用于平视显示的包含被提供有具有热性能的堆叠体的基材的材料的制作方法

文档序号:29064848发布日期:2022-03-01 17:40阅读:115来源:国知局
用于平视显示的包含被提供有具有热性能的堆叠体的基材的材料的制作方法
用于平视显示的包含被提供有具有热性能的堆叠体的基材的材料
1.本发明涉及一种包括涂覆有薄层堆叠体的透明基材的材料,例如窗玻璃,该薄层堆叠体包括多个可影响太阳辐射和/或红外线辐射的功能层。本发明还涉及包含这些材料的窗玻璃以及这些材料用于制备隔热和/或防晒窗玻璃的用途。
2.本发明更具体地涉及用于生产所谓“日光控制”的车辆玻璃窗的这种材料,其允许降低空调负荷和/或防止车辆乘客舱内的过度过热,同时允许所谓“平视”显示或 hud(英文为head up display)。
3.本发明甚至更具体地涉及用于制备这样的窗玻璃的材料,其中日光控制功能使用包括多个金属功能层的薄层的堆叠体来实现,该堆叠体在其整个厚度上具有低电阻,使得堆叠体可以通过施加在车辆边缘可获得的电流来加热,该电流横向于堆叠体的厚度而流过。
4.已经提出了一种包括涂覆有薄层堆叠体的透明基材的窗玻璃,特别地层压窗玻璃以改善太阳能保护,并获得低薄层电阻,同时保持足够的透光率,该薄层堆叠体包括四个金属功能层,每个金属功能层都布置在两个介电涂层之间。这些堆叠体通常通过任选地磁场辅助的阴极溅射进行的一系列沉积获得。
5.现有技术的材料允许获得足够高的透光率和低薄层电阻值。现有技术从国际专利申请wo 2005/051858的1实施例 16 已知一种允许获得具有70.3%透光率和1.03欧姆/平方的薄层电阻的层压窗玻璃的材料。
6.然而,需要与以前一样具有至少 70% 的透光率但具有较低的薄层电阻且最重要的是具有与 hud 显示兼容的内反射的层压窗玻璃。
7.包含三个功能层的堆叠体的复杂性使得这些特性很难得到结合改进。
8.发明人惊奇地发现,通过选择四个功能层的厚度,可以获得能够表现出所需性质的材料。
9.本发明基于使用具有四个金属功能层的堆叠体(即具有恰好四个金属功能层的堆叠体,不多也不少),其各自的厚度,从载体基材开始,特别在于:第二、第三和第四功能层的厚度均大于第一层的厚度但小于该第一层的厚度的两倍。
10.本发明首先的主题是根据权利要求1所述的材料。这种材料包括在一个面上涂覆有一个薄层堆叠体的透明基材,该薄层堆叠体从所述面依次包括以下层的交替:-四个基于银或由银制成的金属功能层,从基材开始取名为第一功能层ag1、第二功能层ag2、第三功能层ag3和第四功能层ag4,分别具有物理厚度ea1、ea2、ea3和 ea4,和-五个介电涂层,从基材的所述面开始取名为m1、m2、m3、m4和m5,分别具有光学厚度eo1、eo2、eo3、eo4和eo5,每个介电涂层包含介电层或介电层组件,使得每个金属功能层被设置于两个介电涂层之间。
11.所述材料值得注意的是:-第一功能层ag1的物理厚度ea1小于第二功能层ag2的物理厚度ea2,其中0.60《ea1/ea2《0.90,甚至0.70≤ea1/ea2≤0.85,甚至0.75≤ea1/ ea2≤0.85;-第一功能层ag1的物理厚度ea1使得8.00≤ea1≤13.00nm,甚至使得9.00≤ea1≤12.00nm;-第一功能层ag1的物理厚度ea1小于第三功能层ag3的物理厚度ea3,其中0.60《ea1/ea3《0.90,甚至0.70≤ea1/ea3≤0.85,甚至0.75≤ea1/ ea3≤0.8;和-第一功能层ag1的物理厚度ea1小于第四功能层ag4的物理厚度ea4,其中0.60《ea1/ea4《0.90,甚至0.70≤ea1/ea4≤0.85,甚至0.75≤ea1/ ea4≤0.85。
12.因此,这允许实现所需的光学和热性能、透明度和美观的外观,如前所解释。
13.它是用于 hud 投影仪的材料,尤其用于在 s 偏振下的 hud 投影仪。该材料以s偏振降低反射颜色强度( l*(ri65
°
) 《 15.0);该材料不以 p 偏振增加反射颜色强度。
14.在下面以替代或累积形式给出本发明的一些优选但非限制性的实施方案:-第二功能层ag2的几何厚度ea2在12.0至15.0nm之间;-第三功能层ag3的几何厚度ea3在13.0至16.0nm之间;-第四功能层ag4的几何厚度ea4在13.0至16.0nm之间;-四个功能层ag1、ag2、ag3和ag4的累积几何厚度在45.0至65.0nm之间,优选地在50.0至60.0nm之间。
15.为了实现目标特性,优选的是:-第一介电涂层m1的光学厚度eo1小于第二介电涂层m2的光学厚度eo2,其中0.40《eo1/eo2《0.90,甚至0.45≤eo1/eo2≤0.85;-第一介电涂层m1的光学厚度eo1小于第三介电涂层m3的光学厚度eo3,其中0.40《eo1/eo3《0.90,甚至0.45≤eo1/eo3≤0.85;-第一介电涂层m1的光学厚度eo1小于第四介电涂层m4的光学厚度eo4,其中0.35《eo1/eo4《0.90,甚至0.45≤eo1/eo4≤0.85;和-第五介电涂层m5的光学厚度eo5使得0.50《eo1/eo5《1.50,甚至0.60≤eo1/eo5≤1.30。
16.为了实现目标特性,优选的是:-第二功能层ag2的物理厚度ea2使得0.80《ea2/ea3《1.20,甚至0.90≤ea2/ea3≤1.10,甚至0.95≤ea2/ea3≤1.05;和-第二功能层ag2的物理厚度ea2使得0.80《ea2/ea4《1.20,甚至0.90≤ea2/ea4≤1.10,甚至0.95≤ea2/ea4≤1.05。
17.此外,第三功能层ag3的物理厚度ea3优选使得0.80<ea3/ea4<1.20,甚至0.90≤ea3/ea4≤1.10,甚至0.95≤ea3/ea4≤1.05。
18.特别地为了实现所希望的色度特性,优选的是每个介电涂层 m1、m2、m3、m4 和 m5 包括高指数介电层,其在 550nm 波长的折光指数等于或大于2.2,并且优选地包括高指数介电阻挡层,其每一个都基于氮化硅锆。
19.所述高指数介电层的光学厚度优选地构成其所在的介电涂层的光学厚度的20%至75%之间,甚至构成其所在其中的介电涂层的光学厚度的25%至70%。
20.可以优选的是:-第二介电涂层m2的光学厚度eo2与第三介电涂层m3的光学厚度eo3接近或相同,其中0.80《eo2/eo3《1.20,甚至0.90≤eo2/eo3≤1.10;-第二介电涂层m2的光学厚度eo2与第四介电涂层m4的光学厚度eo4接近或相同,其中0.80《eo2/eo4《1.20,甚至0.90≤eo2/eo4≤1.10;和-第二介电涂层m2的光学厚度eo2大于第五介电涂层m5的光学厚度eo5,其中1.30《eo2/eo5《2.00,甚至1.40≤eo2/eo5≤1.90。
21.在一个特定的变体中:-第三介电涂层m3的光学厚度eo3与第四介电涂层m4的光学厚度eo4接近或相同,其中0.80《eo3/eo4《1.20,甚至0.90≤eo3/eo4≤1.10;和-第三介电涂层m3的光学厚度eo3大于第五介电涂层m5的光学厚度eo5,其中1.20《eo3/eo5《2.00,甚至1.30≤eo3/eo5≤1.90。
22.在一个非常特定的变体中,第四介电涂层m4的光学厚度eo4大于第五介电涂层m5的光学厚度eo5,其中1.20<eo4/eo5<2.10,甚至1.30≤eo4/eo5≤1.90。
23.所述的四个银基金属功能层可以是由银制成的金属功能层。
24.从透明基材开始,堆叠体可以包括以下层或由以下层组成:-第一介电涂层m1,其优选包括至少一个具有阻挡功能的介电层和具有润湿功能的介电层,-第一功能层ag1,
‑ꢀ
任选的阻挡上层,-第二介电涂层m2,其优选包括至少一个具有阻挡功能的介电层和具有润湿功能的介电层,
‑ꢀ
第二功能层 ag2,
‑ꢀ
任选的阻挡上层,-第三介电涂层m3,其优选包括至少一个具有阻挡功能的介电层和具有润湿功能的介电层,
‑ꢀ
第三功能层 ag3,
‑ꢀ
任选的阻挡上层,-第四介电涂层m4,其优选包括至少一个具有阻挡功能的介电层和具有润湿功能的介电层,-第四功能层ag4,
‑ꢀ
任选的阻挡上层,-第五介电涂层m5,其优选地包括至少一个具有阻挡功能的介电层。
25.本发明还涉及一种包含至少一种如上所述材料的窗玻璃。这种窗玻璃优选为层压窗玻璃的形式。
26.在本发明意义内的介电涂层优选根本不包括任何吸收层、金属层或氮化层。
27.在说明书中介绍的所有光特性都是根据在欧洲标准 en 410 中描述的原理和方法获得的,该标准与在用于汽车建造的玻璃中使用的窗玻璃的光和日光特性的确定有关。
28.传统上,折光指数是在 550 nm 的波长下测量的。光透射率 t l
和光反射率 r l
系数是在光源 a 下以 2
°
的视场或根据光源 d65 使用 10
°
观察者根据以下指示进行测量。
29.除非另有说明,否则在本文件中提到的厚度,没有其它详情说明,是物理厚度或真实厚度或几何厚度,对于介电层,厚度取名为 ep,对于金属功能层,厚度取名为 ea,并以纳
米表示。一个层或一个层组件的光学厚度 eo 被定义为所考虑层的物理厚度乘以其在 550 nm 波长下的折光指数 (n): eo = n
550
×
ep 或对于该层组件,这些层的光学厚度的总和。由于折光指数是无量纲值,因此可以认为光学厚度的单位与选择用于物理厚度的单位相同。在本说明书中,除非另有说明,否则选择用于厚度的单位是纳米。如果介电涂层由多个介电层组成,则介电涂层的光学厚度对应于构成介电涂层的不同介电层的光学厚度之和。
30.在整个说明书中,根据本发明的基材被认为是水平放置的。薄层堆叠体被沉积在基材上方并与基材接触。表述“在...上方”和“在...下方”以及“的下方”和“的上方”的含义将相对于该取向加以考虑。除非特别规定,否则表述“在...上方”和“在...下方”不必然意味着两个层和/或涂层彼此接触。当规定一个层与另一个层或涂层“接触”沉积时,这意味着在这两个层(或层和涂层)之间不能具有一个(或多个)插入的层。
31.出于本发明的目的,用于功能层或介电涂层的称号“第一”、“第二”、“第三”、“第四”和“第五”是从承载该堆叠体的基材开始,并参考具有相同功能的层或涂层进行定义的。例如,离基材最近的功能层是第一功能层,远离基材的随后功能层是第二功能层,等。
32.优选地,堆叠体通过磁场辅助阴极溅射(磁控管工艺)进行沉积。根据这种有利实施方案,堆叠体的所有层通过磁场辅助的阴极溅射进行沉积。
33.阻挡层可以存在于根据本发明的堆叠体中。它们通常具有保护功能层在沉积上部抗反射涂层期间和/或在任选的退火、弯曲和/或淬火类型的高温热处理期间免受可能损坏的功能。
34.阻挡层例如选自一种或多种元素的基于金属或金属合金的金属层、金属氮化物层、金属氧化物层和金属氧氮化物层,所述一种或多种元素选自钛、镍、铬和铌,例如ti、tin、tio
x
、nb、nbn、ni、nin、cr、crn、nicr、nicrn 或 nbno
x
或 nicro
x 。
35.这种层的几何厚度在几纳米的数量级,通常小于5纳米,最常见的是大约一纳米甚至小于一纳米。
36.当这些阻挡层以金属、氮化物或氮氧化物的形式沉积时,这些层可以根据它们的厚度和围绕它们的层的性质经受部分或完全氧化,例如,在下一层的沉积时或由于在与下邻层接触时的氧化。
37.根据本发明的有利实施方案,介电涂层满足以下条件中的一个或多个:-介电涂层包括至少一个基于一种或多种元素的氧化物或氮化物的介电层,该一种或多种元素选自硅、钛、锆、铝、锡或锌,和/或-至少一个介电涂层包括至少一个具有阻挡功能的介电层,和/或-每个介电涂层包括至少一个具有阻挡功能的介电层,和/或-具有阻挡功能的介电层基于硅和/或铝的化合物,该化合物选自氧化物如sio2和al2o3或它们的混合物、氮化硅si3n4和aln或它们的混合物和氮氧化物sio
x
ny和alo
x
ny或它们的混合物,和/或-具有阻挡功能的介电层基于硅和/或铝的化合物,该化合物任选地包含至少一种其它元素,例如铝、铪和锆,和/或-至少一个介电涂层包括至少一个具有稳定功能的介电层,和/或-每个介电涂层包括至少一个具有稳定功能的介电层,和/或-具有稳定功能的介电层优选基于选自氧化锌、氧化锡、氧化锆或它们中至少两种
的混合物的氧化物,-具有稳定功能的介电层优选基于结晶氧化物,特别地基于氧化锌,任选地使用至少一种其它元素例如铝进行掺杂,和/或-每个功能层在介电涂层上方,其上层是具有稳定功能的介电层,优选基于氧化锌,和/或在介电涂层下方,该介电涂层的下层是具有稳定功能的介电层,优选基于氧化锌。
38.优选地,每个介电涂层仅由一个或多个介电层组成。优选地,因此在介电涂层中没有吸收层,以便不降低光透射。
39.本发明的堆叠体可以包括具有阻挡功能的介电层。表述“具有阻挡功能的介电层”应理解为是指由能够形成阻挡来自环境大气或来自透明基材的水和氧气在高温下朝向功能性层扩散的材料制成的层。因此,具有阻挡功能的介电层的组成材料在高温下必须不经受化学或结构改性,该化学或结构改性将导致它们的光学特性的改性。所述一个或多个具有阻挡功能的层还优选被选择由能够对功能层的构成材料形成阻挡的材料制成。因此,具有阻挡功能的介电层允许堆叠体经受退火、淬火或弯曲类型的热处理而没有过大的光学变化。
40.本发明的堆叠体可以包括具有稳定功能的介电层。出于本发明的目的,术语“稳定”是指选择层的性质以稳定在功能层和该层之间的界面。这种稳定作用引起功能层与围绕它的层的粘附力增强,事实上,它将阻止其组成材料的迁移。
41.所述具有稳定功能的一个或多个介电层可以直接与功能层接触或通过阻挡层隔开。
42.优选地,位于功能层下方的每个介电涂层的最终介电层是具有稳定功能的介电层。事实上,有利的是在功能层下方存在具有稳定功能的层(例如基于氧化锌),因为它有利于银基功能层的粘附和结晶,并提高其品质和其在高温的稳定性。
43.还有利的是在功能层上方存在具有稳定功能的层,例如基于氧化锌的层,以增加其粘附力并最佳地阻止与在基材相反的堆叠体一侧的扩散。
44.一个或多个具有稳定功能的介电层因此可以存在于至少一个功能层或每个功能层的上方和/或下方,或者与其直接接触或者通过阻挡层隔开。
45.有利地,每个具有阻挡功能的介电层通过至少一个具有稳定功能的介电层与功能层隔开。
46.这种具有稳定功能的介电层可以具有至少4nm的厚度,特别地4nm-18nm的厚度并且更好是8nm-15nm的厚度。
47.根据本发明的透明基材优选由刚性无机材料制成,例如由玻璃制成,或者由基于聚合物(或由聚合物制成)的有机材料制成。
48.根据本发明的透明有机基材也可以由聚合物制成,是刚性的或柔性的。根据本发明适合的聚合物的实例尤其包括:
‑ꢀ
聚乙烯;
‑ꢀ
聚酯,例如聚对苯二甲酸乙二醇酯(pet)、聚对苯二甲酸丁二醇酯(pbt)或聚萘二甲酸乙二醇酯(pen);
‑ꢀ
聚丙烯酸酯,例如聚甲基丙烯酸甲酯 (pmma);
‑ꢀ
聚碳酸酯;
‑ꢀ
聚氨酯;
‑ꢀ
聚酰胺;
‑ꢀ
聚酰亚胺;
‑ꢀ
含氟聚合物,例如含氟酯,例如乙烯-四氟乙烯 (etfe)、聚偏二氟乙烯 (pvdf)、聚三氟氯乙烯 (pctfe)、乙烯-三氟氯乙烯 (ectfe) 或氟化乙烯-丙烯 (fep) 共聚物;-可光交联和/或可光聚合的树脂,例如噻吩、聚氨酯、氨基甲酸酯-丙烯酸酯或聚酯-丙烯酸酯树脂;和
‑ꢀ
聚硫氨酯。
49.基材优选为玻璃片材。
50.该基材优选是透明的、无色的(这时它是透亮的或超透亮的玻璃)或有色的,例如蓝色、灰色或青铜色的。玻璃优选为钠钙硅型,但也可由硼硅酸盐或铝硼硅酸盐型玻璃制成。
51.基材有利地具有至少一个大于或等于1m,甚至2m甚至3m的维度。基材的厚度通常在 0.6 毫米
‑ꢀ
2.1 毫米之间变化。基材可以是平坦的或弯曲的。
52.该材料,即涂覆有堆叠体的基材,可以经受高温热处理,例如退火,例如通过快速退火,如激光或火焰退火,淬火和/或弯曲。热处理的温度高于400℃,优选高于450℃,更好是高于500℃。涂覆有堆叠体的基材因此可以进行弯曲和/或淬火。
53.本发明的窗玻璃优选为层压窗玻璃的形式,特别是用于hud投影仪的层压窗玻璃。层压窗玻璃包括至少一种第一基材/片材/第二基材类型的结构。薄层的堆叠体被设置于基材之一的至少一个面上。堆叠体可以在第一基材的与片材、优选聚合物片材接触的面上。
54.根据本发明的窗玻璃,其作为层压窗玻璃使用,优选具有以下光学特性:-等于或大于70%的透光率,-a*
t
《0.0-均等于或小于15%的外反射和内反射,-a*
re
《0.0,-12.0≤b*
re
《0.0,-a*
ri
《0.0,-15.0≤b*
ri
《0.0,-和在本文件的含义内,l*(ri65
°
)《15.0。
55.本发明的细节和有利特征从以下使用附图说明的非限制性实施例中变得显而易见:[图1]示出了根据本发明的具有四个金属功能层的堆叠体结构,这种结构被沉积在透明玻璃基材10上;[图2]结合图1详细描述了四个实施例的组成,编号为1到4;[图3]总结了光学厚度eo或物理厚度ea的具体比率;[图4]显示了在单体结构中的薄层电阻和光学特性,在退火热处理后;[图5]显示了层压结构的光学特性;和[图6]显示了用于将量 x、y、z 转换为 l*、a*、b*(作为波长 λ 的函数,以纳米为单位)的参考白色。
[0056]
在图1中未遵循不同元件之间的比例以便于阅读。
[0057]
在图1中所示的堆叠体被布置在基材10上并且仅包括四个金属功能层40、80、120
和160。每个功能层40、80、120、160被布置在两个介电涂层20、60、100、140和180之间,使得:-从基材10开始的第一功能层40被布置在介电涂层20和60之间,-第二功能层80被布置在介电涂层60和100之间,-第三功能层120被布置在介电涂层100和140之间,以及-第四功能层160被布置在介电涂层140和180之间。
[0058]
这些介电涂层20、60、100、140、180各包括至少一个介电层24、27、28;62、64、66、67、68;102、104、106、107、108;142、144、146、147、148、182、186和187。
[0059]
堆叠体还可以包括:
‑ꢀ
阻挡上层50、90、130和170,每个位于功能层上方并与功能层接触,
‑ꢀ
阻挡下层(未示出),每个下层都位于功能层下方并与功能层接触,
‑ꢀ
保护层(未示出),位于所有前面层上方的最后层,例如由 tizr 制成或由锆和钛氧化物制成。
[0060]
实施例:i. 基材的制备:堆叠体、沉积条件和热处理下面定义的薄层堆叠体被沉积在由透亮钠钙玻璃制成的厚度为 1.6 毫米的基材上。
[0061]
在实施例中,这些层是通过溅射(所谓的“磁控阴极溅射”)沉积的:-功能层40、80、120和160是银(ag)层,它们在100%氩气或氪气气氛中和3
×
10-3
毫巴的减压下由金属靶进行沉积,-阻挡上层50、90、130和170是由镍铬合金(nicr)制成的金属层,它们在100%的氩气气氛中和3
×
10-3
毫巴的减压下从具有80原子%的ni和20原子%的cr的金属靶进行沉积,-介电层是:-中指数阻挡层104、144和187,它们每个基于掺杂有铝的氮化硅(“si3n
4”),并且从具有92重量%硅和8重量%铝的硅靶,在具有45%氮气和55%氩气的氮气氩气气氛中并在3.2
×
10-3
毫巴的减压下进行沉积,-高指数阻挡层24、64、106、146和186,它们每个基于氮化硅锆(“sizrn”),并且从具有83原子%硅和17原子%锆的硅靶,在具有45%氩气和55%氩气的氮气氩气气氛中,在为3.2
×
10-3
毫巴的减压下进行沉积,-超高指数阻挡层66,其基于氮化硅锆(“sizrn*”),并且从具有73原子%硅和27原子%锆的硅靶,在具有45%氮气和55%氩气的氮气氩气气氛中和在3.2
×
10-3
毫巴的减压下进行沉积,-润湿层28、68、108和148,其每个都位于每个金属功能层下方并与每个金属功能层接触,并且其每个由氧化锌(“zno”)制成,从陶瓷靶在100%氩气气氛中和在3
×
10-3
毫巴的压力下进行沉积,-平滑层27、67、107和147,它们每个位于阻挡层和润湿层之间,并且每个由锌锡混合氧化物(“snzno”)制成,从具有50重量%锡和50重量%锌的金属靶,在具有30%氩气和70%氧气的气氛中并在3
×
10-3
毫巴的减压下进行沉积,-稳定层62、102、142和182,它们每个位于阻挡上层上方并与阻挡上层接触,并且每个由掺杂有铝的氧化锌(“zno”)制成,其从陶瓷靶在100%氩气的气氛中和在3
×
10-3
毫巴
的减压下进行沉积。
[0062]
因此,图2的表格,作为它们相对于承载堆叠体的基材(位于表格的最下部)的位置的函数,列出了每个介电层的材料和物理厚度ep、每个金属功能层的厚度ea(以纳米为单位)和每个介电涂层的相应光学厚度eo(以纳米为单位)。
[0063]
i1、i2和i3栏分别列出了用于本发明的比率、优选的比率和更优选的比率。
[0064]
ii.“日光控制”和色度性能图4的表格列出了在650℃进行5分钟的退火处理并在环境空气(20℃)中冷却后,在单体状态下测量的主要光学特性。
[0065]
对于这些单体结构:-tl指示:在可见光区域中的透光率,以%计,在光源a下以2
°
观察者的角度测量;-a*
t
和b*
t
指示:在l*a*b*体系中以法向入射(0
°
)在透射中的颜色a*和b*,其使用光源d65以10
°
观察者测量和垂直于基材测量;-rc指示:在可见光中光反射率,以%计,用光源a与堆叠体一侧以10
°
观察者测量;-a*
rc
和b*
rc
指示:在l*a*b*体系中以法向入射(0
°
)在反射中的颜色a*和b*,其使用光源d65以10
°
观察者在堆叠体一侧测量,并由此垂直于基材测量;-rg指示:可见光反射率,以%计,用光源a,在与堆叠体相反一侧(在基材10下方)以2
°
观察者进行测量;-a*
rg
和b*
rg
指示:在l*a*b*体系中以法向入射(0
°
)在反射中的颜色a*和b*,其使用光源d65,在堆叠体相反一侧以10
°
观察者进行测量,并由此垂直于基材进行测量;-l*rc(60
°
),a*
rc
(60
°
)和b*
rc
(60
°
)指示:在l*a*b*体系中在层一侧在反射中的强度l*和颜色a*和b*,其在相对于法线成60
°
的入射角下使用d65光源,在堆叠体一侧以10
°
观察者进行测量。
[0066]
图5的表格列出了当涂敷有堆叠体的基材各自形成具有以下结构的层压窗玻璃的一部分时测量的主要光学特性:1.6毫米内部玻璃基材/0.76毫米pvb中间片材/2.1毫米外部玻璃基材,堆叠体是位于内部基材的朝向中间片材的面上。
[0067]
对于这些层压窗玻璃,-tl指示:在可见光区中的透光率,以%计,使用光源a以2
°
观察者测量;-a*
t
和b*
t
指示:在l*a*b*体系中以垂直入射(0
°
)在透射中的颜色a*和b*,其使用d65光源以10
°
观察者测量并垂直于玻璃测量;-re指示:在可见光中的光反射,以%计,其使用光源a,以在窗玻璃最外面一侧的2
°
观察者测量;-a*
re
和b*
re
指示:在l*a*b*体系中以法向入射(0
°
)在反射中的颜色a*和b*,其使用光源d65,以在最外侧面一侧的10
°
观察者测量,并由此垂直于窗玻璃测量;-ri指示:在可见光区中的光反射,以%计,使用d65光源以在窗玻璃内部面一侧的2
°
观察者测量;-a*
ri
和b*
ri
指示:在l*a*b*体系中以法向入射(0
°
)在反射中的颜色a*和b*,其使用光源d65,以在内部面一侧的10
°
观察者测量并因此垂直于窗玻璃测量;-l*(re60
°
)、a*(re60
°
)和b*(re60
°
)表示在l*a*b*体系中的反射颜色a*和b*,以相对于法线为60
°
的入射下使用d65光源,以在玻璃外部面一侧的2
°
观察者测量;和-l*(ri65
°
)、a*(ri65
°
)和b*(ri65
°
)表示在l*a*b*体系中的反射颜色a*和b*以相对于法线为65
°
的入射进行测量:在层压窗玻璃上,通过在s偏振并且以相对于法线为65
°
的入射下测量颜色l*(ri65
°
)、a*(ri65
°
)和b*(ri65
°
),对应于到从窗玻璃内部面开始的第二次反射(第一次反射是直接在最内面上测量的反射)。用于此测量的光源对应于hud投影仪(以通过使用与光源d65对应的参考白色和2
°
观察者测量x、y、z值,然后将其转换为l*、a*、b*);所选的光源如图6中所示。
[0068]
本发明同时所有目标值显示在图4和5的表的第i1列中。
[0069]
实施例1和2是本发明之外的比较例。实施例3和4是根据本发明的实施例。
[0070]
实施例1遵循国际专利申请号wo2005/051858的一般教导,因为它包括四个厚度基本相同的功能层,所有厚度都约为14.0nm
±
0.5nm。因此,第一功能层的厚度与其它功能层的厚度之比约为1.00
±
0.05,如图3的表格的前三行所示。这些厚度不是严格相同,因为该实施例1作为优化客体,以尝试实现尽可能高的光透射率,同时实现令人满意的低薄层电阻,即每平方0.70欧姆或更低的数量级。
[0071]
图4的表显示这种单体结构的透光率为73%,而图5的表显示这种层压结构的透光率为70%,这是令人满意的。
[0072]
然而,图5的这个表格显示了hud图像的反射中颜色强度,用l*(ri65
°
)表示,是过高的。这种窗玻璃对于与hud系统使用是不兼容的。
[0073]
实施例2遵循另一个一般教导并且包括非常薄的第一功能层和以下三个基本相同的。第一功能层的厚度与其它功能层的厚度之比约为0.50正负0.05,如图3表格的前三行所示。此实施例2也是优化的主题,以尝试实现尽可能高的光透射率,但获得的薄层电阻并不令人满意:它远高于0.70欧姆/平方的最大限值,不允许有效地通过薄层堆叠体电加热窗玻璃。
[0074]
此外,图5的表格显示,层压结构的透光率为71%,这是令人满意的,但是用l*(ri65
°
)表示的hud图像的反射中颜色强度也是过高的。
[0075]
另外,图5的表格显示,内反射的颜色与目标值相差甚远,其中a*
ri
远高于零且是过正的,b*
ri
远低于零且是过负的;外部反射中的颜色也与目标值相差甚远,a*
re
远高于零且是过正的,b*
re
远低于零且是过负的。
[0076]
根据本发明,可以生产包含具有三个金属功能层的堆叠体的窗玻璃,该堆叠体在层压构造中具有等于或大于70%的透光率,a*
t
《0.0,外反射和内反射均等于或小于15%,a*
re
《0.0,-12.0≤b*
re
《0.0,a*
ri
《0.0,-15.0≤b*
ri
《0.0和l*(ri65
°
)《15.0。
[0077]
因此实施例3和4是令人满意的。它们具有令人愉悦且非常微弱的在透射中着色,优选在蓝色或蓝绿色范围内,但强度非常低。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1