一种利用新型微通道反应器制备瑞德西韦关键中间体的方法与流程

文档序号:23719737发布日期:2021-01-24 07:22阅读:111来源:国知局
一种利用新型微通道反应器制备瑞德西韦关键中间体的方法与流程

[0001]
本发明属于化学合成领域,具体涉及一种利用新型微通道反应器制备瑞德西韦关键中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的方法。


背景技术:

[0002]
自2019年12月起,新冠肺炎(covid-19)疫情迅速在全球传播,截至2020年4月10日,全球累计新冠肺炎确诊病例数已超过150万,涉及100多个国家和地区,全球抗击新冠肺炎疫情的形式不容乐观。随着疫情的蔓延,有关抗击新冠肺炎的药物研究已经刻不容缓,由于疫情的迅速蔓延,已有的抗病毒药物成为国内外科研人员的研究重点。国内外科研攻关团队经过大量筛选和初步的临床实验证明一批现有的抗病毒药物如法匹拉韦、磷酸氯喹、瑞德西韦等对新冠肺炎的治疗能起到积极的作用,而瑞德西韦作为治疗新冠肺炎最有潜力的一款药物受到了极大的关注。
[0003]
瑞德西韦(remdesivir),化学名:(2s)-2-ethylbutyl2-(((s)-(((2r,3s,4r,5r)-5-(4-aminopyrrolo[2,1f][1,2,4]triazin-7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-yl)methoxy)(phenoxy)phosphoryl)amino)propanoate,cas号:1809249-37-3。是一种核苷酸类似物前药,作用于依赖rna的rna合成酶(rdrp),通过抑制rdrp合成,切断病毒复制,具有抗病毒活性。其对rna病毒具有的广谱抗病毒活性,可以抑制包括非典型肺炎(sars冠状病毒)、埃博拉冠状病毒和其它多种冠状病毒(biorxiv.2020)。2020年1月31日,《新英格兰医学杂志》报道了世界首例使用瑞德西韦治愈新冠肺炎确诊患者的病例(new england journal of medicine,2020)。
[0004]
通过文献调研,目前制备瑞德西韦(remdesivir)主要有两种方法。第一代合成方法总共分为5步反应,其中一步为sfc拆分反应,收率分别为60%,58%。74%,21%,23%,总收率不到2%,规模化制备的难度极大。第二代合成方法共6步反应(合成方法如下式),收率分别为40%,85%,86%,90%,70%,69%,总收率只有12.7%,其中中间体6的合成需分两步进行,收率分别为80%、39%。该方法避免了手性拆分,可在实验室放大至百克级合成规模(nature,2016,531(7594):381-385)。
[0005][0006]
其中,中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈是中间体nucleoside的醇羟基保护反应产物,采用2,2-二甲氧基丙烷和浓硫酸对nucleoside上的两个羟基进行保护,反应条件较为温和,但在添加浓硫酸时会剧烈放热,导致副反应增多和产物收率降低,并影响产品的质量,同时,浓硫酸具有强腐蚀性,人为操作易导致危险。
[0007]
新冠肺炎疫情的持续蔓延使得瑞德西韦的需求量大大增加,现有的合成工艺完全无法满足患者的需求,因此,开发一种连续化、规模化的瑞德西韦制备工艺成为了急需解决的问题。


技术实现要素:

[0008]
技术问题:本发明要解决的技术问题是提供一种新型微通道反应器制备瑞德西韦关键中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的方法,以解决现有技术存在的反应剧烈放热、工业放大困难等问题。化学反应式如下:
[0009][0010]
为解决上述问题,本发明采用的技术方案如下:
[0011]
一种利用新型微通道反应器制备瑞德西韦关键中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的方法,其特征在于,所述的微通道反应器由混合器和反应模块组成,其中,混合器和
反应模块通过连接管路或其它连接设备实现串联:
[0012]
(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈,其化学式如式i所示,其合成方法包括以下步骤:
[0013][0014]
(1)(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈加入到有机溶剂中,再加入2,2-二甲氧基丙烷,作为物料-;
[0015]
(2)硫酸作为物料-;
[0016]
(3)同时向混合器中泵入物料-和物料-进行混合,混合后输送至反应模块中进行反应,收集流出液,后处理得到(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈。
[0017]
作为改进,所述微通道反应器的尺寸内径为0.5~5mm,长度为0.5~40m;所述的微通道反应器为孔道结构,孔道数量根据需要增加或减少,孔道材质为耐腐蚀性材料,例如聚四氟乙烯、氧化铜、碳纤维等。
[0018]
步骤(1)中,有机溶剂为二氯甲烷、四氢呋喃、丙酮、乙腈、二甲基亚砜、n,n-二甲基亚胺中的一种或几种。
[0019]
步骤(1)中,(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈的浓度为0.1~2.0mol/l;
[0020]
步骤(2)中,硫酸的浓度为5.0~18.0mol/l。
[0021]
(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈与2,2-二甲氧基丙烷的摩尔比为1:2.0~10.0;
[0022]
(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈与硫酸的摩尔比为1:1.0~3.0。
[0023]
步骤(3)所述的物料-的进料流速为0.5~10.0ml/min;
[0024]
步骤(3)所述的物料-的进料流速为0.05~2.0ml/min。
[0025]
优选地,反应模块的反应温度为20~50℃。
[0026]
优选地,反应液在反应模块的停留时间为10s~10min。
[0027]
有益效果:本发明所采用的技术减少了“三废”的排放,避免了繁琐的加料步骤,符合绿色可持续化学的发展理念。本发明涉及的微通道反应器具有价格便宜、便于运输、清洗方便、传质传热效率高、更易于工业放大等特点。本发明采用的微通道反应技术可以有效缩短反应时间、节约成本、能连续不间断生产质量稳定的目标产物,适用于瑞德西韦中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的制备。
[0028]
具体而言,本发明相对于现有技术,具有以下突出的优势:
[0029]
(1)实时反应体系只有几至几十毫升,在有安全保护的情况下可以大大降低反应的安全隐患。
[0030]
(2)设备自动化程度高,减少了人为添加浓硫酸的操作过程,保障了操作人员的安全。
[0031]
(3)微通道反应器采用连续流的方式,物料混合效果好、返混极低,可有效提升反应选择性而提高产品质量。
[0032]
(4)提升传质传热效率,提高反应的安全系数。
[0033]
(5)设备占地面积小,操作简单,可以减少操作用工,生产成本得以降低,生产经济性得到保障。
[0034]
(6)原料转化率为88~99%,产物收率高达85~96%。
附图说明
[0035]
图1合成路线示意图。
具体实施方式
[0036]
下面结合具体实施例对本发明做进一步说明,但本发明不受实施例的限制。
[0037]
实施例1
[0038]
本实施例提供了一种利用新型微通道反应器制备瑞德西韦关键中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的方法,如图1所示,具体合成方法包括以下步骤:
[0039]
称取(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈5.82g(20mmol,1.0equiv),充分溶解于丙酮中,加入2,2-二甲氧基丙烷12.2ml(100mmol,5.0equiv),配制成50ml溶液,作为物料-;量取硫酸3.0ml(10m,30mmol,1.5equiv),作为物料-。同时泵入物料-和物料-,其中,物料-进料流速为5.0ml/min,物料-进料流速为0.3ml/min,混合后输送至反应模块中反应,其中,反应模块的管道内径为1.0mm,长度5m,体积3.9ml,停留时间44s,反应温度为20℃。通过tlc监测反应,待反应结束后收集流出液,加入5.8g nahco
3
和5.8ml水,搅拌15min,减压蒸馏,乙酸乙酯和水萃取并收集有机相,无水na
2
so
4
干燥,减压蒸馏并干燥得(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈5.29g,收率80%。
[0040]
实施例2
[0041]
本实施例提供了一种利用新型微通道反应器制备瑞德西韦关键中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的方法,如图1所示,具体合成方法包括以下步骤:
[0042]
称取(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈5.82g(20mmol,1.0equiv),充分溶解于丙酮中,加入2,2-二甲氧基丙烷12.2ml(100mmol,5.0equiv),配制成50ml溶液,作为物料-;量取硫酸3.0ml(10m,30mmol,1.5equiv),作为物料-。同时泵入物料-和物料-,其中,物料-进料流速为5.0ml/min,物料-进料流速为0.3ml/min,混合后输送至反应模块中反应,其中,反应模块的管道
内径为1.0mm,长度5m,体积3.9ml,停留时间44s,反应温度为30℃。通过tlc监测反应,待反应结束后收集流出液,加入5.8g nahco
3
和5.8ml水,搅拌15min,减压蒸馏,乙酸乙酯和水萃取并收集有机相,无水na
2
so
4
干燥,减压蒸馏并干燥得(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈5.49g,收率83%。
[0043]
实施例3
[0044]
本实施例提供了一种利用新型微通道反应器制备瑞德西韦关键中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的方法,如图1所示,具体合成方法包括以下步骤:
[0045]
称取(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈5.82g(20mmol,1.0equiv),充分溶解于丙酮中,加入2,2-二甲氧基丙烷12.2ml(100mmol,5.0equiv),配制成50ml溶液,作为物料-;量取硫酸3.0ml(10m,30mmol,1.5equiv),作为物料-。同时泵入物料-和物料-,其中,物料-进料流速为5.0ml/min,物料-进料流速为0.3ml/min,混合后输送至反应模块中反应,其中,反应模块的管道内径为1.0mm,长度5m,体积3.9ml,停留时间44s,反应温度为40℃。通过tlc监测反应,待反应结束后收集流出液,加入5.8g nahco
3
和5.8ml水,搅拌15min,减压蒸馏,乙酸乙酯和水萃取并收集有机相,无水na
2
so
4
干燥,减压蒸馏并干燥得(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈5.82g,收率88%。
[0046]
实施例4
[0047]
本实施例提供了一种利用新型微通道反应器制备瑞德西韦关键中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的方法,如图1所示,具体合成方法包括以下步骤:
[0048]
称取(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈5.82g(20mmol,1.0equiv),充分溶解于丙酮中,加入2,2-二甲氧基丙烷12.2ml(100mmol,5.0equiv),配制成50ml溶液,作为物料-;量取硫酸3.0ml(10m,30mmol,1.5equiv),作为物料-。同时泵入物料-和物料-,其中,物料-进料流速为5.0ml/min,物料-进料流速为0.3ml/min,混合后输送至反应模块中反应,其中,反应模块的管道内径为1.0mm,长度5m,体积3.9ml,停留时间44s,反应温度为50℃。通过tlc监测反应,待反应结束后收集流出液,加入5.8g nahco
3
和5.8ml水,搅拌15min,减压蒸馏,乙酸乙酯和水萃取并收集有机相,无水na
2
so
4
干燥,减压蒸馏并干燥得(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈5.83g,收率88%。
[0049]
实施例5
[0050]
本实施例提供了一种利用新型微通道反应器制备瑞德西韦关键中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的方法,如图1所示,具体合成方法包括以下步骤:
[0051]
称取(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈5.82g(20mmol,1.0equiv),充分溶解于丙酮中,加入2,2-二甲氧
基丙烷12.2ml(100mmol,5.0equiv),配制成50ml溶液,作为物料-;量取硫酸3.0ml(10m,30mmol,1.5equiv),作为物料-。同时泵入物料-和物料-,其中,物料-进料流速为4.0ml/min,物料-进料流速为0.24ml/min,混合后输送至反应模块中反应,其中,反应模块的管道内径为1.0mm,长度5m,体积3.9ml,停留时间55s,反应温度为50℃。通过tlc监测反应,待反应结束后收集流出液,加入5.8g nahco
3
和5.8ml水,搅拌15min,减压蒸馏,乙酸乙酯和水萃取并收集有机相,无水na
2
so
4
干燥,减压蒸馏并干燥得(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈5.96g,收率90%。
[0052]
实施例6
[0053]
本实施例提供了一种利用新型微通道反应器制备瑞德西韦关键中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的方法,如图1所示,具体合成方法包括以下步骤:
[0054]
称取(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈5.82g(20mmol,1.0equiv),充分溶解于丙酮中,加入2,2-二甲氧基丙烷12.2ml(100mmol,5.0equiv),配制成50ml溶液,作为物料-;量取硫酸3.0ml(10m,30mmol,1.5equiv),作为物料-。同时泵入物料-和物料-,其中,物料-进料流速为2.5ml/min,物料-进料流速为0.15ml/min,混合后输送至反应模块中反应,其中,反应模块的管道内径为1.0mm,长度5m,体积3.9ml,停留时间1.5min,反应温度为20℃。通过tlc监测反应,待反应结束后收集流出液,加入5.8g nahco
3
和5.8ml水,搅拌15min,减压蒸馏,乙酸乙酯和水萃取并收集有机相,无水na
2
so
4
干燥,减压蒸馏并干燥得(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈6.29g,收率95%。
[0055]
实施例7
[0056]
本实施例提供了一种利用新型微通道反应器制备瑞德西韦关键中间体(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈的方法,如图1所示,具体合成方法包括以下步骤:
[0057]
称取(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈5.82g(20mmol,1.0equiv),充分溶解于丙酮中,加入2,2-二甲氧基丙烷12.2ml(100mmol,5.0equiv),配制成50ml溶液,作为物料-;量取硫酸3.0ml(10m,30mmol,1.5equiv),作为物料-。同时泵入物料-和物料-,其中,物料-进料流速为2.0ml/min,物料-进料流速为0.12ml/min,混合后输送至反应模块中反应,其中,反应模块的管道内径为1.0mm,长度5m,体积3.9ml,停留时间1.8min,反应温度为20℃。通过tlc监测反应,待反应结束后收集流出液,加入5.8g nahco
3
和5.8ml水,搅拌15min,减压蒸馏,乙酸乙酯和水萃取并收集有机相,无水na
2
so
4
干燥,减压蒸馏并干燥得(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈6.35g,收率96%。
[0058]
实施例8
[0059]
(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈,其化学式如式i所示,其合成方法包括以下步骤:
7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈;反应模块的反应温度为50℃;反应液在反应模块的停留时间为10s min。
[0073]
通过控制流速,使:
[0074]
(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈与2,2-二甲氧基丙烷的摩尔比为1:10.0;
[0075]
(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈与硫酸的摩尔比为1:3.0。
[0076]
通过如下实验说明本发明方法的优势:
[0077]
1、为了考察反应温度对反应收率的影响,在实施例1(即:物料-进料流速为5.0ml/min,物料-进料流速为0.3ml/min,停留时间为44s,反应温度为20℃)。在此基础上采用不同的反应温度,进而考察反应温度对反应收率的影响,具体设置如下:实施例2采用反应温度为30℃;实施例3采用反应温度为40℃;实施例5采用反应温度为50℃。比较结果如表1所示。
[0078]
表1反应温度对反应收率的影响
[0079]
实验组反应温度(℃)收率(%)实施例12080实施例23083实施例34088实施例45088
[0080]
由表1可知,反应温度对反应收率影响很大,反应收率随着温度的升高而提高,而反应温度超过40℃反应收率不再提高,反应温度可由50℃降至40℃,收率可达88%。
[0081]
2、为了考察反应停留时间对反应收率的影响,在实施例3(即:物料-进料流速为5.0ml/min,物料-进料流速为0.3ml/min,停留时间为44s,反应温度为40℃)。在此基础上采用不同的反应停留时间,进而考察反应停留时间对反应收率的影响,具体设置如下:实施例5的停留时间采用55s;实施例6的停留时间采用1.5min;实施例7的停留时间采用1.8min。比较结果如表2所示。
[0082]
表2不同停留时间对反应收率的影响
[0083]
实验组停留时间收率(%)实施例344s88实施例555s90实施例61.5min95实施例71.8min96
[0084]
由表2可知,反应的停留时间对反应的收率影响很大,在时间过短的情况下,反应有原料剩余,反应收率低,随着停留时间延长,反应收率也随着提高。
[0085]
对比例(反应瓶)
[0086]
将5.82g(2r,3r,4s,5r)-2-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-3,4-二羟基-5-(羟甲基)四氢呋喃-2-腈(20mmol,1.0equiv)加入到装有100ml丙酮的反应瓶中,加入12.2ml 2,2-二甲氧基丙烷(100mmol,5.0equiv),室温条件下滴加3.0ml浓硫酸(10m,30mmol,1.5equiv)。升温至50℃并搅拌1h,冷却至室温,加入5.8g nahco
3
和5.8ml水,搅拌
15min,减压蒸馏除去溶剂后将所得固体用乙酸乙酯和水萃取,收集有机相,用无水na
2
so
4
干燥,减压蒸馏并干燥得(3ar,4r,6r,6ar)-4-(4-氨基吡咯并[2,1-f][1,2,4]三嗪-7-基)-6-(羟甲基)-2,2-二甲基四氢呋喃[3,4-d]二恶唑-4-腈5.49g,收率83%。
[0087]
通过本发明实施例与对比例进行比较可知:微通道反应器可将反应瓶中若干小时的反应缩短至几分钟;反应瓶合成过程持液量大,滴加浓硫酸时会剧烈放热导致产物收率降低,而微通道反应器持液量小(不到10ml),避免了反应过程剧烈放热,提高了反应收率。因此,微通道反应器与传统反应瓶相比具有反应速度快、绿色安全、持液量小等优点,并提高了目标产物收率。
[0088]
虽然本发明已以较佳的实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可以做各种改动和修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1