3

经实施例1~3和对照例,对比发现低温共烧陶瓷结合剂超硬磨料聚合体的抗弯强度和致密程度均高于微晶陶瓷超硬磨料聚合体。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1