一种尾矿粉与秸秆纤维素增强聚氨酯/环氧树脂保温隔热墙板的制备方法与流程

文档序号:15533493发布日期:2018-09-28 17:55阅读:137来源:国知局
本发明涉及高分子复合材料领域,具体适用于建筑物的一种尾矿粉与秸秆纤维素增强的聚氨酯/环氧树脂保温隔热复合板材的制备方法。
背景技术
:随着人们对住房品质要求的提高,建筑是否保温隔热成为人们关心的问题之一。为了满足需要,不少住房都采用了软木板、纺织品、保温涂料等高价材料作为内保温材料,易燃、剧毒的泡沫类聚苯类作为外保温材料,既不环保又不安全。从环保和资源利用的角度出发,农作物秸秆经过一定的化学和机械处理后,可以制备高性能秸秆纤维素,利用秸秆纤维素制备纤维素增强复合材料具有可行性。另一方面,尾矿是选矿后的废弃物,全世界每年排出的尾矿及废石在100亿t以上。大量尾矿的堆放,占用土地、污染环境。因此,尾矿的综合回收利用问题已受到全社会的广泛关注。因此该发明本着利用废弃物、节约能源的目的,利用农作物秸秆与尾矿粉与聚氨酯/环氧树脂进行复合,改善高分子泡沫塑料的泡孔结构,提高力学强度,制备可用于建筑中的非承重墙体、吊顶及不拆卸模板等材料。用于替代高价的软木板及易燃、剧毒的聚苯类保温隔热材料。实现“环保、节能、可靠、持久”的建筑节能目标。技术实现要素:本发明旨在提供一种利用农业与工业废弃物秸秆纤维素和尾矿粉增强改性聚氨酯/环氧树脂保温隔热板材的方法,其特征在于变废为宝,节约成本,工艺简单,而且可以提高聚氨酯/环氧树脂复合材料的拉伸强度和冲击强度。该发明的目的通过下列技术方案实现,一种尾矿粉与秸秆纤维素增强聚氨酯/环氧树脂保温隔热墙板的制备方法,其特征在于,由下列质量份的原料:扩链纤维素1-7份,改性尾矿粉2-10份,聚醚多元醇100份,环氧树脂39-43份,二甲基硅油2.5-3份,三乙醇胺2份,辛酸亚锡0.6-1份,正戊烷13-15份,多异氰酸酯115-125份,水1.4-1.8份。所述的一种尾矿粉与秸秆纤维素增强聚氨酯/环氧树脂保温隔热墙板的制备方法,其特征在于以下步骤:1)将小麦秸秆粉碎后,收集60目和110目筛之间的秸秆,随后用体积比为1:1的苯:醇溶液回流萃取48小时,然后将萃取后的产物浸入质量浓度为5%的NaOH溶液中,低速搅拌作用下浸泡6-10小时,滤出产物,用去离子水洗至中性,将所得产物放入到质量分数为0.5%的过氧化氢溶液中,低速搅拌4-6小时,抽滤,固体放入到质量分数为5%的KOH溶液中浸泡24小时。滤出固体用大量去离子水洗至中性,得秸秆纤维素。2)将步骤1)中得到的秸秆纤维素以1g与不少于15mL环氧氯丙烷的比例反应,以质量分数为15%-25%的氢氧化钠溶液为催化剂,甲苯为溶剂,回流反应6-10小时。待反应物冷却后,抽滤。分别用乙醇,去离子水洗涤两次,产物于80℃下恒重,得到改性后的扩链纤维素。3)尾矿粉球磨后过300目筛,然后将尾矿粉加入到质量分数为0.5-2%的硅烷偶联剂KH560的乙醇溶液中,在60℃条件下超声分散1-3个小时,得改性尾矿粉。4)所采用原料中,聚醚多元醇,羟值为420mgKOH/g;异氰酸酯(TDI),异氰酸酯基(NCO)的质量分数为30%,环氧树脂为双酚A型环氧树脂中的一种。5)一种尾矿粉与秸秆纤维素增强聚氨酯/环氧树脂保温隔热墙板的制备方法,采用接枝技术一次发泡成型工艺制备,并对其结构与性能进行表征。进一步地,所述接枝技术包括扩链纤维素上环氧基团参与的反应,包括与异氰酸酯基和多元醇羟基的反应。附图说明图1样品PU/EP的偏光显微镜图片图2扩链纤维素含量3份的PU/EP的偏光显微镜图片图3扩链纤维素含量5份的PU/EP的偏光显微镜图片图4扩链纤维素含量3份,改性尾矿粉含量6份的PU/EP的偏光显微镜图片本发明的有益效果1.本发明将扩链后的秸秆纤维素以原位聚合的方式,利用接枝聚合制备扩链纤维素聚氨酯/环氧树脂复合材料,进而加入改性尾矿粉进一步增强纤维素聚氨酯/环氧树脂复合材料,研究结果表明适量纤维素的加入使得聚氨酯/环氧树脂互穿网络(PU/EPIPN)复合材料的孔径明显减小,孔壁变厚,气孔变得规则。2.本发明制备的复合材料,纤维素含量5份时,与未加扩链纤维素体系相比,压缩强度增大17%。与扩链秸秆纤维素增强体系相比,秸秆纤维素含量为3份,改性尾矿粉含量为4份时,拉伸强度增大了33.7%;当秸秆纤维素含量为3份,改性尾矿粉为8份时,压缩强度最大,提高了50.6%。3.将农业与矿业的两大废弃物加入聚合工艺制备泡沫复合材料。不但能够解决秸秆焚烧及尾矿堆弃占地对环境的压力,促使秸秆与尾矿粉资源化。而且可以提高复合材料的力学性能,制备可用于保温隔热的轻质建筑墙体板材。具体实施方式实施实例1扩链秸秆纤维素增强聚氨酯/环氧树脂复材料的制备按配方表1中的质量份数,将扩链纤维素与聚醚多元醇、双酚A型环氧树脂、扩链纤维素、水、硅油、三乙醇胺、有机锡以及正戊烷混合均匀,作为A组分,与异氰酸酯(TDI)(B组分)迅速高速搅拌混合,至体系逐渐发白时迅速注入模具中,室温自由发泡,反应完毕后,放入烘箱中,在100℃后固化4h,脱模得到样品1-5。表1配方表所述的扩链纤维素是按以下步骤进行制备:①将小麦秸秆粉碎,收集60目至110目筛之间的秸秆,用体积比为1:1的甲苯:乙醇溶液回流萃取48小时。②萃取后的产物浸入质量浓度为5%的NaOH溶液中,低速搅拌作用下浸泡8小时,滤出产物,用去离子水洗至中性,将所得产物放入到质量分数为0.5%的过氧化氢溶液中,低速搅拌5小时,抽滤,固体放入到质量分数为5%的KOH溶液中浸泡24小时。滤出固体用大量去离子水洗至中性,得秸秆纤维素。③将步骤②中得到的秸秆纤维素与环氧氯丙烷反应,以质量分数为30%氢氧化钠溶液为催化剂,甲苯为溶剂,回流反应8小时,待反应物冷却后,抽滤。分别用乙醇,去离子水洗涤两次,产物于80℃下恒重,得到改性后的扩链纤维素。④步骤③中所述的环氧氯丙烷的用量与步骤②中制备的秸秆纤维素的比例为20mL:1g。参考GB9641-1988标准,拉伸速率为1mm/s,对实施例1获得的复合材料进行拉伸性能测试。参考GB/T8813-88标准,对实施例1获得的复合材料进行压缩性能测试。设定压缩速率为4mm/s,实验温度为20℃。表2列出了各个实施例1中复合材料的拉伸强度和压缩强度。扩链纤维素的加入使得聚氨酯/环氧树脂互穿网络的拉伸强度和压缩强度先增加后降低,当扩链纤维素加入量为1份时(编号2),拉伸强度最大;当扩链纤维素的质量分数为5份时(编号4),压缩强度最大与纯PU/EP相比,提高了17%。说明改性纤维素的加入可以参与到聚氨酯/环氧树脂互穿网络的形成中,使复合材料互穿网络结构更完善,使泡孔结构更均匀,泡孔壁变厚,且扩链纤维素的羟基及六元环改善了复合材料的结构,提高了泡壁结构的强度,进而改善其性能。表2编号12345拉伸强度/KPa249255231196195压缩强度/KPa141144152165112实施实例2尾矿粉与秸秆纤维素增强聚氨酯/环氧树脂复合材料的制备选择秸秆纤维素加入量为3份(实施例1中编号3),各物料的质量份数如表3所示,表3将扩链纤维素与聚醚多元醇、双酚A型环氧树脂、扩链纤维素、水、硅油、三乙醇胺、有机锡以及正戊烷混合均匀,作为A组分,与改性尾矿粉、异氰酸酯(TDI)的混合物(B组分)迅速高速搅拌混合,至体系逐渐发白时迅速注入模具中自由发泡,反应完毕后,放入烘箱中,在100℃后固化4h,脱模得到样品6-10。所述的扩链纤维素与实施例1中的制备步骤相同。所述的改性尾矿粉是按以下步骤进行制备:尾矿粉经球磨机球磨后过300目筛,然后将尾矿粉加入到质量分数为2%的硅烷偶联剂KH560的乙醇溶液中,在60℃条件下超声分散2个小时,得改性尾矿粉。实施实例3尾矿粉与秸秆纤维素增强聚氨酯/环氧树脂复材料的制备选择扩链秸秆纤维素加入量为3份(实施例1中编号3),各物料的质量份数如表3所示,将扩链纤维素与聚醚多元醇、双酚A型环氧树脂、扩链纤维素、水、硅油、三乙醇胺、有机锡以及正戊烷混合均匀,作为A组分,与尾矿粉、异氰酸酯(TDI)的混合物(B组分)迅速高速搅拌混合,至体系逐渐发白时迅速注入模具中自由发泡,反应完毕后,放入烘箱中,在80℃后固化6h,脱模得到成品。所述的扩链纤维素和改性尾矿粉与实施例2中的制备步骤相同。实施实例4尾矿粉与秸秆纤维素增强聚氨酯/环氧树脂复材料的制备选择秸秆纤维素加入量为3份(实施例1中编号3),各物料的质量份数如表3所示,将扩链纤维素与聚醚多元醇、双酚A型环氧树脂、扩链纤维素、水、硅油、三乙醇胺、有机锡以及正戊烷混合均匀,作为A组分,与尾矿粉、异氰酸酯(TDI)的混合物(B组分)迅速高速搅拌混合,至体系逐渐发白时迅速注入模具中自由发泡,反应完毕后,放入烘箱中,在120℃后固化1h,脱模得到成品。所述的扩链纤维素和改性尾矿粉与实施例2中的制备步骤相同。参考GB9641-1988标准,拉伸速率为1mm/s,对实施例2获得的复合材料进行拉伸性能测试。参考GB/T8813-88标准,对实施例2获得的复合材料进行压缩性能测试。设定压缩速率为4mm/s,实验温度为20℃。表4列出了各个实施例2中复合材料的拉伸强度和压缩强度。尾矿粉的加入使得纤维素聚氨酯/环氧树脂互穿网络的拉伸强度和压缩强度进一步增加,与改性纤维素增强的PU/EP相比,当改性尾矿粉为4份时,拉伸强度最大,提高了33.7%;当改性尾矿粉为8份时,压缩强度最大,提高了50.6%。说明尾矿粉经改性后,增强了与有机聚合物体系的相容性,适量改性尾矿粉分布在纤维素增强的聚氨酯/环氧树脂复合材料的泡孔壁中,增加了孔壁的支撑能力,提高了泡壁结构的强度。表4编号678910拉伸强度/KPa273309289271257压缩强度/KPa164178192229217对实施例1,2中复合材料的孔径大小,泡孔分布状态进行了分析。图1-4列出了偏光显微镜分析图片,随着纤维素含量的增大,泡孔变小,气孔变得规则,孔壁变厚。结合力学分析可以证明这是由于包括改性纤维素上的羟基参与到PU/EPIPN的反应和尾矿粉无机粒子增强的结果。进一步加入尾矿粉时,泡孔生长受到抑制,孔径减小,并出现少量破泡。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1