一种LTCC基板的制备方法与流程

文档序号:29421296发布日期:2022-03-26 14:17阅读:124来源:国知局
一种ltcc基板的制备方法
技术领域
1.本发明属于ltcc基板制备领域,具体涉及一种通过3d打印的方式制备ltcc基板的方法。


背景技术:

2.近年来,随着科学技术的迅速发展,电子产品不断朝着轻微型、多功能、高集成以及高可靠度的方向发展,这对传统的电子封装技术提出了严峻的挑战。基板是电子封装器件中不可或缺的零件,其中低温共烧陶瓷(ltcc)基板以其集成密度高和高频特性好等优异的电学、机械、热学及工艺特性成为当下电子元件集成化的主流方式。
3.传统ltcc基板主要采用流延成型工艺,其中包括水基和非水基流延两种,非水基流延工艺目前比较成熟,制备的生瓷带结构均匀,柔韧性好,已经应用于工业生产;但是,非水基流延料浆配制过程中需使用大量有毒的有机物作为溶剂,如:甲苯、丙酮、三氯乙烯等,生产成本高,料浆制备和生瓷带干燥过程中造成环境污染,有害人体健康;
4.采用其他方式,如光固化打印方式生产ltcc基板时,由于ltcc每层很薄,坯体从模具中脱模时坯体与模具存在一定的粘连且基板坯体很薄,3d打印脱模时容易损坏坯体,不容易实现产品精度要求,且成品率低。
5.现在市场对ltcc基板的厚度要求超薄化,且厚度精度要求越来越高,传统的流延工艺对精度的提高存在困难,且由于成熟的非水基流延工艺存在安全环保方面重大隐患,因此对于一种安全、环保且提高产品厚度精度的ltcc基板生产方法是本领域需要解决的问题。


技术实现要素:

6.为了解决上述技术问题,本发明的目的在于提供一种ltcc基板的制备方法,通过将所述玻璃陶瓷浆料通过3d打印设备制备第一层坯体,第一层坯体固化后,在第一层坯体上继续制备第二层坯体,重复叠加制备n干层坯体,制备得到基板坯体,每层坯体的厚度为10-100μm、误差为10-15μm,实现制备超薄化ltcc基板,且精度高。
7.根据本发明的提供了一种ltcc基板的制备方法,将光敏树脂、添加剂加入研磨设备研磨后得到光敏树脂预混液;
8.将所述光敏树脂预混液与玻璃陶瓷粉体置于研磨设备中研磨得到玻璃陶瓷浆料;
9.将所述玻璃陶瓷浆料通过3d打印设备制备第一层坯体,第一层坯体固化后,在第一层坯体上继续制备第二层坯体,重复叠加制备n层坯体,制备得到基板坯体,每层坯体的厚度为10-100μm、误差为10-15μm;将所述基板坯体进行烧结制得;
10.优选所述光敏树脂预混液制备时在球磨设备中进行球磨,球磨时间为0.5-3h;所述玻璃陶瓷浆料制备时采用球磨设备,球磨10-18h;3d打印时,光源强度固定为50.0mw/cm2。
11.与现有技术相比,本发明的有益效果在于,所述ltcc基板通过采用光敏树脂实现
玻璃陶瓷浆料的固化,解决了传统的非水基流延工艺制作ltcc基板时,大量有毒的有机物作为溶剂制备料浆成环境污染,有害人体健康的问题;通过采用3d打印方式将玻璃陶瓷浆料成型,实现基板坯体每层厚度低,且每层精度高误差达到10-15μm;
12.由于坯体从模具中脱模时由于坯体与模具存在一定的粘连且基板坯体很薄,3d打印脱模时容易损坏坯体;通过所述玻璃陶瓷浆料制备过程中增加添加剂有利于3d打印成型后的基板坯体脱模,避免脱模时坯体损坏,提高产品的精度以及成品率。
13.进一步的,所述1-n层坯体,每层坯体光固化时间为1-10s。
14.采用上一步的有益效果在于,所述每层的光固化时间为1-10s,光固化时间短,有利于提高每层坯体的精度,实现每层误差达到10-15μm。
15.进一步的,所述光敏树脂包括光活性稀释剂、引发剂、分散剂;
16.或
17.所述光敏树脂包括光敏预聚体、光活性稀释剂、引发剂、分散剂;
18.所述光敏预聚体为环氧丙烯酸树脂、聚氨酯丙烯酸、乙烯基醚树脂的中的至少一种;
19.所述活性稀释剂为单官能团、双官能团或者多官能团的烷基丙烯酸酯、烷氧基丙烯酸酯、乙二醇类丙烯酸酯中的至少一种;
20.所述光引发剂为在240-400nm紫外光下有吸收的光引发剂;
21.所述分散剂为三油酸甘油酯、磷酸酯、x-100;
22.优选所述光敏树脂包括光敏预聚体、光活性稀释剂、引发剂、分散剂;
23.所述活性稀释剂为双官能团或者多官能团的烷基丙烯酸酯、烷氧基丙烯酸酯、乙二醇类丙烯酸酯中的至少一种;
24.进一步优选所述活性稀释剂为多官能团的烷基丙烯酸酯、烷氧基丙烯酸酯、乙二醇类丙烯酸酯中的至少一种。
25.采用上一步的有益效果在于,采用所述光敏树脂包括光敏预聚体有利于提高坯体的强度;光敏树脂包括活性稀释剂有利于提高坯体的韧性与柔软度且明显提高光固化时间,有利于提高产品的精度。
26.优选的所述活性稀释剂为多官能团的烷基丙烯酸酯、烷氧基丙烯酸酯、乙二醇类丙烯酸酯中的至少一种,在有利于坯体的韧性以及柔软性前提下,由于多官能团的稀释剂中含有双键的官能团多,进一步有利于提高光固化速率,使坯体能够快速初步定型,避免在固化过程中出现变形,有利于提高产品的精度。
27.进一步的,所述添加剂为乙二醇类、甘油、硬脂酸丁酯、松香酸甲酯、邻苯二甲酸二辛脂中一种或几种。
28.采用上一步的有益效果在于,所述添加剂其提高了坯体的韧性与柔软度,降低了坯体与模具内壁的粘连,有利于脱模,避免了脱模时坯体损坏;同时有利于坯体中包括大孔径的网格结构,有利于后续排胶。
29.进一步的,所述光敏树脂预混液中各物料质量比为,光敏预聚体占0-20wt%、活性稀释剂占60-97wt%、光引发剂占0.2-8wt%、分散剂占1-10wt%、添加剂占1-10wt%。
30.采用上一步的有益效果在于,通过提高活性稀释剂的添加量,其添加量达到60-90wt%,提高坯体的韧性与柔软度,在脱模时不容易造成坯体变形或损伤,且不影响最终产
品的强度,同时提高了活性稀释剂的添加量,降低了光敏预聚体的量,明显提高了光固化速率,有利于提高产品的坯体每层的精度,最终提高产品的精度。
31.进一步的,所述玻璃陶瓷粉体为硼硅酸盐玻璃和氧化铝混合物、硅酸盐玻璃和氧化铝混合物、铝镁硅酸盐玻璃和石英玻璃混合物、硼硅酸铅玻璃和氮化铝混合物以上混合物中一种。
32.采用上一步的有益效果在于,通过所述玻璃陶瓷粉体既能够提高最终产品的强度,同时又降低玻璃陶瓷粉体的软化温度,最终制得玻璃陶瓷体ltcc基板。
33.进一步的,所述玻璃陶瓷粉体粒径为0.5-10μm。
34.采用上一步的有益效果在于,既有利于烧结,降低烧结温度,提高玻璃陶瓷体ltcc基板的强度,同时又避免了由于玻璃陶瓷粉体粒径过小出现坯体内部致密度过高、内部网格较小导致排胶时出现开裂、排胶困难等问题。
35.进一步的,所述玻璃陶瓷浆料配置过程中,所述光敏树脂预混液、玻璃陶瓷粉体的体积分数均为30-70vol%。
36.采用上一步的有益效果在于,既满足了产品的强度,有不影响坯体排胶的同时,有利于提高固化时间。
37.进一步的,所述玻璃陶瓷浆料配置过程中,所述玻璃玻璃陶瓷浆料的粘度为2000-5000pa
·
s。
38.采用上一步的有益效果在于,所述粘度有利于3d打印时固化前坯体的形态保持稳定,从而进一步有利于提高坯体的精度。
39.进一步的,将所述基板坯体进行烧结的具体过程为,将所述基板坯体升温到550℃,在升温到550℃设置升温速率为0.8℃/min;
40.然后升温到900℃,在升温到900℃设置升温速率为3℃/min,达到900℃后保温30min,完成烧结。
41.采用上一步的有益效果在于,所述基板坯体升温到550℃,在升温到550℃设置升温速率为0.8℃/min,有利于在升温过程中进行排胶,避免基本坯体在受热初期快速排胶导致坯体出现变形以及排胶导致裂纹和开裂问题,且在缓慢排胶时产生排气孔道;
42.有利于由于多官能团的活性稀释剂,虽然含有双键多光固化快,能够实现坯体快速初步定型,但是存在坯体内部出现聚合度低,导致烧结过程中坯体强度低或最终成品强度低问题,在前期缓慢升温,明显提高了多官能团的活性稀释剂的聚合度,使坯体强度明显提高,避免了在烧结过程中出现玻璃态时坯体出现变形等问题。
具体实施方式
43.为了更好的了解本发明的技术方案,下面结合具体实施例对本发明作进一步说明。
44.实施例一:
45.本实施例提供了ltcc基板的制备方法,将光敏树脂、添加剂加入球磨设备球磨后得到光敏树脂预混液,球磨时间为0.5h;
46.将所述光敏树脂预混液与玻璃陶瓷粉体置于球磨设备中研磨得到玻璃陶瓷浆料,球磨时间为18h;
47.所述光敏树脂包括光敏预聚体、光活性稀释剂、引发剂、分散剂;
48.所述光敏预聚体为u600,所述活性稀释剂为多官能团的烷基丙烯酸酯、烷氧基丙烯酸酯、乙二醇类丙烯酸酯中的至少一种,具体为tmpta(三羧甲基丙烷三丙烯酸酯)、pptta(乙氧基季戊四醇四丙烯酸酯);所述光引发剂为在240-400nm紫外光下有吸收的光引发剂,具体为784光引发剂;所述分散剂为x-100;所述添加剂为邻苯二甲酸二辛脂。
49.所述光敏树脂预混液中各物料质量比为,u600占15wt%、pptta(乙氧基季戊四醇四丙烯酸酯)占25wt%、tmpta(三羧甲基丙烷三丙烯酸酯)占50%,邻苯二甲酸二辛脂占5wt%,光引发剂784占2wt%、分散剂x-100占3wt%;
50.所述玻璃陶瓷粉体为硼硅酸盐玻璃和氧化铝混合物,所述玻璃陶瓷粉体粒径为1μm;
51.所述光敏树脂预混液、玻璃陶瓷粉体的体积分数分别为70vol%、30%;所述玻璃陶瓷浆料的粘度为2000pa
·
s;
52.将cerafab 7500光源强度固定为50.0mw/cm2,将所述玻璃陶瓷浆料通过3d打印设备制备第一层坯体,第一层坯体固化后,在第一层坯体上继续制备第二层坯体,重复叠加制备n层坯体,制备得到基板坯体,每层坯体的厚度为10μm、误差为10-15μm;每层坯体光固化时间为6s;
53.将所述基板坯体进行烧结制得,具体烧结过程,将所述基板坯体进行烧结的具体过程为,将所述基板坯体升温到550℃,在升温到550℃设置升温速率为0.8℃/min;
54.然后升温到900℃,在升温到900℃设置升温速率为3℃/min,达到900℃后保温30min,完成烧结。
55.实施例二:
56.本实施例与实施例1相同的内容不再赘述;
57.制备光敏树脂预混液时,球磨时间为3h;制备玻璃陶瓷浆料时,球磨时间为10h;
58.所述光敏预聚体为双酚a丙烯酸环氧树脂,所述活性稀释剂为双官能团或者多官能团的烷基丙烯酸酯、烷氧基丙烯酸酯、乙二醇类丙烯酸酯中的至少一种,具体为dtmptta[二(三羟甲基丙烷)四丙烯酸酯]、hdda(1,6-己二醇二丙烯酸酯);所述光引发剂具体为tpo光引发剂;所述分散剂为磷酸酯;所述添加剂为硬脂酸丁酯。
[0059]
所述光敏树脂预混液中各物料质量比为,双酚a丙烯酸环氧树脂占15wt%、dtmptta[二(三羟甲基丙烷)四丙烯酸酯]占45wt%、hdda(1,6-己二醇二丙烯酸酯)占30%,硬脂酸丁酯占7wt%,tpo光引发剂占1wt%、磷酸酯占2wt%;
[0060]
所述玻璃陶瓷粉体为硼酸盐玻璃和氧化铝混合物,所述玻璃陶瓷粉体粒径为2μm;
[0061]
所述光敏树脂预混液、玻璃陶瓷粉体的体积分数分别为30vol%、70%;所述玻璃陶瓷浆料的粘度为5000pa
·
s;
[0062]
每层坯体光固化时间为9s。
[0063]
实施例三:
[0064]
本实施例与实施例1相同的内容不再赘述;
[0065]
制备光敏树脂预混液时,球磨时间为1h;制备玻璃陶瓷浆料时,球磨时间为12h;
[0066]
所述光敏树脂包括光活性稀释剂、引发剂、分散剂;
[0067]
所述活性稀释剂具体为pptta(乙氧基季戊四醇四丙烯酸酯)、dtmptta[二(三羟甲
基丙烷)四丙烯酸酯];所述光引发剂具体为784光引发剂;所述分散剂为磷酸酯;所述添加剂为松香酸甲酯。
[0068]
所述光敏树脂预混液中各物料质量比为,pptta(乙氧基季戊四醇四丙烯酸酯)占50wt%、dtmptta[二(三羟甲基丙烷)四丙烯酸酯]占40%,松香酸甲酯占7wt%,784光引发剂占0.8wt%、磷酸酯占2.2wt%;
[0069]
所述玻璃陶瓷粉体为铝镁硅酸盐玻璃和石英玻璃混合物,所述玻璃陶瓷粉体粒径为2μm;
[0070]
所述光敏树脂预混液、玻璃陶瓷粉体的体积分数分别为60vol%、40%;所述玻璃陶瓷浆料的粘度为4000pa
·
s;
[0071]
每层坯体光固化时间为1s。
[0072]
实施例四:
[0073]
本实施例与实施例1相同的内容不再赘述;
[0074]
制备光敏树脂预混液时,球磨时间为15h;制备玻璃陶瓷浆料时,球磨时间为15h;
[0075]
所述光敏预聚体为脂肪族聚氨酯丙烯酸树脂,所述活性稀释剂为双官能团或者多官能团的烷基丙烯酸酯、烷氧基丙烯酸酯、乙二醇类丙烯酸酯中的至少一种,具体为tmpta(三羧甲基丙烷三丙烯酸酯)、hdda(1,6-己二醇二丙烯酸酯);所述光引发剂具体为tpo光引发剂;所述分散剂为x-100;所述添加剂为甘油。
[0076]
所述光敏树脂预混液中各物料质量比为,脂肪族聚氨酯丙烯酸树占10wt%、tmpta(三羧甲基丙烷三丙烯酸酯)占40wt%、hdda(1,6-己二醇二丙烯酸酯)占40%,甘油占8wt%,tpo光引发剂占1wt%、x-100分散剂占1wt%;
[0077]
所述玻璃陶瓷粉体为硼硅酸铅玻璃和氮化铝混合物,所述玻璃陶瓷粉体粒径为2μm;
[0078]
所述光敏树脂预混液、玻璃陶瓷粉体的体积分数分别为40vol%、60%;所述玻璃陶瓷浆料的粘度为3000pa
·
s;
[0079]
每层坯体光固化时间为5s。
[0080]
以上描述仅为本技术的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本技术中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本技术中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1