一种ZnO量子点掺杂的下转换减反射膜及其制备方法与流程

文档序号:26916618发布日期:2021-10-09 16:09阅读:230来源:国知局
一种ZnO量子点掺杂的下转换减反射膜及其制备方法与流程
一种zno量子点掺杂的下转换减反射膜及其制备方法
技术领域
1.本发明属于纳米材料领域,特别涉及一种zno量子点掺杂的下转换减反射膜及其制备方法。


背景技术:

2.太阳能是人类取之不尽用之不竭的清洁能源。太阳能电池是可以直接将太阳能转换为电能的装置。但是,目前太阳能电池的光电转换效率并不高。为了提高太阳能电池对太阳光的利用率,通常可以在太阳能电池装置中引入减反射膜,将其镀在太阳能电池玻璃盖板上,用来减少光的反射,从而提高太阳能电池对太阳光的利用率。为了增加太阳能电池对光的利用,人们已经研究出减反效果较好的减反射膜,例如:ye等以正硅酸四乙酯为前驱体,十六烷基三甲基溴化铵为模板,采用蒸发诱导自组装法制备减反射涂层,这种涂层可以使玻璃的最大透过率高达99.9%,400

1100nm波段的平均透过率达到98.7%(rsc adv.,2014,4,35818

35822.)。虽然普通减反射膜的可以提高太阳能电池对可响应的太阳光的利用。但是太阳光辐射到地面的太阳光谱构成为295

2500nm,以晶体硅太阳能电池为例,带隙约为1.12ev,对应晶体硅响应的波长为400

1100nm,处于晶体硅可响应的范围内的光可以直接被太阳能电池利用。然而短波长的紫外光能量高,不能被太阳能电池有效利用,大部分以热量的形式释放出来。为了解决这个问题,人们通过将下转换和减反射膜结合起来的方式来调节光谱,将400nm之前的光转换为400

1100nm之间的光。例如:程祖军等人在多孔二氧化硅中掺入eu
3+
离子,然后制备出掺eu
3+
离子的sio2减反射膜,eu
3+
可以被393nm左右的光激发发射出612nm左右的红光(功能材料与器件学报,2009,第15卷,第3期,第295页)。但是稀土材料昂贵,不利于大规模生产,而且稀土的本征发射峰的位置不容易改变。目前制备出优质的低成本的下转换减反射膜仍然是一项大的挑战。
3.现有技术中公开了采用zno量子点掺杂的sio2溶胶,通过提拉镀膜制备下转换减反射膜的方法,制得的薄膜具有减反功能,可以将紫外光转化为可见光。但是该方法制得的下转换减反射膜增透性能不足,且亲水性性能差,清洁有难度。


技术实现要素:

4.本发明要解决的技术问题为克服现有技术中的下转换减反射膜增透性能不足、且亲水性性能差、清洁有难度的不足之处,提供一种增透效果好、亲水性强的zno量子点掺杂的下转换减反射膜及其制备方法。
5.为了解决本发明的技术问题,所采取的技术方案为,一种zno量子点掺杂的下转换减反射膜的制备方法,包括如下步骤:
6.s1、制备zno量子点:采用溶胶

凝胶法制备zno量子点;
7.s2、制备碱性sio2溶胶:以正硅酸四乙酯即teos作为硅源、氨水作为催化剂、无水乙醇作为溶剂,通过水解聚合反应制备碱性sio2溶胶;
8.s3、掺入zno量子点:向陈化1

5天的碱性sio2溶胶中滴加挥发性酸调节ph至5

7,
得到转性sio2溶胶,将步骤s1制得的zno量子点加入到转性sio2溶胶中,其中zno量子点在溶胶中的浓度为0.05

1.0mol/l,边滴加边搅拌,制得掺杂zno量子点的溶胶;
9.s4、提拉镀膜:用清洗好的玻璃基片在上述掺杂zno量子点的溶胶中提拉镀膜,将镀膜玻璃基片烘干;
10.s5、高温退火:将烘干的镀膜玻璃基片置于管式炉中高温退火,然后在管式炉中自然降至室温后取出,即制得zno量子点掺杂的下转换减反射膜;
11.其中,步骤s1、s2不分先后顺序。
12.作为zno量子点掺杂的下转换减反射膜的制备方法进一步的改进:
13.优选的,步骤s1中所述zno量子点的制备方法如下:
14.s11、将二水醋酸锌溶解于无水乙醇中,配置成浓度为0.22

0.37mol/l的醋酸锌的乙醇溶液,置于60℃的水浴下搅拌至呈悬浊液状,记为a溶液;
15.s12、将氢氧化钾溶解于无水乙醇中搅拌至溶解,制得浓度为0.53

1.6mol/l的氢氧化钾的乙醇溶液,记为b溶液,且a溶液中添加二水醋酸锌与b溶液中添加氢氧化钾的物质的量比为1:(1

1.5);
16.s13、将a溶液置于30

80℃的水浴温度中,将b溶液逐滴滴加到a溶液中,搅拌3

5min得到澄清溶液,向澄清溶液中加入体积为澄清溶液体积2

3倍的正己烷,静置10

20min后离心、洗涤,制得zno量子点待用。
17.优选的,步骤s2中所述碱性sio2溶胶的制备方法如下:
18.s21、将正硅酸四乙酯即teos和无水乙醇按照1:10的摩尔比混合,在室温条件下磁力搅拌20

30min,转速500

600r/min,配成c溶液;
19.s22、将水、氨水和无水乙醇按照5:(0.3

0.5):10的摩尔比混合,并在室温下搅拌搅拌2

3min,配成d溶液;
20.s23、将相同体积的c溶液缓慢滴加到d溶液中制成反应前驱溶液;
21.s24、将反应前驱溶液放于30

60℃的恒温水浴锅中,并以600r/min的转速进行磁力搅拌,反应7h,制得碱性sio2溶胶。
22.优选的,步骤s3中所述挥发性酸为硝酸或盐酸。
23.优选的,步骤s4中所述玻璃基片的清洗步骤如下:将玻璃基片放在5wt%的氢氧化钠溶液中浸泡20

30min,取出用棉布擦拭干净,再用清水或无水乙醇冲洗3

5次,然后浸泡在去离子水中超声10

20min,最后置于烘箱内烘干待用。
24.优选的,步骤s4中所述提拉镀膜中玻璃基片的下降速度为50

100mm/min,玻璃基片在溶胶中的浸渍时间为30

60s,玻璃基片上升速度为50

100mm/min,镀膜玻璃基片的烘干温度为50

80℃。
25.优选的,步骤s5中所述高温退火的温度为500℃,退火2

3h。
26.为解决本发明的技术问题,所采取的另一个技术方案为,一种由上述任一制备方法制得的zno量子点掺杂的下转换减反射膜。
27.本发明相比现有技术的有益效果在于:
28.1)现有技术在将zno量子点掺杂到sio2溶胶中制备减反射膜时,存在以下问题:zno量子点烘干加到酸或者碱性sio2溶胶中,zno量子点不能溶解分散,会沉淀在底部,得不到均匀分散的溶胶;zno量子点不烘干直接加到碱性sio2溶胶中会立刻凝胶;因此,现有技
术通过将不烘干的zno量子点掺杂到酸性sio2溶胶中,得到均匀分散的溶胶,提拉镀膜制得减反射膜。
29.本技术将碱性sio2溶胶调节成弱酸性或者中性后加入不烘干的zno量子点,不会发生凝胶,而且碱性sio2溶胶制备出的sio2薄膜是球形颗粒构成的,薄膜镀在玻璃上后,镀出来的膜层也具有颗粒排列结构,具有比酸性sio2溶胶制备出的薄膜更高的减反增透效果和超亲水性,可以使膜层具有自清洁的功能,经退火依然具有荧光效应。
30.2)本技术的减反射膜既可以减少光的反射,又可以将紫外光转化为可见光被太阳能电池利用。有希望应用到农业薄膜、光伏系统等领域。
31.3)本发明制备zno量子点以及碱性sio2溶胶都是采用溶胶凝胶技术,操作简单,成本不高,制备成本低,无毒,而且工艺较为成熟,能够实现大规模生产。
32.4)本发明利用的发光中心是zno量子点,因为zno量子点可以吸收380nm之前的光,主要发射出500

600nm之间的光,而且发光位置可以根据粒径来调节。本技术可以通过调整反应温度制得不同颗粒尺寸的zno量子点,从而制得不同发光位置的下转换减反射膜。
附图说明
33.图1为实施例1

4制备的薄膜的sem图片;其中(a)为实施例1制备的碱性sio2镀膜的薄膜;(b)为实施例2的碱性sio2溶胶调为中性后镀膜后的薄膜;(c)实施例3为在转性sio2溶胶中掺杂zno量子点后镀膜的薄膜样品1,其中zno的浓度为0.07mol/l;(d)为在转性sio2溶胶中掺杂zno量子点后镀膜的薄膜样品2,其中zno的浓度为0.14mol/l。
34.图2为实施例2中将掺杂zno量子点的转性sio2溶胶烘干后得到粉末,图(a)为粉末经过500℃退火后测试的荧光光谱,图(b)、(c)为粉末经过500℃退火后的数码照片。
35.图3为玻璃、镀有zno/sio2薄膜样品1的玻璃、镀有zno/sio2薄膜样品2的玻璃的透过率。
36.图4(a)为实施例1制得的碱性sio2薄膜接触角,(b)为实施例3制得的zno/转性sio2薄膜接触角。
具体实施方式
37.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
38.实施例1
39.碱性sio2薄膜的制备方法如下:
40.将正硅酸四乙酯即teos和无水乙醇按照1:10的摩尔比混合,混合溶液中teos的摩尔浓度为1.67mol/l,室温下磁力搅拌30min,配成c溶液;
41.然后将h2o、氨水和etoh按照5:(0.3

0.5):10的摩尔比混合,混合溶液中氨水的摩尔浓度为0.4mol/l,在室温下磁力搅拌2

3min,配成d溶液;
42.将相同体积的c溶液缓慢滴加到d溶液中制成反应前驱溶液,将反应前驱溶液放于30℃的恒温水浴锅中,并以600r/min的转速进行磁力搅拌,反应7h,制得碱性sio2溶胶;
43.将碱性sio2溶胶在室温下陈化3天后,用清洗好的玻璃基片在上述掺杂zno量子点
的溶胶中提拉镀膜,镀膜时玻璃基片下降速度为80mm/min,玻璃基片在溶胶中的浸渍时间为50s,玻璃基片上升速度为80mm/min,将镀膜玻璃基片在60℃的烘箱中烘干;
44.将烘干的镀膜玻璃基片放于管式炉中,500℃退火2.5h,然后在管式炉中自然降温到室温后取出,得到碱性sio2薄膜。
45.实施例2
46.碱性sio2溶胶调为中性镀膜后的薄膜制备方法如下:
47.在实例1中陈化3天的碱性sio2溶胶中添加浓硝酸调节溶胶的ph为7,得到转性sio2溶胶。然后用玻片在转性sio2溶胶中提拉镀膜即可得到碱性sio2溶胶调为中性的薄膜。
48.实施例3
49.zno/sio2薄膜样品1的制备方法如下:
50.制备zno量子点:将二水醋酸锌溶解于无水乙醇中,制得40ml浓度为0.27mol/l的醋酸锌的乙醇溶液,置于60℃的水浴下搅拌至呈悬浊液状,记为a溶液;
51.将氢氧化钾溶解于无水乙醇中搅拌至溶解,制得20ml浓度为0.8mol/l的氢氧化钾的乙醇溶液,记为b溶液;
52.将a溶液置于60℃的水浴温度中,将b溶液逐滴滴加到a溶液中,搅拌5min得到澄清溶液,向澄清溶液中加入体积为澄清溶液体积2.5倍的正己烷,静置20min后离心、洗涤,制得zno量子点待用;
53.在实例2中的ph为7的转性sio2溶胶中加入zno量子点得到复合溶胶,复合溶胶中zno量子点的浓度为0.07mol/l;
54.然后用复合溶胶镀膜即可得到zno/sio2薄膜样品1。
55.实施例4
56.zno/sio2薄膜样品2的制备方法如下:
57.具体制备步骤参照实施例3,区别在于复合溶胶中zno量子点的浓度为0.14mol/l;
58.然后用复合溶胶镀膜即可得到zno/sio2薄膜样品2。
59.实施例5
60.zno/sio2薄膜样品3的制备方法如下:
61.具体制备步骤参照实施例3,区别在于制备碱性sio2溶胶时反应前驱溶液恒温水浴的温度为50℃,复合溶胶中zno量子点的浓度为0.14mol/l;
62.然后用复合溶胶镀膜即可得到zno/sio2薄膜样品3。
63.将实施例1

4制得的薄膜扫描sem,结果分别如图(a)

(d)所示。由图1可知实施例1的碱性溶胶和实施例2的调节成中性的溶胶镀出来的膜均由大颗粒组成。而实施例3和4中zno/sio2复合溶胶镀出来的薄膜,表面颗粒更小,而且表面更粗糙,导致亲水性更好。
64.将实施例4碱性sio2溶胶调整ph后掺杂zno量子点,掺杂后的溶胶烘干后得到粉末,粉末经过500℃退火后测试荧光光谱和数码照片,结果如图2(a)

(c)所示,由图2可知zno/sio2复合材料在高温退火后仍具有下转换发光性能。
65.测试玻璃、镀有zno/sio2薄膜样品1的玻璃、镀有zno/sio2薄膜样品2的玻璃的透过率,结果如图3所示。由图3可知,碱性sio2溶胶调节ph后掺杂zno量子点进行镀膜具有很好的减反射效果。
66.测试实施例1制得的碱性sio2薄膜接触角和实施例3制得的zno/转性sio2薄膜接触
角,结果如图4(a)和(b)所示,由图4可知制备的zno/sio2复合薄膜具有超亲水性能,并且亲水性比碱性sio2薄膜更好。这说明薄膜具有很好的自清洁性能。
67.将实施例5中zno/sio2薄膜样品3扫描sem,结果表明:zno/sio2薄膜样品3的表面颗粒尺径比zno/sio2薄膜样品2的更大、发光位置也不同,因此可以通过调整反应温度制得不同颗粒尺寸的zno量子点,从而制得不同发光位置的下转换减反射膜。
68.本领域的技术人员应理解,以上所述仅为本发明的若干个具体实施方式,而不是全部实施例。应当指出,对于本领域的普通技术人员来说,还可以做出许多变形和改进,所有未超出权利要求所述的变形或改进均应视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1