一种智能型导电抗菌水凝胶及其制备方法

文档序号:26139681发布日期:2021-08-03 14:23阅读:303来源:国知局
一种智能型导电抗菌水凝胶及其制备方法

本发明属于生物高分子材料技术领域,具体涉及一种智能型导电抗菌水凝胶及其制备方法。



背景技术:

水凝胶是具有三维网状结构的高分子材料。具有质软、良好的亲水性,能够吸水溶胀,又不会溶于水的特点。导电的可拉伸水凝胶可以将机械形变和环境刺激转变为电信号。

导电水凝胶可以促进伤口愈合,常用于制备导电水凝胶的方法有添加碳材料、盐溶液,以及使用苯胺、吡咯等本身具有导电性质的聚合物。但是也常面临着水凝胶的生物相容性不佳、填料的分散性不好等问题。huang等设计了一种基于氯化钠/海藻酸钠/聚丙烯酸/丙烯酰胺的水凝胶,该水凝胶充当仿生电子皮肤具有生理信号响应性(温度、汗水、湿气等),也可用于检测人体运动,记录写字、吹气、水滴滴落等微小变化的电阻变化。(multiplestimuliresponsiveandidentifiablezwitterionicionicconductivehydrogelforbionicelectronicskin.advancedelectronicmaterials,2020,6(7),2000239)。wu等开发了一种聚电解质水凝胶,该水凝胶通过n,n-二甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐和丙烯酸聚合得到,制备方法简单,具有良好的机械性能、自修复性能,能够感应温度的变化。(asupramolecularbiomimeticskincombiningawidespectrumofmechanicalpropertiesandmultiplesensorycapabilities.naturecommunication,2018,9(7),1134)。但是以上开发的凝胶,应用于仿生电子皮肤领域,其生物防污、抗菌等性能需要进一步研究。

两性离子基团对非特异性蛋白吸附具有较好的抵抗力,其表面也可以响应外部环境而表现出抗菌能力,常用来制备生物相容性的水凝胶。中国发明专利申请cn108192020a公开了一种聚乙烯醇和两性离子聚合物制备的智能水凝胶,该凝胶具有形状记忆和抗污性能。fang等使用甲基丙烯酰乙基磺基甜菜碱和丙烯酸酯化的普兰尼克胶束制备得到一种新型的水凝胶敷料,可以通过机械响应对药物进行控制释放,对细胞表现出良好的生物相容性,具有抗菌和防污性能。(mechano-responsive,tough,andantibacterialzwitterionichydrogelswithcontrollabledrugreleaseforwoundhealingapplications.acsappliedmaterials&interfaces2020,12(47),52307)。以上制备的凝胶具有智能响应性能,但是凝胶作为药物载体,其应用范围具有一定的局限性,不能实现在复杂环境中的精准释放。

目前制备具有导电、生物相容性、粘附性能这些单一功能水凝胶的方法多样,而多功能的智能水凝胶在满足实际应用的需求方面更具有优势。但是,大多制备多功能水凝胶所采用的原料种类多样且不能避免使用有毒试剂,制备方法复杂。这在很大程度上限制了对水凝胶性制备的可重复性、在恶劣环境下的适应性以及应用的范围。因此,需要设计采用性能优异的材料以及简单的制备策略,从而获得同时具有导电、抗菌等智能的多功能水凝胶,可以作为伤口敷料、药物载体等应用于复杂的环境中。



技术实现要素:

为了克服现有技术存在的不足,本发明的目的是提供一种智能型导电抗菌水凝胶及其制备方法。

本发明的目的在于利用两性离子制备一种高分子水凝胶,同时具有抗菌、导电等良好性能。

本发明的另一目的还在于合成一种智能水凝胶,能够实现在复杂环境中对药物的控制释放。

本发明的目的至少通过如下技术方案之一实现。

本发明提供的智能型导电抗菌水凝胶,是通过自由基聚合反应后,再浸泡醛溶液进行交联即可制备得到。

本发明提供的智能型导电抗菌水凝胶的制备方法,包括如下步骤:

(1)将多氨基聚合物溶于水中,混合均匀,得到多氨基聚合物溶液,加入两性离子单体,搅拌均匀,得到混合液1;

(2)往步骤(1)所述混合液1中加入功能单体和交联剂,第一次搅拌处理,加入光引发剂,第二次搅拌处理,得到混合液2,将所述混合液2倒入模具中,在紫外光的照射下进行自由基聚合反应,得到凝胶,将所述凝胶浸泡在含醛基的化合物溶液中,进行交联反应,得到所述智能型导电抗菌水凝胶。

进一步地,步骤(1)所述多氨基聚合物为聚乙烯亚胺、壳聚糖、聚赖氨酸、聚丙烯亚胺中的一种以上;

进一步地,步骤(1)所述两性离子单体为磺酸甜菜碱和羧酸甜菜碱酯中的一种以上。

进一步地,步骤(2)所述功能单体为丙烯酰胺、甲基丙烯酸羟乙酯、n-异丙基丙烯酰胺、甲基丙烯酰胺中的一种以上。

进一步地,步骤(2)所述交联剂为n,n’-亚甲基双丙烯酰胺、三乙二醇二甲基丙烯酸酯、聚乙二醇双丙烯酸酯和二乙烯基苯中的一种以上;

进一步地,步骤(2)所述光引发剂为2-羟基-2-甲基-1-苯基丙酮和2-羟基-2-甲基-1-[4-(2-羟基乙氧基)苯基]-1-丙酮的一种以上。

进一步地,按照质量份数计,

多氨基聚合物1-20份;

水1-55份;

两性离子单体1-5份;

功能单体1-30份;

交联剂0.1-1份;

光引发剂0.1-0.8份。

进一步地,步骤(2)所述第一次搅拌处理的时间为25-35min;

进一步地,步骤(2)第二次搅拌处理的时间为15-25min。

优选地,步骤(2)所述第一次搅拌处理的时间为30min;

优选地,步骤(2)所述第二次搅拌处理的时间为20min。

进一步地,步骤(2)所述自由基聚合反应的时间为2-4h。

进一步地,步骤(2)所述含醛基的化合物溶液为戊二醛溶液、氧化海藻酸钠溶液、氧化葡聚糖溶液中的一种以上;

进一步地,步骤(2)所述含醛基的化合物溶液的质量百分比浓度为2.5%-5%。

进一步地,步骤(2)所述交联处理的时间为3-5h。

本发明提供一种由上述的制备方法制得的智能型导电抗菌水凝胶。

与现有技术相比,本发明具有如下优点和有益效果:

(1)本发明提供的智能型导电抗菌的水凝胶,可以实现在不同ph条件下对药物的控制释放。

(2)本发明提供的智能型导电抗菌的水凝胶具有良好的抗菌性能,对大肠杆菌的最大抑菌率可以达到99%。

(3)本发明提供的智能型导电抗菌的水凝胶的电导率可以达到0.36s/cm,凝胶对形变具有良好的灵敏度,并具有可重复性。

(4)本发明提供的制备方法,利用自由基聚合法和化学交联制备得到凝胶,方法简单,条件温和。

附图说明

图1为实施例1中的水凝胶的扫描电镜图。

图2为实施例1-3中的水凝胶的在ph1.2条件下的药物累积释放曲线。

图3为实施例1-3中的水凝胶的在ph7.4条件下的药物累积释放曲线。

图4为实施例1-3中水凝胶的电导率对比图。

图5为实施例1中水凝胶一定形变下的相对电阻变化图。

图6为实施例1-3中水凝胶与led灯串联的示意图。

图7为实施例1-3中水凝胶对大肠杆菌的抑制率。

具体实施方式

以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。

实施例1

一种智能型导电抗菌水凝胶的制备方法,包括如下步骤:

(1)将1.5g多氨基聚合物(选用聚乙烯亚胺)溶于去离子水中,混合均匀,得到质量分数为10%的多氨基聚合物溶液,取5g多氨基聚合物溶液,往5g多氨基聚合物溶液中加入0.3g两性离子单体(选用羧酸甜菜碱酯),搅拌均匀,充分溶解后,得到混合液1;

(2)往步骤(1)所述混合液1中加入2.5g的功能单体(选用丙烯酰胺)和0.08g交联剂(选用n,n’-亚甲基双丙烯酰胺),第一次搅拌处理(时间为30min),加入0.06g的光引发剂(选用2-羟基-2-甲基-1-[4-(2-羟基乙氧基)苯基]-1-丙酮),第二次搅拌处理(时间为20min),得到混合液2,将所述混合液2倒入模具(由玻璃片与硅胶片制成的夹板)中,在紫外光的照射下进行自由基聚合反应(反应时间为4h),得到凝胶,将所述凝胶浸泡在含醛基的化合物溶液(选用戊二醛溶液,浓度为2.5wt%)中,进行交联反应(时间为3h),得到所述智能型导电抗菌水凝胶(标记为g1)。

实施例2

一种智能型导电抗菌水凝胶的制备方法,包括如下步骤:

(1)将0.5g多氨基聚合物(选用聚乙烯亚胺)溶于去离子水中,混合均匀,得到质量分数为5%的多氨基聚合物溶液,取5g多氨基聚合物溶液,往5g多氨基聚合物溶液中加入0.2g两性离子单体(选用羧酸甜菜碱酯),搅拌均匀,充分溶解后,得到混合液1;

(2)往步骤(1)所述混合液1中加入2g的功能单体(选用甲基丙烯酸羟乙酯)和0.1g交联剂(选用三乙二醇二甲基丙烯酸酯),第一次搅拌处理(时间为30min),加入0.08g的光引发剂(选用2-羟基-2-甲基-1-[4-(2-羟基乙氧基)苯基]-1-丙酮),第二次搅拌处理(时间为20min),得到混合液2,将所述混合液2倒入模具(由玻璃片与硅胶片制成的夹板)中,在紫外光的照射下进行自由基聚合反应(反应时间为4h),得到凝胶,将所述凝胶浸泡在含醛基的化合物溶液(选用戊二醛溶液,浓度为2.5wt%)中,进行交联反应(时间为3h),得到所述智能型导电抗菌水凝胶(标记为g2)。

实施例3

一种智能型导电抗菌水凝胶的制备方法,包括如下步骤:

(1)将1g多氨基聚合物(选用聚乙烯亚胺)溶于去离子水中,混合均匀,得到质量分数为15%的多氨基聚合物溶液,取5g多氨基聚合物溶液,往5g多氨基聚合物溶液中加入0.2g两性离子单体(选用2-丙烯酰胺基-2-甲基丙磺酸钠),搅拌均匀,充分溶解后,得到混合液1;

(2)往步骤(1)所述混合液1中加入2.5g的功能单体(选用n-异丙基丙烯酰胺)和0.08g交联剂(选用三乙二醇二甲基丙烯酸酯),第一次搅拌处理(时间为30min),加入0.08g光引发剂(选用2-羟基-2-甲基-1-[4-(2-羟基乙氧基)苯基]-1-丙酮),第二次搅拌处理(时间为20min),得到混合液2,将所述混合液2倒入模具(由玻璃片与硅胶片制成的夹板)中,在紫外光的照射下进行自由基聚合反应(反应时间为4h),得到凝胶,将所述凝胶浸泡在含醛基的化合物溶液(选用戊二醛溶液,浓度为2.5wt%)中,进行交联反应(时间为3h),得到所述智能型导电抗菌水凝胶(标记为g3)。

效果验证

以实施例1制得的一种智能型导电抗菌水凝胶为例,凝胶泡水除去未反应的物质,经冷冻干燥后,进行切片、喷金处理,用扫描电子显微镜zeissmerlin对样品的形貌结构进行观察。从图1中可以看到,合成的凝胶均呈现三维网状结构,具有不规则孔隙。

以实施例1-3制得的一种智能型导电抗菌水凝胶为例,凝胶经冷冻干燥后,取0.2g冻干凝胶,放到5ml(浓度为1mg/ml)水杨酸钠溶液中溶胀24h。凝胶取出后,确定剩余药物溶液体积,利用紫外分光光度计(uv-2450,shimadzu)在309nm处测定吸光度,确定载药量。

载药量=(c0v0-ct*vt)/m0

c0为初始药物浓度,v0为初始药物体积,ct为负载后溶液的浓度,vt为负载后剩余的溶液体积,m0为载药干凝胶的质量。

负载药物的水凝胶分别浸入到15mlph1.2、ph7.4的pbs缓冲液中,在37℃进行药物释放实验,每隔一定时间,取出3ml释放溶液,同时补充3ml缓冲液,保持释放体系体积不变。释放液在波长为309nm处进行紫外测试吸光度,与标准曲线对比,得到该时刻的药物浓度,从而计算出药物的累积释放率。

药物的累积释放率=累积释放量/(载药量*m0)

如图2可知,实施例中的水凝胶在ph1.2缓冲液中的累积释放率最高可以达到71.7%。与图3对比,实施例中的水凝胶在ph7.4缓冲液中的累积释放率最高为31.4%。实施例中的水凝胶在不同的ph缓冲液中具有不同释放效果,说明智能水凝胶能够响应ph的变化,实现对药物的控制释放。这主要是因为氨基和醛基形成的席夫碱键对ph敏感,在酸性条件下,席夫碱键断裂,凝胶中的药物释放,因此累积释放率较高。这种智能水凝胶为药物的控制释放和作为伤口敷料使用提供了可能。

对实施例1-3的水凝胶进行电导率测试:将导电凝胶制备成为10cm×1cm×3mm的矩形状,夹在两片镍网之间,利用广州盈思电化学工作站在室温下对凝胶进行测试。记录凝胶在恒电压0.8v下的电流-时间曲线,每个样品测三次。根据以下公式计算其电导率,其中,u是水凝胶两端的电压(v),i是通过水凝胶的电流(a),l是水凝胶的长度(cm),s表示水凝胶的横截面积(cm2),σ是水凝胶的电导率(s/cm)。

如图4所示,实施例1-3中基于两性离子制备的水凝胶的电导率分别为0.36s/cm,0.18s/cm,0.13s/cm。表现出良好的导电性能。

将实施例1中的水凝胶组装成为应变传感器,利用电化学工作站记录其电信号。相对电阻变化根据下式进行计算,其中,r0是凝胶的初始电阻(ω),r是凝胶在不同变化下的电阻(ω)。

由图5可以看到,凝胶的相对电阻变化与应变之间的关系。将凝胶依次拉伸30%、60%、90%、120%,电阻发生变化,该变化可以通过电流进行反映。当凝胶逐渐从形变120%恢复到原始长度,相应的相对电阻与以前相同,且凝胶的灵敏度良好,具有良好的稳定性。

将实施例1-3中的水凝胶(g1、g2、g3)分别作为待测样品与led灯串联在电压为3v的通路中。

串联示意图如图6所示,led灯能够被点亮,说明凝胶具有导电性能。

对实施例1-3的水凝胶分别进行抗菌性能测试:将大肠杆菌单菌落进一步在100ml的液体培养基(选用lb培养基)中培养12h。用生理盐水将菌液稀释至105cfu/ml,取100μl于24孔板,补充培养液至1ml,混合均匀后,将实施例1-3制备的相同体积大小凝胶(制备成圆盘状)加入对应的孔中,并做好标记。同时,空白对照组中不加入凝胶。将24孔板密封完全后,置于恒温摇床中37℃培养12h。然后菌液分别取100μl,均匀涂布在琼脂平板上,将平板密封后倒置在37℃恒温培养箱中培养24h。取出对平板进行计数,与空白组的平板菌落数进行对比,根据下式进行抑菌计算,其中,n0表示空白组的菌落数(个)。n表示不同凝胶组的抑菌后的菌落数(个)。

由图7可以看到,添加两性离子的水凝胶均具有抗菌性能,而添加羧酸甜菜碱酯的凝胶的抗菌性能强于磺酸甜菜碱的。羧酸甜菜碱酯量的增加也能有效增强凝胶的抗菌性能。图7中的g0代表空白对照组。

从实施例1-3可见,本发明主要是利用两性离子聚合物和多氨基聚合物为主要原料,通过两步法,分别是光引发自由基聚合和化学交联,合成具智能响应性、导电和抗菌性能的双网络水凝胶。制备过程中采用的引发条件温和,操作简单。

以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1