一种用于碳素阳极高温防氧化的涂层材料的制作方法

文档序号:27137087发布日期:2021-10-29 23:32阅读:552来源:国知局

1.本发明涉及电解铝技术领域,尤其涉及一种用于碳素阳极高温防氧化的涂层材料,用于提高电解铝用预焙阳极高温抗氧化性能,延长预焙阳极的使用周期。


背景技术:

2.在熔盐电解冶炼金属铝的过程中,预焙碳素阳极起着导电作用,同时参与电化学反应而不断被消耗,碳素阳极的质量好坏直接影响电解铝的质量和生产经济指标。电解槽熔盐电解质温度为930~960℃,预焙碳素阳极在电解槽中的温度高达450℃~900℃。碳素材料在450℃以上就会和周围的空气二氧化碳反应,生成二氧化碳,在电解槽内部主要充斥着大量空气以及阳极反应产生的高热二氧化碳,在高温条件下,一部分预焙碳素阳极被空气以及二氧化碳氧化,另外由于阳极内部选择性氧化造成部分炭颗粒脱落形成炭渣,因此造成了阳极额外消耗,降低了阳极使用周期,增加了生产成本。理论上生产1吨金属铝的碳阳极消耗量为334kg,但实际生产过程中由于阳极氧化消耗的存在,导致阳极净耗高达410

450kg/t

al。在阳极表面涂覆一防氧化涂层以隔绝空气,降低阳极氧化是一种经济有效、简便易行的方法。
3.一般陶瓷或玻璃基体材料与碳素膨胀系数有较大的差异,具有脆性大、韧性不足的特点,因此由陶瓷或玻璃材料构成涂层应用在在碳素阳极高温防氧化领域有非常明显的缺点和不足,限制其防氧化效果。
4.申请号为200410022671.4名称为《铝电解用碳素阳极的抗氧化方法、抗氧化层及其涂覆方法》的中国发明专利,公开了一种防氧化涂层的制备方法,其配方以重量份计包括:5~60份以固含量计的氧化铝溶胶,粒径小于165μm的al2o3粉末16~35份,粒径小于165μm的氧化硼粉末1~3份。该发明抗氧化涂层,虽然降低了一定的碳耗,但在电解槽高温环境下,涂层与基体碳的热膨胀率还有一定的差异,导致高温下涂层局部开裂氧化,由于阳极碳块为多孔材料,开裂氧化点会不断扩散,最终导致涂层失效,使其高温抗氧化性能的应用受到制约。
5.申请号为cn200710050550.4名称为《一种铝电解用碳素阳极抗氧化层及其涂覆方法》公开了一种包含底层、阻挡层和表层三种组份防氧化涂层配方,主要成分为:水性环氧树脂、含硼物质、氧化铝溶胶、氧化铝、拟薄水铝石,消泡剂等。该涂层使用较复杂,分为上中下三种组分涂层,每一层涂层需要喷涂2~3遍,每一遍需要间隔2~3小时,操作繁琐,处理时间较长,在工业应用阶段难以操作实施。所采用的粘接剂为水性环氧树脂,常温具有良好的粘接性能,但是其耐高温和持久性较差,150℃开始挥发,在400℃开始碳化挥发出有毒气体,破坏涂层致密性,产生微孔,影响涂层性能,同时对环境造成不良影响。高温下挥发性组分充分挥发后,残余氧化铝成分脆性大、缺乏韧性,因此长时间承受高温后,抗热震性能会显著降低。预焙阳极周期一般为30天以上,要求涂层材料在电解槽500~950℃高温环境长达一个月的时间范围内有效,该涂层体系持久性较差,影响工业应用效果。


技术实现要素:

6.为了克服现有涂层材料膨胀系数与碳素不匹配,抗热振性能差、涂层持久性差,防氧化效果不明显等问题,本发明提出一种用于碳素阳极高温防氧化的涂层材料,具有良好的韧性、较强的结合力以及较强的抗热震性能,同时具有施工方便,常温固化、低温致密化、无毒环保、持久有效等特点,能够显著降低碳素阳极高温氧化烧损,延长阳极使用周期。
7.本发明的技术方案是这样实现的:一种用于碳素阳极高温防氧化的涂层材料,由以下组分组成:35

55wt%无机结合剂、30

60wt%复合陶瓷填料、1

10wt%催化剂、0

1wt%烧结剂和1

10wt%增韧剂。
8.进一步地,所述无机结合剂包括40~70wt%铝溶胶、0~50wt%硅溶胶和0~30wt%复合硅酸盐溶液;所述复合硅酸盐溶液包括25~35wt%硅酸钠、0.5~2wt%氢氧化铝和63~74.5wt%水。
9.进一步地,所述复合硅酸盐溶液的制备方法如下:将25~35wt%硅酸钠、0.5~2wt%氢氧化铝和63~74.5wt%水混合后,在100℃~120℃时,搅拌反应10~20h,获得复合硅酸盐溶液。
10.进一步地,硅酸钠的模数为2~3,氢氧化铝的中值粒径d50均小于10μm;铝溶胶:纯度≥99.99%,固体含量30%,ph值2~3,粒径5~10纳米;硅溶胶:固体含量25%,粒径≤10纳米,ph值2~4。
11.进一步地,所述复合陶瓷填料包括氧化铝粉、氢氧化铝粉、蓝晶石粉、珍珠陶土、埃洛石、莫来石粉、硅酸铝粉和钠长石粉中的一种或多种。
12.进一步地,氧化铝粉粒度为0.5~150μm,中值粒径d50=1μm,α晶型含量98%以上;氢氧化铝粉、蓝晶石粉、珍珠陶土、埃洛石、莫来石粉、硅酸铝粉、钠长石粉的中值粒径d50均小于20μm。
13.进一步地,所述催化剂包括70~100wt%冰晶石、0~30wt%氟化铝和0~30wt%氟化锂;冰晶石、氟化铝、氟化锂均为粉体,且中值粒径d50<20μm。
14.进一步地,所述烧结剂为纳米氧化钇,纳米氧化钇的中值粒径d50<800nm。
15.进一步地,所述增韧剂包括50~80wt%莫来石晶须、0~20wt%硅酸钇晶须和0~50wt%硅酸铝纤维。
16.进一步地,莫来石晶须直径0.5

10μm,长度50

100μm;硅酸钇晶须直径5

10μm,长度50

150μm;硅酸铝纤维直径10

20μm,长度300

500μm。
17.一种用于碳素阳极高温防氧化的涂层材料的制备方法,包括以下步骤:将无机结合剂、复合陶瓷填料、催化剂、烧结剂和增韧剂混合均匀,得到涂层材料。混合时间为10~20分钟。
18.本发明的有益效果:
19.1、本发明显著提高了涂层材料与碳素基底的膨胀系数匹配性,抗热振性能差以及涂层持久性;本发明采用催化剂、烧结剂、增韧剂、无机结合剂与复合陶瓷填料在一定温度下协同作用的方式,全面提升涂层性能。复合陶瓷填料中氢氧化铝粉、蓝晶石粉、珍珠陶土、埃洛石、莫来石粉、硅酸铝粉、钠长石粉等组分都具有耐高温的特点,且具有不同的热膨胀特性,通过上述组分协同配合制备的复合陶瓷填料,可使涂层材料的热膨胀特性适应碳素基底。例如,蓝晶石粉体具有耐火度高,体积膨胀性大,高温一次永久性膨胀特性,适量添加
可以减少涂层材料降温收缩,进而提高涂层抗热震性能。
20.2、采用莫来石晶须、硅酸钇晶须、硅酸铝纤维都具有耐高温性能,同时具有较高的长径比,呈现纤维状,具有较高韧性,在高温下能够和涂层组分充分烧结,作为增韧剂,能有效提高涂层材料韧性,防止涂层在热应力条件下开裂。硅酸钇晶须在提高涂层韧性的同时能够在600摄氏度以上温度与三氧化二铝和二氧化硅等陶瓷组分反应形成低熔点液相组分,充分填充微孔,降低烧结温度,提高涂层致密度。
21.3、催化剂的主要作用是降低涂层陶瓷组分烧结温度,确保涂层在400~500摄氏度较低温度下致密化。采用纳米氧化钇作为烧结剂,添加极少量便可起到良好的效果,烧结剂的主要作用与催化剂相同之处在于促进涂层陶瓷组分低温致密化,不同之处在于烧结剂与涂层其他组份形成微液相,通过生成液相组分填充微孔的方式进行涂层的致密化,而催化剂的作用是促进固相陶瓷粉体晶粒之间在相对较低温条件下进行充分融合致密化。
22.4、环保无毒、施工方便,本发明全部采用无机组分,不含任何有机组分,在高温环境下没有任何有机挥发,环境友好。
23.只需要将本发明涂层材料喷涂于碳素阳极表面,厚度控制在0.3~0.5mm,自然干燥24小时候即可使用,可降低阳极毛耗30kg/t

al,延长两天阳极周期。
具体实施方式
24.下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
25.实施例1
26.一种用于碳素阳极高温防氧化的涂层材料,具体配置方案如下:
27.(1)制备复合硅酸盐溶液:
28.取硅酸钠粉体25g,清水74.5g,氢氧化铝粉体0.5g,进行充分搅拌混合,置于不锈钢反应釜内,在100℃时,搅拌反应15h,获得复合硅酸盐溶液。所述硅酸钠模数为2.5,氢氧化铝粉中值粒径d50为8μm。
29.(2)制备无机结合剂:
30.取铝溶胶40g,硅溶胶50g,复合硅酸盐溶液10g,进行充分搅拌混合,获得无机结合剂。
31.(3)制备复合陶瓷填料:
32.取氧化铝粉45g,蓝晶石粉5g,莫来石粉25g,钠长石粉10g,硅酸铝粉10g,氢氧化铝5g,混合搅拌30分钟,获得复合陶瓷填料100g。蓝晶石粉、莫来石粉、钠长石粉、硅酸铝粉和氢氧化铝的中值粒径d50均小于20μm。
33.(4)制备增韧剂:
34.取莫来石晶须50g,硅酸铝纤维50g,搅拌混合均匀,制备100g增韧剂。
35.(5)制备催化剂:
36.取冰晶石粉70g,氟化铝粉30g,搅拌混合均匀获得100g催化剂。
37.(6)制备碳素阳极防氧化涂层材料
38.取步骤(2)制备的无机结合剂55g,步骤(3)制备的复合陶瓷填料30g,步骤(4)制备的增韧剂10g,取步骤(5)制备的催化剂4g,取烧结剂1g,搅拌均匀获得碳素阳极防氧化涂层材料。
39.涂层性能测试
40.物理性能:密度2.0g/cm3,ph值11
±
0.5,固化时间25℃≤20分钟。
41.煅烧氧化测试:采用毛刷在炭块表面涂覆防氧化涂层,涂覆量为1kg/m2,制备阳极炭块试样200.00g;900摄氏度空气气氛,高温氧化煅烧200h,剩余试样重量为198.00g,烧损率为1%,煅烧后表面呈现白色,涂层有少量裂纹,有可见少量氧化点,涂层具有一定保护效果,但是氧化点有扩散趋势。
42.实施例2
43.一种用于碳素阳极高温防氧化的涂层材料,具体配置方案如下:
44.(1)制备复合硅酸盐溶液:
45.取硅酸钠粉体35g,清水63g,氢氧化铝粉体2g,进行充分搅拌混合,置于不锈钢反应釜内,在100℃℃时,搅拌反应15h,获得复合硅酸盐溶液。所述硅酸钠模数为3.0,氢氧化铝粉中值粒径d50为8μm。
46.(2)制备无机结合剂:
47.取铝溶胶70g,复合硅酸盐溶液30g,进行充分搅拌混合,获得复合结合剂。
48.(3)制备复合陶瓷填料:
49.取氧化铝20g、蓝晶石粉20g,莫来石粉20g,钠长石粉10g,硅酸铝粉10g,氢氧化铝10g,珍珠陶土5g,埃洛土5g,混合搅拌30分钟,获得复合陶瓷填料100g。上述陶瓷粉体原料中值粒径d50均小于20μm。
50.(4)制备增韧剂:
51.取莫来石晶须80g,硅酸铝纤维20g,搅拌混合均匀,制备100g增韧剂。
52.(5)制备催化剂:
53.取冰晶石粉100g,氟化铝粉30g,搅拌混合均匀获得100g催化剂,所述粉体中值粒径d50<20μm。
54.(6)制备碳素阳极防氧化涂层材料:
55.取步骤(2)制备的无机结合剂35g,步骤(3)制备的复合陶瓷填料60g,步骤(4)制备的增韧剂4g,取步骤(5)制备的催化剂1g,搅拌均匀获得碳素阳极防氧化涂层材料。
56.涂层性能测试
57.物理性能:密度2.0g/cm3,ph值11
±
0.5,固化时间25℃≤20分钟。
58.煅烧氧化测试:采用毛刷在炭块表面涂覆防氧化涂层,涂覆量为1kg/m2,制备阳极炭块试样210.00g;900摄氏度空气气氛,高温氧化煅烧200h,剩余试样重量为208.95g,烧损率为0.5%,煅烧后表面呈现白色,涂层有少量裂纹,有可见少量氧化点,氧化点有扩散趋势,涂层保护效果良好。
59.实施例3
60.一种用于碳素阳极高温防氧化的涂层材料,具体配置方案如下:
61.(1)制备无机结合剂:
62.取铝溶胶60g,硅溶胶40g,进行充分搅拌混合,获得复合结合剂。
63.(2)制备复合陶瓷填料:
64.取氧化铝粉15g蓝晶石粉15g,莫来石粉15g,钠长石粉5g,硅酸铝粉5g,氢氧化铝15g,珍珠陶土15g,埃洛土15g,混合搅拌30分钟,获得复合陶瓷填料100g。上述陶瓷粉体中值粒径d50均小于20μm。
65.(3)制备增韧剂:
66.取莫来石晶须60g,硅酸钇晶须10g,硅酸铝纤维30g搅拌混合均匀,制备100g增韧剂。
67.(4)制备催化剂:
68.取冰晶石粉90g,氟化铝粉5g,氟化锂粉5g,搅拌混合均匀获得100g催化剂,所述粉体中值粒径d50<20μm。
69.(5)制备碳素阳极防氧化涂层材料:
70.取步骤(1)制备的无机结合剂50g,步骤(2)制备的复合陶瓷填料45g,步骤(3)制备的增韧剂2.5g,取步骤(4)制备的催化剂2g,取烧结剂0.5g,搅拌均匀获得碳素阳极防氧化涂层材料。
71.涂层性能测试
72.物理性能:密度2.0g/cm3,ph值11
±
0.5,固化时间25℃≤20分钟。
73.煅烧氧化测试:采用毛刷在炭块表面涂覆防氧化涂层,涂覆量为1kg/m2,制备阳极炭块试样215.00g;900摄氏度空气气氛,高温氧化煅烧200h,剩余试样重量为214.14g,烧损率为0.4%,煅烧后表面呈现白色,涂层有少量裂纹,无明显氧化点,涂层保护效果良好。
74.实施例4
75.一种用于碳素阳极高温防氧化的涂层材料,具体配置方案如下:
76.(1)制备复合硅酸盐溶液
77.取硅酸钠粉体30g,清水68g,氢氧化铝粉体2g,进行充分搅拌混合,置于不锈钢反应釜内,在100℃℃时,搅拌反应15h,获得复合硅酸盐溶液。所述硅酸钠模数为3.0,氢氧化铝粉中值粒径d50为8μm。
78.(2)制备无机结合剂:
79.取铝溶胶40g,硅溶胶40g,复合硅酸盐溶液20g,进行充分搅拌混合,获得复合结合剂。
80.(3)制备复合陶瓷填料:
81.取氧化铝粉20g,蓝晶石粉5g,莫来石粉25g,钠长石粉10g,硅酸铝粉10g,氢氧化铝10g,珍珠陶土10g,埃洛土10g,混合搅拌30分钟,获得复合陶瓷填料100g。上述陶瓷粉体中值粒径d50均小于20μm。
82.(4)制备增韧剂:
83.取莫来石晶须65g,硅酸钇晶须10g,硅酸铝纤维25g,搅拌混合均匀,制备100g增韧剂。
84.(5)制备催化剂:
85.取冰晶石粉85g,氟化铝粉5g,氟化锂粉10g,搅拌混合均匀获得100g催化剂,所述粉体中值粒径d50<20μm。
86.(6)制备碳素阳极防氧化涂层材料:
87.取步骤(2)制备的无机结合剂50g,步骤(3)制备的复合陶瓷填料42.5g,步骤(4)制备的增韧剂5g,取步骤(5)制备的催化剂2g,取烧结剂0.5g,搅拌均匀获得碳素阳极防氧化涂层材料。
88.涂层性能测试
89.物理性能:密度1.88g/cm3,ph值11
±
0.5,固化时间25℃≤20分钟。煅烧氧化测试:采用毛刷在炭块表面涂覆防氧化涂层,涂覆量为1kg/m2,制备阳极炭块试样210.00g;900摄氏度空气气氛,高温氧化煅烧200h,剩余试样重量为209.37g,烧损率为0.3%,煅烧后表面呈现白色,无明显裂纹,无明显氧化点,涂层保护效果极好。
90.实施例5
91.一种用于碳素阳极高温防氧化的涂层材料,具体配置方案如下:
92.(1)制备复合硅酸盐溶液
93.取硅酸钠粉体30g,清水68g,氢氧化铝粉体2g,进行充分搅拌混合,置于不锈钢反应釜内,在100℃℃时,搅拌反应15h,获得复合硅酸盐溶液。所述硅酸钠模数为3.0,氢氧化铝粉中值粒径d50为8μm。
94.(2)制备无机结合剂:
95.取铝溶胶40g,硅溶胶40g,复合硅酸盐溶液20g,进行充分搅拌混合,获得复合结合剂。
96.(3)制备复合陶瓷填料:
97.取氧化铝5g、蓝晶石粉15g,莫来石粉20g,钠长石粉20g,硅酸铝粉10g,氢氧化铝10g,珍珠陶土10g,埃洛土10g,混合搅拌30分钟,获得复合陶瓷填料100g。上述陶瓷粉体中值粒径d50均小于20μm。
98.(4)制备增韧剂:
99.取莫来石晶须60g,硅酸钇晶须10g,硅酸铝纤维30g,搅拌混合均匀,制备100g增韧剂。
100.(5)制备催化剂:
101.取冰晶石粉90g,氟化铝粉5g,氟化锂粉5g,搅拌混合均匀获得100g催化剂,所述粉体中值粒径d50<20μm。
102.(6)制备碳素阳极防氧化涂层材料:
103.取步骤(2)制备的无机结合剂50g,步骤(3)制备的复合陶瓷填料39.5g,步骤(4)制备的增韧剂8g,取步骤(5)制备的催化剂2g,取烧结剂0.5g,搅拌均匀获得碳素阳极防氧化涂层材料。
104.涂层性能测试
105.物理性能:密度1.80g/cm3,ph值11
±
0.5,固化时间25℃≤20分钟。
106.煅烧氧化测试:取阳极炭块试样200g,900摄氏度空气气氛,高温氧化煅烧200h,剩余试样重量为199.8g,烧损率为0.1%,煅烧后表面呈现白色,无裂纹,无氧化点,涂层保护效果极好。
107.实施例6
108.一种用于碳素阳极高温防氧化的涂层材料,具体配置方案如下:
109.(1)制备复合硅酸盐溶液
110.取硅酸钠粉体30g,清水68g,氢氧化铝粉体2g,进行充分搅拌混合,置于不锈钢反应釜内,在100℃℃时,搅拌反应15h,获得复合硅酸盐溶液。所述硅酸钠模数为3.0,氢氧化铝粉中值粒径d50为8μm。
111.(2)制备无机结合剂:
112.取铝溶胶40g,硅溶胶40g,复合硅酸盐溶液20g,进行充分搅拌混合,获得复合结合剂。
113.(3)制备复合陶瓷填料:
114.取氧化铝粉10g蓝晶石粉5g,莫来石粉30g,钠长石粉20g,硅酸铝粉15g,氢氧化铝10g,珍珠陶土5g,埃洛土5g,混合搅拌30分钟,获得复合陶瓷填料100g。上述陶瓷粉体中值粒径d50均小于20μm。
115.(4)制备增韧剂:
116.取莫来石晶须50g,硅酸钇晶须10g,硅酸铝纤维40g,搅拌混合均匀,制备100g增韧剂。
117.(5)制备催化剂:
118.取冰晶石粉100g作为催化剂,所述粉体中值粒径d50<20μm。
119.(6)制备碳素阳极防氧化涂层材料:
120.取步骤(2)制备的无机结合剂50g,步骤(3)制备的复合陶瓷填料39.5g,步骤(4)制备的增韧剂5g,取步骤(5)制备的催化剂5g,取烧结剂0.5g,搅拌均匀获得碳素阳极防氧化涂层材料。
121.涂层性能测试
122.物理性能:密度1.8g/cm3,ph值11
±
0.5,固化时间25℃≤20分钟。
123.煅烧氧化测试:采用毛刷在炭块表面涂覆防氧化涂层,涂覆量为1kg/m2,制备阳极炭块试样220.00g;900摄氏度空气气氛,高温氧化煅烧200h,剩余试样重量为219.89g,烧损率为0.05%,煅烧后表面呈现白色,无裂纹,无氧化点,涂层保护效果极好。
124.以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1