铁电膜及其制造方法

文档序号:10641970阅读:239来源:国知局
铁电膜及其制造方法
【专利摘要】本发明提供一种寿命可靠性优异的铁电膜及其制造方法。本发明的铁电膜由多个烧成膜构成,所述铁电膜由含有Pb、Zr及Ti的钙钛矿结构的金属氧化物构成,Li、Na及K的总含量为3质量ppm以下,构成所述多个烧成膜的各烧成膜的一面中的Li、Na及K的总含量为另一面中的Li、Na及K的总含量的5倍以上。
【专利说明】
铁电膜及其制造方法
技术领域
[0001] 本申请发明涉及一种提高寿命可靠性的铁电膜及其制造方法。
[0002] 本申请主张基于2015年3月26日于日本申请的专利申请2015-064152号和2016年3 月18日于日本申请的专利申请2016-054836号的优先权,并将其内容援用于此。
【背景技术】
[0003] 作为红外线传感器、压电滤波器、振子、激光调制元件、光闸、电容器膜及非易失性 存储器等中使用的铁电膜,使用含有Pb、La、Zr及Ti的钙钛矿结构的PLZT膜。例如,专利文献 1中公开有降低Li、Na及K的含量,并抑制漏电流的PLZT膜。
[0004] 专利文献1:日本专利第2956356号公报(B)
[0005] 如专利文献1中所记载,降低Li、Na及K的含量,则能够降低PLZT膜的漏电流,但从 寿命可靠性观点考虑,有时无法得到充分的特性。

【发明内容】

[0006] 本申请发明的目的在于提供一种寿命可靠性优异的铁电膜及其制造方法。
[0007] 本申请发明的第1方式为一种铁电膜,其由多个烧成膜构成,所述铁电膜的特征在 于,由含有Pb、Zr及Ti的钙钛矿结构的金属氧化物构成,Li、Na及K的总含量为3质量ppm以 下,构成所述多个烧成膜的各烧成膜的一面中的Li、Na及K的总含量为另一面中的Li、Na及K 的总含量的5倍以上。
[0008] 上述第1方式的铁电膜中,在所述各烧成膜中,Li、Na及K的总含量可在所述一面与 所述另一面之间沿膜厚方向形成规定的浓度梯度。
[0009] 而且,在所述多个烧成膜中,将任意相邻的一对烧成膜设为第1烧成膜、第2烧成膜 时,第1烧成膜的所述另一面(Li等的浓度较低一侧的面)可以与第2烧成膜的所述一面(Li 等的浓度较高一侧的面)相邻。
[0010]而且,所述第2烧成膜的所述一面(Li等的浓度较高一侧的面)中的Li、Na及K的总 含量可以为所述第1烧成膜的所述另一面(Li等的浓度较低一侧的面)中的Li、Na及K的总含 量的5倍以上。
[0011] 本申请发明的第2方式为一种铁电膜的制造方法,其特征在于,其至少实施各一次 以下工序:涂布工序,将含有Pb、Zr及Ti的铁电膜形成用液体组合物涂布于基板上来形成前 体膜;预烧结工序,加热所述前体膜而转化为复合氧化物来形成预烧结膜;及烧成工序,烧 成所述预烧结膜而使其晶化来形成烧成膜,所述铁电膜形成用液体组合物含有总计为3质 量ppm以上且10质量ppm以下的Li、Na及K,所述预烧结工序中,将从基板上表面距离IOmm的 高度的载气的风速设为〇. Im/秒以上且1.0 m/秒以下。
[0012] 本申请发明的第3方式为一种电子组件,其具有基于第1方式的铁电膜。
[0013]本申请发明的第1方式的铁电膜中,Li、Na及K的总含量为3质量ppm以下,构成多个 烧成膜的各烧成膜的一面中的Li、Na及K的总含量为另一面中的Li、Na及K的总含量的5倍以 上,因此具备优异的寿命可靠性。即,这种本申请发明的铁电膜中,各烧成膜含有规定量的 Li、Na及K,且在一个烧成膜与相邻的烧成膜的界面,Li、Na及K的含量急剧变化而产生浓度 梯度。该烧成膜界面中的Li等含量的急剧变化会抑制氧缺陷向膜厚方向移动,有助于提高 铁电膜的寿命。
[0014] 根据本申请发明的第2方式的铁电膜的制造方法,使用含有总计为3质量ppm以上 且10质量ppm以下的Li等的铁电膜形成用液体组合物(以下、简称为液体组合物。),在预烧 结工序中将从基板上表面距离IOmm的高度的载气的风速设为0.1 m/秒以上且1.0 m/秒以下, 因此以规定的含量含有Li等,并且其浓度中产生梯度,由此,能够得到具备优异的寿命可靠 性的铁电膜。
[0015] 本申请发明的第3方式的电子组件由于具有上述铁电膜,因此具备优异的寿命可 靠性。
【附图说明】
[0016] 图1为本申请发明实施方式的铁电膜的截面示意图。
[0017]图2为表示本申请发明实施方式的铁电膜的厚度方向上的Li等的浓度变化的图 表。
[0018] 图3为本申请发明实施方式的预烧结工序中所使用的加热板装置的主要部分的剖 视图。
【具体实施方式】
[0019] 接着,根据附图对用于实施本申请发明的方式进行说明。但本申请发明并不限于 本实施方式的结构。
[0020] 〔铁电膜〕
[0021] 如图1所示,本实施方式的铁电膜10由5层烧成膜101构成,基板12具有下部电极 11,所述烧成膜101形成于该下部电极11上。铁电膜10由含有Pb、Zr及Ti的钙钛矿结构的金 属氧化物构成,Li、Na及K的总含量为3质量ppm以下。并且,如图2所示,各烧成膜101的一面 中的Li、Na及K(以下、简称为Li等。)的总含量为另一面中的Li、Na及K的总含量的5倍以上。 铁电膜10除了Pb、Zr及Ti以外,还可以含有La。
[0022] (I)Li等的总含量
[0023]铁电膜10的Li等的总含量为3质量ppm以下,因此在膜中的晶界中杂质的偏析较 少,且不易产生漏电流。由此,即使时间经过也不易产生绝缘破坏,寿命稳定性优异。另外, Li等的总含量小于0.3质量ppm时,难以得到Li等的优选浓度梯度,因此优选将Li等的总含 量设为0.3质量ppm以上。并且,Li、Na及K的总含量大于3质量ppm时,漏电流变得过大,结果 寿命缩短。并且,各烧成膜的一面中的Li等的总含量小于另一面中的Li等的总含量的5倍 时,烧成膜的厚度方向上的Li等的浓度梯度较小,且烧成膜界面中的Li等含量的变化变得 较小,从而抑制氧缺陷的流动的功能不够充分而缩短寿命。更优选Li等的总含量为0.5质量 ppm以上且3质量ppm以下,进一步优选为1质量ppm以上且3质量ppm以下。
[0024] (2)Li等的烧成膜中的浓度梯度
[0025]由于各烧成膜101的一面中的Li等的总含量为另一面中的Li等的总含量的5倍以 上,因此烧成膜的厚度方向上的Li等的浓度梯度充分,且通过烧成膜界面中的Li等含量的 急剧变化,从而该烧成膜界面抑制氧缺陷的移动。其结果,本实施方式的铁电膜的寿命稳定 性优异。另外,为了加大Li等的浓度梯度,需要增加 Li等的总含量,但因上述理由,必须将Li 等的总含量设在3质量ppm以下。因此,优选将Li等的烧成膜中的浓度梯度设为12倍以下。更 优选该浓度梯度为5倍以上且10倍以下,进一步优选为5倍以上且9倍以下。
[0026]优选该浓度梯度从最大值向最小值呈规定的浓度梯度。但是,只要浓度变化的趋 势保持在一个方向(减少方向或增加方向),则也可以从该理想的规定的浓度梯度(质量 ppm/nm)局部性地偏离± 20 %左右。
[0027] (3)烧成膜的层数
[0028]优选铁电膜10由2层以上且23层以下的烧成膜101构成。通过层叠多个烧成膜101 来将界面导入于铁电膜10内。该界面作为抑制氧缺陷的移动的捕捉器发挥作用,并有助于 降低氧缺陷的移动性。结果,能够进一步提高该铁电膜10的寿命可靠性。将烧成膜101的层 数设为2层以上且23层以下的理由为,在小于下限值时,无法将界面导入于铁电膜10内,因 此无法实现进一步提高寿命可靠性,若大于上限值则制作时花费时间。更优选烧成膜101的 层数为2层以上且6层以下,进一步优选为2层以上且3层以下。
[0029] 层叠烧成膜101时,在多个烧成膜中,将任意相邻的一对烧结膜定义为第1烧成膜、 第2烧成膜的情况下,在第1烧成膜的另一面(Li等的浓度较低一侧的面)与第2烧成膜的一 面(Li等的浓度较高一侧的面)相邻的方向上进行层叠。由此,在烧成膜界面中,能够使Li等 含量急剧变化。
[0030] 优选将第2烧成膜的一面(Li等的浓度较高一侧的面)中的Li等的总含量设为第1 烧成膜的另一面(Li等的浓度较低一侧的面)中的Li等的总含量的5倍以上。该烧成膜界面 中的Li等的总含量的急剧变化优选为5倍以上且10倍以下,进一步优选为5倍以上且9倍以 下。但是,本申请发明并不特别限定于这些优选范围。
[0031] (4)烧成膜的膜厚
[0032]各烧成膜101的膜厚t优选在45nm以上且500nm以下的范围内。这是因为小于下限 值时,难以得到均匀的连续膜,若大于上限值有可能产生龟裂。膜厚t更优选为45nm以上且 135nm以下,进一步优选为60nm以上且120nm以下。铁电膜10的膜厚T优选在150nm以上且 5000nm以下的范围内。小于下限值时膜的生产率较差,并且,有时产生漏电流密度变高等特 性方面的不良情况。另一方面,大于上限值时,有时产生龟裂。膜厚T更优选为200nm以上且 4000nm以下,进一步优选为250nm以上且3000nm以下。
[0033] (5)金属原子比
[0034] 优选铁电膜10的金属原子比Pb:La:Zr:Ti为(0.95~1.25):(0~0.05): (0.40~ 0.55) :(0.45~0.60)。如上设定金属原子比的理由为相对介电常数较高,且作为铁电体具 有优异的特性。更优选将金属原子比Pb:La:Zr:Ti设为(I.00~1.15): (0~0.03): (0.50~ 0.55) :(0.45~0.50),进一步优选设为(1.05~1.10) :(0.01~0.03) :(0.51~0.53) :(0.47 ~0.49)〇
[0035] (6)铁电膜的基板及下部电极
[0036]作为形成铁电膜10的基板12,例如使用硅基板、Si02/Si基板、蓝宝石基板等耐热 性基板。作为下部电极11,例如使用具有Pt、Ir、RU等导电性,且不与铁电膜10进行反应的材 料。
[0037] 〔铁电膜形成用液体组合物〕
[0038] 铁电膜形成用液体组合物(以下、简称为液体组合物。)为用于形成铁电膜10的原 料溶液,是以所希望的比率将用于形成钙钛矿结构的金属氧化物的前体溶解于溶剂中,并 调整为适于涂布的浓度的组合物。
[0039] (I)Li等的总含量
[0040]液体组合物含有总计为3质量ppm以上且10质量ppm以下的Li等。由于Li等的总含 量为3质量ppm以上,因此能够得到具有充分的浓度梯度的烧成膜101,且由于总含量为10质 量ppm以下,因此能够将所得到的铁电膜10中所含的Li等的总浓度抑制得较低。Li等的总含 量更优选为3质量ppm以上且5质量ppm以下。液体组合物中的Li等的总含量能够通过例如专 利文献1中所记载的将各金属成分以金属有机化合物的形态重复进行蒸馏、升华及再结晶、 或将这些进行组合的方法进行调整。
[0041] ⑵前体
[0042] 作为配合在液体组合物中的前体,能够使用有机基团经由其氧原子或氮原子而键 合在Pb、La、Zr或Ti的各金属元素上的有机金属化合物。例如,能够使用选自金属醇盐、其部 分水解物、金属二醇络合物、金属三元醇络合物、金属羧酸盐、金属二酮络合物、金属二 酮酯络合物、金属亚氨基酮络合物及金属氨络合物中的一种或两种以上。尤其优选的化 合物为金属醇盐、其部分水解物及金属羧酸盐。
[0043] 液体组合物中以能够提供所希望的金属原子比的比例含有这些前体。
[0044] 例如,优选将金属原子比Pb:La:Zr:Ti设为(0.95~1.25): (0~0.05): (0.40~ 0.55) :(0.45~0.60)的比例。由此,能够得到具有如上所述的优选金属原子比的铁电膜10。 其中,更优选将金属原子比Pb: La: Zr: Ti设为(1.00~1.15): (0~0.03): (0.50~0.55): (0.45~0.50),进一步优选设为(1.05~1 · 10): (0.01~0.03): (0.51~0.53): (0.47~ 0.49)〇
[0045] 前体在液体组合物100质量%中所占的比例以氧化物换算优选为10质量%以上且 35质量%以下。小于下限值时,通过一次涂布很难得到充分的膜厚,大于上限值时,有时在 铁电膜中产生龟裂。前体的比例更优选为10质量%以上且20质量%以下,进一步优选为12 质量%以上且17质量%以下。另外,以氧化物换算的比例是指假设液体组合物中所含的金 属元素全部成为氧化物时,金属氧化物在液体组合物100质量%中所占的比例。
[0046] (3)溶剂
[0047] 根据所使用的原料而适当决定在制备液体组合物时所使用的溶剂。例如能够使用 羧酸、醇类、酯类、酮类、醚类、环烷烃类、芳香族类以及四氢呋喃等,或它们的两种以上的混 合溶剂。
[0048] (4)高分子化合物
[0049]并且,为了调整液体粘度,液体组合物中也可以含有聚乙烯吡咯烷酮(PVP)或聚乙 二醇等高分子化合物。相对于前体1摩尔,以单体换算高分子化合物的比例优选在〇. 15摩尔 以上且0.50摩尔以下的范围内。小于下限值时,有时产生龟裂,大于上限值时有时产生细 孔。
[0050] (5)稳定剂
[0051]并且,作为稳定剂可以添加以(稳定剂分子数)/(金属原子数)计为0.2以上且3以 下左右的二酮类、酮酸类、酮酯类、含氧酸类、上述含氧酸的低级烷基酯类、羟基酮 类、二元醇、三元醇、高级羧酸、烷醇胺类及多元胺等。尤其优选添加二酮类及多元醇类。 作为二酮类优选添加乙酰丙酮,作为多元醇类优选添加丙二醇。
[0052][液体组合物的制造方法]
[0053]制备液体组合物时,首先,以成为能够提供所希望的金属原子比的比例的方式称 量上述前体。将前体和溶剂投入反应容器内进行混合,优选在氮气气氛中以150Γ以上且 160°C以下的温度在30分钟以上且3小时以下的期间回流并进行反应。接下来,通过蒸馏或 蒸发等方法来去除溶剂。添加乙酰丙酮等稳定剂时,在去除溶剂后的合成液中添加稳定剂, 并与上述相同的条件再次进行回流。进一步添加溶剂并稀释,将各成分在液体组合物中所 占的浓度调整为上述所希望的浓度。根据需要以成为所希望的比例的方式添加高分子化合 物,优选以接近室温的温度在30分钟以上且3小时以下的期间进行搅拌并使其均匀地分散。 由此,得到液体组合物。
[0054]〔铁电膜的制造方法〕
[0055]本实施方式的铁电膜的制造方法中,使用含有总计为3质量ppm以上且10质量ppm 以下的Li等的上述液体组合物,在预烧结工序中将从基板上表面距离I Omm的高度的载气的 风速设为0.1m/秒以上且1.0m/秒以下。由此,能够得到以规定的含量及浓度梯度含有Li等 的本实施方式的铁电膜。
[0056] 作为载气能够使用空气、水蒸气、含水蒸气的氮气等。
[0057] 载气的风速是指在最外层的前体膜IOa上,与最外层的前体膜IOa平行的方向上的 风速,是指从基板12的上表面距离I Omm的高度的点(图3的点P)上的载气的风速。
[0058]在此,液体组合物中所含有的Li等小于3ppm时,无法得到具有充分的浓度梯度的 烧成膜,大于10质量PPm时,由于所得到的铁电膜中所含的Li等的总浓度过度增加,因此不 优选。并且,载气的风速小于0.1m/秒时,热处理时的Li等的挥发变得不够充分而残留于膜 中的Li等的总浓度变得过大,且无法得到具有适当的浓度梯度的烧成膜,大于1.0m/秒时, 由于从前体膜去除物质的速度过快,从而所得到的烧成膜中产生龟裂,因此不优选。
[0059] 如图3所示,本实施方式的铁电膜10的制造方法中,至少实施各一次以下工序:涂 布工序,将铁电膜形成用液体组合物涂布于基板12上来形成前体膜10a,所述铁电膜形成用 液体组合物含有Pb、Zr及Ti,并且,所述铁电膜形成用液体组合物根据需要含有La;预烧结 工序,加热所述前体膜IOa而转化为复合氧化物来形成预烧结膜IOb;及烧成工序,烧成预烧 结膜IOb而使其晶化来形成烧成膜101。设置多层烧成膜101时,适当地重复进行涂布工序、 预烧结工序及烧成工序。
[0060] (D涂布工序
[0061] 如图3所示,涂布工序中,在形成于基板12的表面的下部电极11(参考图1)上涂布 液体组合物来形成前体膜l〇a。另外,图3中未图示下部电极。如上所述,此时的液体组合物 的涂布量被设定成烧成后的烧成膜101的膜厚为45nm以上且500nm以下。对于涂布法并没有 特别限定,可举出旋涂法、浸涂法、LSM⑶(液态源雾化化学沉积;Liquid Source Misted Chemical Deposition)法或方定喷法等。
[0062] (2)干燥工序
[0063]进行涂布工序之后,为了去除低沸点溶剂和吸附的水分子,可以实施加热前体膜 IOa的干燥工序。加热温度根据溶剂的种类的不同而不同,通常约为50°C以上且200°C以下, 更优选为65°C以上且75°C以下的范围。但是,在接下来的预烧结工序中进行加热升温时,能 够去除低沸点溶剂等,因此也可以省略干燥工序,并在预烧结工序中去除低沸点溶剂等。 [0064] (3)预烧结工序
[0065] 预烧结工序中加热前体膜IOa而转化为复合氧化物来形成预烧结膜10b。预烧结工 序和上述干燥工序例如使用图3所示的加热板装置15进行。加热板装置15具备腔体16、上表 面为水平的基座17及埋入于该基座的加热器18。腔体16的上部中央设有用于向加热板装置 内供给载气G的供给口 16a,其下部的基座17的两侧设有用于排出载气G的排出口 16b。加热 器18中连接有附带温度控制机构的未图示的加热器电源装置。基座17的上表面搭载有具有 前体膜IOa的基板12。该加热板装置15中,从腔体16的供给口 16a导入的载气G朝向基板11的 中心之后,沿基板11的上表面流动并从腔体16的下部的排出口 16b排出。能够通过调整未图 示的排气机构来控制载气G的风速。
[0066] 预烧结工序中,将基板12搭载于基座17上,并向加热板装置15内流通载气G的同时 进行加热。在此,将从基板12的上表面距离IOmm的高度h的P点的载气G的风速设为0.1m/秒 以上且1.0m/秒以下。前体膜IOa中所含的包含Li等的杂质通过载气G的流动而与溶剂和前 体的分解物等一同被去除,但由于将风速设为〇 . Im/秒以上,因此从前体膜IOa的表面侧被 去除的杂质的量大于从前体膜IOa的底面侧被去除的杂质的量,从而能够得到具有充分的 浓度梯度的烧成膜101。并且,由于将风速设为l.〇m/秒以下,因此能够防止前体膜IOa的物 质去除速度过快而在烧成膜101中产生龟裂。风速更优选为〇.4m/秒以上且0.6m/秒以下。将 风速的观测点设为从基板12的上表面距离IOmm的高度h的理由是为了准确地掌握预烧结膜 IOb的上表面对物质去除产生的影响。
[0067] 预烧结工序优选例如在150°C以上且450°C以下、1分钟以上且10分钟以下的条件 下实施,预烧结温度更优选为200 °C以上且400 °C以下,进一步优选为300 °C以上且375 °C以 下。并且预烧结时间更优选为2分钟以上且5分钟以下。预烧结工序是去除溶剂的同时,用于 将前体热解或水解并转化为复合氧化物而实施的,因此,优选在空气中、氧化气氛中、或含 水蒸气气氛中实施。因此,作为载气G,例如能够利用空气、水蒸气及含水蒸气的氮气等。另 外,涂布工序及预烧结工序可以分别实施各一次,但也可以以预烧结膜IOb成为所希望的膜 厚的方式重复进行涂布工序及预烧结工序之后,实施接下来的烧成工序。
[0068] (4)烧成工序
[0069] 烧成工序中,烧成并晶化预烧结膜IOb来形成烧成膜101。烧成的优选条件例如为 600°C以上且800°C以下、1分钟以上且5分钟以下,烧成时间更优选为650°C以上且750°C以 下。烧成能够通过基于利用RTA(快速热退火;Rapid Thermal Annealing)装置的红外线灯 加热的快速升降温热处理(RTA处理)来实施。通过RTA处理来进行烧成时,升温速度例如优 选为2.5 °C/秒以上且100 °C /秒以下,更优选为20 °C /秒以上且100 °C /秒以下。烧成的气氛例 如优选为氧气、氮气等或它们的混合气体等。通过至少实施两次上述涂布工序、预烧结工 序、烧成工序,能够得到由多个烧成膜101构成的铁电膜10。
[0070] 〔电子组件〕
[0071] 本实施方式的电子组件例如为,薄膜电容器、电容器、IH)、DRAM存储器用电容器、 层叠电容器、晶体管的栅极绝缘体、非易失性存储器、热释电型红外线检测元件、压电元件、 电光元件、执行器、谐振器、超声波马达、电器开关、光开关或LC噪声滤波器元件的复合电子 组件等电子组件,且为具有上述铁电膜10电子组件。这些电子组件由于具有上述铁电膜10, 因此具备优异的寿命可靠性。
[0072]实施例
[0073] 接着,结合比较例对本申请发明的实施例进行详细说明。
[0074] <实施例1>
[0075]通过专利文献1中所记载的方法,对特级试剂的乙酸铅三水合物(Pb源)、乙酸镧 (La源)、四异丙氧基钛(Ti源)、四丁氧基锆(Zr源)重复进行两次来自超纯水的再结晶而进 行高纯度化,并作为前体。以金属原子比Pb/La/Zr/Ti成为110/3/52/48的方式分别称量前 体,并将这些添加到反应容器内的丙二醇中来制备合成液。对该合成液在氮气气氛中以150 °C的温度回流60分钟之后,通过蒸馏来去除溶剂。之后,作为稳定剂添加乙酰丙酮,并以150 °C回流60分钟。
[0076] 接着,通过在上述合成液中添加丙二醇,前体的总浓度以氧化物换算成为35质 量%为止进行稀释。进一步添加乙醇,并前体的总浓度以氧化物换算成为25质量%为止进 行稀释。接下来,以相对于前体1摩尔成为0.025摩尔的方式添加聚乙烯吡咯烷酮(k值= 30),并通过在室温下搅拌24小时来得到铁电膜形成用液体组合物。利用ICP(Thermc) Fi sher Scient ific K. K.制)测定液体组合物中的Li、Na及K的浓度的结果,其总浓度为10 质量ppm 〇
[0077] 接下来,实施了涂布工序。在设置于旋转涂布机上的Pt/Ti02/Si02/Si基板上滴落 液体组合物,以3000rpm的转速旋转涂布30秒钟,从而在基板上形成了前体膜。以一次烧成 工序中所得到的烧成膜的膜厚成为90nm的方式设定上述旋转涂布机的转速及时间。
[0078] 接着,实施了预烧结工序。在加热板装置的基座上搭载具有前体膜的基板,以从基 板上表面距离IOmm的高度的风速成为Im/秒的方式流通载气(干空气)的状态下,通过以300 °C、保持5分钟来将前体转化为复合氧化物,从而形成了预烧结膜。另外,通过热线式风速计 (CUSTOM Corporation.制,机型CW-60)测定风速。
[0079]接下来,实施了烧成工序。利用RTA装置,每分钟流通2升氧气的气氛中,并在30°C/ 秒的升温速度下升温至700°C,并保持1分钟。由此,在基板的下部电极上形成膜厚为90nm的 烧成膜。重复3次从涂布工序至烧成工序为止的工艺,从而得到由3层烧成膜101构成且膜厚 为270nm的铁电膜。另外,通过扫描式电子显微镜(HITACHI s4300)测定了膜厚。利用ICP (Thermo Fisher Scientific Κ·Κ·制)测定铁电膜的金属原子比Pb:La:Zr:Ti的结果为 103/3/52/48。
[0080] <实施例2~9、比较例1~4>
[0081] 如表1中所记载,除了改变各种条件以外,以与实施例1相同的方式形成了铁电膜。 具体而言,在部分实施例中,调整旋转涂布机的转速及时间来改变了烧成膜的膜厚。并且, 在部分实施例中,改变了工序的重复次数(烧成次数)及铁电膜的膜厚。在部分实施例及比 较例中,通过改变基于再结晶的高纯度化的次数来使用了Li等的浓度不同的液体组合物。 在部分比较例中,改变了预烧结工序中的风速。对于实施例9,将前体的金属原子比Pb/La/ Zr/Ti 设为 110/0/52/48。
[0082] < 评价 >
[0083] 通过下述方法,对在实施例及比较例中形成的铁电膜进行了膜中的Li等的总浓 度、浓度梯度及寿命可靠性的评价。将这些结果示于以下的表1。
[0084] (I)Li等的总浓度
[0085] 利用ICP(Thermo Fisher Scientific Κ·Κ·制)测定了Li等的总浓度。
[0086] (2)Li等的浓度梯度
[0087]关于Li等的浓度梯度,利用AES(ULVAC,Inc.制)测定了图2所示的膜厚方向的Li等 的浓度分布。各烧成膜的一面中的Li等的浓度除以另一面中的Li等的浓度来求出浓度梯 度,并将总烧成膜的浓度梯度进行平均的数值示于表1。
[0088] (3)寿命可靠性
[0089]通过暴露于比通常使用的条件更高负荷(高温/高压)的环境下的加速试验(HALT: highly-accelerated life testing;高加速寿命试验)来进行了寿命特性评价。在实施例 及比较例各自的铁电薄膜上,通过溅射法形成点状(面积:3.5 X l(T2mm2)的白金薄膜而形成 上部Pt电极,从而在同一个基板上形成多个电容器结构之后,在氧气气氛中以700°C再加热 1分钟来得到评价样品。
[0090] 电连接薄膜电容器的上部Pt电极及下部Pt电极,并将薄膜电容器加热至125~205 °C的状态下施加10~20V的电压,并测量了电压施加时间及各电容器中流通的漏电流值。如 果时间流逝,则产生伴随电容器劣化的绝缘破坏,可确认到漏电流急剧增加的现象,因此从 该测定数据中读取了各电容器被绝缘破坏为止的时间(TDDB(time_dependent dielectric breakdown,经时绝缘破坏)评价)。具体而言,将在漏电流值超过1 ΟΟμΑ的时刻看成产生绝缘 破坏,对多个绝缘破坏时间数据进行基于威布尔分布分析的统计处理,并将电容器总数的 63.2%产生绝缘破坏的时间设为平均破坏时间(mean time to failure;以下称为MTF。)。 对于块状电容器已知有以下经验式(1)。
[0091] [数学式1]
[0092]
-. (I)
[0093] 其中,t为MTF,T为试验温度,V为直流施加电压,Ea为活化能,N为电压加速系数,k B 为玻尔兹曼常数,下标1、2表示针对温度和施加电压的任意条件。由上述式(1)可知温度T及 施加电压V影响电容器的寿命时间。这次将上述的关系式适用在薄膜电容器中。上述式(1) 中将电压V设为恒定(V 1 = V2),则成为如下。
[0094] [数学式2]
[0095]
(2>
[0096](其中Kv为温度常数),温度的倒数与MTF的对数显示成线性关系。能够使用它来估 计作为温度的加速因素的活化能Ea。通过相同的方式,在上述式(1)中将温度T设为恒定(T1 = T2),则成为如下。
[0097] [数学式3]
[0098]
- (3)
[0099] (其中Kt为施加电压常数),能够估计作为电压的加速因素的电压加速系数N。使用 该两个加速因素 Ea、N值,外插加热至85°C并施加5V的电压的状态的MTF,并将该值估计为预 测寿命。将所得到的结果示于以下表1。
[0100] [表 1]
[0102] 由表1可知,在本申请发明的制造方法的范围内形成且具有规定范围的Li等的总 浓度及浓度梯度的实施例的铁电膜的预测寿命较长、且具备优异的寿命可靠性。使用Li等 的总浓度较低的液体组合物的比较例1的铁电膜的浓度梯度较小,且相较于实施例,预测寿 命较短。将预烧结工序的风速设为较小的比较例2的铁电膜的Li等的总浓度较高,且浓度梯 度较大,相较于实施例,预测寿命较短。将预烧结工序的风速设为较大的比较例3的铁电膜 中产生了能够用肉眼确认的龟裂。使用Li等的总浓度较高的液体组合物的比较例4的铁电 膜的Li等的总浓度较高,且相较于实施例,预测寿命较短。
[0103] 产业上的可利用性
[0104] 本申请发明的铁电膜能够利用于薄膜电容器、电容器、IHKDRAM存储器用电容器、 层叠电容器、晶体管的栅极绝缘体、非易失性存储器、热释电型红外线检测元件、压电元件、 电光元件、执行器、谐振器、超声波马达、电器开关、光开关或LC噪声滤波器元件的复合电子
【主权项】
1. 一种铁电膜,其由多个烧成膜构成,其特征在于, 由含有Pb、Zr及Ti的钙钛矿结构的金属氧化物构成, Li、Na及K的总含量为3质量ppm以下, 构成所述多个烧成膜的各烧成膜的一面中的Li、Na及K的总含量为另一面中的Li、Na及 K的总含量的5倍以上。2. 根据权利要求1所述的铁电膜,其中, 所述各烧成膜中,Li、Na及K的总含量在所述一面与所述另一面之间沿膜厚方向形成规 定的浓度梯度。3. 根据权利要求2所述的铁电膜,其中, 在所述多个烧成膜中,将任意相邻的一对烧成膜定义为第1烧成膜和第2烧成膜时,所 述第1烧成膜的所述另一面与所述第2烧成膜的所述一面相邻。4. 根据权利要求3所述的铁电膜,其中, 所述第2烧成膜的所述一面中的Li、Na及K的总含量为所述第1烧成膜的所述另一面中 的Li、Na及K的总含量的5倍以上。5. -种铁电膜的制造方法,其特征在于,其至少实施各一次以下工序: 涂布工序,将含有Pb、Zr及Ti的铁电膜形成用液体组合物涂布于基板上来形成前体膜; 预烧结工序,加热所述前体膜而转化为复合氧化物来形成预烧结膜;及 烧成工序,烧成所述预烧结膜而使其晶化来形成烧成膜, 所述铁电膜形成用液体组合物含有总计为3质量ppm以上且10质量ppm以下的Li、Na及 K, 所述预烧结工序中,将从基板上表面距离l〇mm的高度的载气的风速设为0.1m/秒以上 且1.0m/秒以下。6. -种电子组件,其具有权利要求1所述的铁电膜。
【文档编号】C04B35/491GK106007710SQ201610173372
【公开日】2016年10月12日
【申请日】2016年3月24日
【发明人】樱井英章, 藤井顺, 曽山信幸
【申请人】三菱综合材料株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1