波长变换部件的制造方法和波长变换部件与流程

文档序号:11141393阅读:661来源:国知局
波长变换部件的制造方法和波长变换部件与制造工艺

本发明涉及波长变换部件的制造方法和波长变换部件。



背景技术:

近年来,研究了使用发光二极管(LED)或半导体激光器(LD)等激发光源,将由这些激发光源产生的激发光照射在荧光体上,将由此产生的荧光用作照明光的发光装置。另外,作为荧光体,研究了使用半导体纳米微粒或称为量子点的无机纳米荧光体颗粒。关于无机纳米荧光体颗粒,通过改变其直径,能够进行荧光波长的调节,具有高的发光效率。

然而,无机纳米荧光体颗粒具有一旦与空气中的水分或氧接触就容易劣化这样的性质。因此,无机纳米荧光体颗粒必须以不与外部环境接触的方式密封使用。在使用树脂作为密封材料时,激发光因荧光体而发生波长变换时,能量的一部分会转换为热,因此存在因该热量使得树脂变色这样的问题。另外,树脂的耐水性差,容易透过水分,因此存在荧光体容易劣化这样的问题。

在专利文献1中,提出了使用玻璃代替树脂作为密封材料的波长变换部件。具体而言,专利文献1提出了通过对含有无机纳米荧光体颗粒和玻璃粉末的混合物进行烧制,将玻璃作为密封材料使用的波长变换部件。

现有技术文献

专利文献

专利文献1:日本特开2012-87162号公报



技术实现要素:

发明所要解决的课题

然而,在对含有无机纳米荧光体颗粒和玻璃粉末的混合物进行烧制、将无机纳米荧光体颗粒密封在玻璃中时,存在无机纳米荧光体颗粒与玻璃反应而劣化这样的问题。

本发明的目的在于提供一种能够抑制无机纳米荧光体颗粒与玻璃的反应、抑制无机纳米荧光体颗粒的劣化的波长变换部件的制造方法和波长变换部件。

用于解决课题的方法

本发明的波长变换部件的制造方法的特征在于,包括:准备表面形成有有机保护膜的无机纳米荧光体颗粒的工序;和将无机纳米荧光体颗粒与玻璃粉末混合,在有机保护膜残留的温度范围内进行烧制的工序。

作为上述温度范围,可以列举500℃以下。

将无机纳米荧光体颗粒与玻璃粉末混合的工序可以包括使无机纳米荧光体颗粒附着在玻璃粉末的表面的工序。在这种情况下,例如使无机纳米荧光体颗粒分散于分散介质中而得到的液体与玻璃粉末接触后,除去液体中的分散介质,能够使无机纳米荧光体颗粒附着在玻璃粉末的表面。

在本发明中,玻璃粉末优选为选自SnO-P2O5系玻璃、SnO-P2O5-B2O3系玻璃、SnO-P2O5-F系玻璃和Bi2O3系玻璃中的至少1种。

本发明的波长变换部件的特征在于,具有:无机纳米荧光体颗粒;分散有无机纳米荧光体颗粒的玻璃基质;和设置于无机纳米荧光体颗粒与玻璃基质之间的有机保护膜的烧制后的残留膜。

发明效果

根据本发明,能够抑制无机纳米荧光体颗粒与玻璃的反应,抑制无机纳米荧光体颗粒的劣化。

附图说明

图1是表示本发明的一个实施方式的波长变换部件的截面示意图。

图2是表示表面形成有有机保护膜的无机纳米荧光体颗粒的截面示意图。

图3是表示表面形成有有机保护膜的无机纳米荧光体颗粒附着在表面的玻璃粉末的截面示意图。

图4是表示比较例的波长变换部件的截面示意图。

具体实施方式

以下,对优选的实施方式进行说明。但是,以下的实施方式只是例示,本发明不限定于以下的实施方式。另外,在各附图中,有时对实质上具有相同功能的部件利用相同的符号进行参照。

图1是表示本发明的一个实施方式的波长变换部件的截面示意图。如图1所示,本实施方式的波长变换部件10具有:无机纳米荧光体颗粒1;分散有无机纳米荧光体颗粒1的玻璃基质2;和设置于无机纳米荧光体颗粒1与玻璃基质2之间的残留膜3。

以下,对本实施方式的波长变换部件10的制造方法进行说明。

图2是表示表面形成有有机保护膜的无机纳米荧光体颗粒的截面示意图。图2所示的附着有保护膜的荧光体颗粒4通过在无机纳米荧光体颗粒1的表面形成有机保护膜5而构成。有机保护膜5通过烧制形成为图1中的残留膜3。在本实施方式的制造方法中,首先准备附着有保护膜的荧光体颗粒4。

作为无机纳米荧光体颗粒1,可以使用由粒径小于1μm的无机结晶形成的荧光体颗粒。作为这样的无机纳米荧光体颗粒,通常可以使用半导体纳米微粒或称为量子点的颗粒。作为这样的无机纳米荧光体颗粒的半导体,可以列举IIB-VIA族化合物和IIIA-VA族化合物。

作为IIB-VIA族化合物,可以列举CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe等。作为IIIA-VA族化合物,可以列举InP、GaN、GaAs、GaP、AlN、AlP、AlSb、InN、InAs、InSb等。可以将选自这些化合物中的至少1种或它们2种以上的复合体作为本发明的无机纳米荧光体颗粒使用。作为复合体,可以列举核壳结构的材料,例如可以列举CdSe颗粒表面涂敷有ZnS的核壳结构的材料。

无机纳米荧光体颗粒1的粒径例如为100nm以下、50nm以下,特别适合在1~30nm、1~15nm、进一步1.5~12nm的范围内选择。

作为有机保护膜5,可以列举用于提高无机纳米荧光体颗粒1在分散介质中的分散性的聚合物或有机配体等。具体而言,作为聚合物或有机配体,可以列举具有碳原子数为2~30、优选4~20、进一步优选6~18的具有直链结构或支链结构的脂肪族烃基的有机分子。聚合物或有机配体优选具有用于与无机纳米荧光体颗粒1配位的官能团。作为这样的官能团,例如可以列举羧基、氨基、酰胺基、腈基、羟基、醚基、羰基、磺酰基、磷酰基(phosphonyl)或巯基等。另外,除了用于与无机纳米荧光体颗粒1配位的官能团以外,还可以在烃基的中间或末端具有官能团。作为这样的官能团,例如可以列举腈基、羧基、卤基、卤代烷基、氨基、芳香族烃基、烷氧基或碳-碳双键等。

关于有机保护膜5相对无机纳米荧光体颗粒1的附着量,相对于1个无机纳米荧光体颗粒1,以聚合物或有机配体的单位计优选为2~500个,更优选为10~400个,进一步优选为20~300个。有机保护膜5的附着量过少时,无机纳米荧光体颗粒1容易凝聚。另一方面,有机保护膜5的附着量过多时,无机纳米荧光体颗粒1的发光强度容易降低。

有机保护膜5例如可以通过在将无机纳米荧光体颗粒1分散于甲苯等有机溶剂等中的状态下,使有机保护膜5堆积在无机纳米荧光体颗粒1的表面而形成。

接着,在本实施方式的制造方法中,将形成有有机保护膜5的无机纳米荧光体颗粒1、即附着有保护膜的荧光体颗粒4与玻璃粉末混合。图3是表示附着有保护膜的荧光体颗粒4附着在表面的玻璃粉末6的截面示意图。在本实施方式中,制作了附着有保护膜的荧光体颗粒4在玻璃粉末6的表面均匀地分散并附着的附着有荧光体的玻璃粉末20。通过对附着有荧光体的玻璃粉末20进行烧制,能够制造无机纳米荧光体颗粒1在玻璃基质中均匀地分散的波长变换部件。然而,本发明不限定于此。

附着有荧光体的玻璃粉末20例如可以通过在附着有保护膜的荧光体颗粒4分散于分散介质而得到的液体中,使附着有保护膜的荧光体颗粒4与玻璃粉末6接触后,除去液体中的分散介质而制作。作为使附着有保护膜的荧光体颗粒4与玻璃粉末6接触的方法,可以列举将玻璃粉末6添加在分散有附着有保护膜的荧光体颗粒4的液体中的方法、使分散有附着有保护膜的荧光体颗粒4的液体浸透到玻璃粉末6的预成型体中的方法等。

从降低烧制温度的观点考虑,玻璃粉末优选软化点低的物质。具体而言,作为玻璃粉末,优选使用由具有500℃以下、更优选400℃以下、进一步优选350℃以下的软化点的玻璃形成的玻璃粉末。作为这样的玻璃粉末,可以列举SnO-P2O5系玻璃、SnO-P2O5-B2O3系玻璃、SnO-P2O5-F系玻璃、Bi2O3系玻璃等。

关于SnO-P2O5系玻璃,作为玻璃组成,以摩尔%表示,优选含有SnO 40~85%、P2O5 15~60%,特别优选含有SnO 60~80%、P2O520~40%。

关于SnO-P2O5-B2O3系玻璃,作为玻璃组成,以摩尔%计,优选含有SnO 35~80%、P2O5 5~40%、B2O3 1~30%。

另外,在SnO-P2O5系玻璃和SnO-P2O5-B2O3系玻璃中,也可以作为任意成分含有Al2O3 0~10%、SiO2 0~10%、Li2O 0~10%、Na2O0~10%、K2O 0~10%、MgO 0~10%、CaO 0~10%、SrO 0~10%和BaO 0~10%。另外,除了上述成分以外,还可以进一步含有Ta2O5、TiO2、Nb2O5、Gd2O3、La2O3等使耐候性提高的成分、和/或ZnO等使玻璃稳定化的成分等。

作为SnO-P2O5-F系玻璃,以阳离子%计,优选含有P5+10~70%、Sn2+10~90%,以阴离子%计,优选含有O2-30~100%、F0~70%。另外,为了使耐候性提高,可以合计含有0~50%的B3+、Si4+、Al3+、Zn2+或Ti4+

关于Bi2O3系玻璃,作为玻璃组成,以质量%计,优选含有Bi2O310~90%、B2O3 10~30%。另外,作为形成玻璃的成分,可以分别含有0~30%的SiO2、Al2O3、B2O3、P2O5

从使SnO-P2O5系玻璃和SnO-P2O5-B2O3系玻璃的软化点降低、并且使玻璃稳定化的观点考虑,SnO与P2O5的摩尔比(SnO/P2O5)优选在0.9~16的范围内,更优选在1.5~10的范围内,进一步优选在2~5的范围内。摩尔比(SnO/P2O5)过小时,有时低温下的烧制变得困难,无机纳米荧光体颗粒在烧结时容易劣化。并且,有时耐候性变得过低。另一方面,摩尔比(SnO/P2O5)过大时,有时玻璃容易失透,玻璃的透光率变得过低。

玻璃粉末的平均粒径D50优选为0.1~100μm,特别优选为1~50μm。玻璃粉末的平均粒径D50过小时,烧结时容易产生气泡。因此,有时所得到的波长变换部件的机械强度会降低。另外,有时波长变换部件中产生的气泡会造成光散射损失变大,发光效率降低。另一方面,玻璃粉末的平均粒径D50过大时,无机纳米荧光体颗粒难以均匀地分散在玻璃基质中,其结果,有时所得到的波长变换部件的发光效率降低。玻璃粉末的平均粒径D50可以利用激光衍射式粒度分布测定装置测定。

关于分散介质,只要能够使无机纳米荧光体颗粒分散,就没有特别限定。通常,优选使用己烷、辛烷等具有适当的挥发性的无极性溶剂。但并不限定于此,也可以是具有适当的挥发性的极性溶剂。

接着,在本实施方式的制造方法中,对附着有保护膜的荧光体颗粒4与玻璃粉末6的混合物,在有机保护膜5作为残留膜3残留的温度范围内进行烧制。在本实施方式中,在有机保护膜5作为残留膜3残留的温度范围内,对附着有荧光体的玻璃粉末20进行烧制。由此,如图1所示,能够在残留膜3存在于无机纳米荧光体颗粒1的表面的状态下进行烧制,能够抑制无机纳米荧光体颗粒1与玻璃基质2的反应。因此,能够抑制无机纳米荧光体颗粒1劣化。

烧制温度优选为500℃以下,更优选为400℃以下,进一步优选为350℃以下。通过降低烧制温度,能够进一步抑制无机纳米荧光体颗粒1与玻璃基质2的反应。另一方面,为了将玻璃粉末6致密地烧结,烧制温度优选为150℃以上。

烧制时的气氛优选真空气氛、或者使用氮或氩的不活泼气氛。由此,能够抑制烧结时玻璃粉末6的劣化和着色。特别是为真空气氛时,能够抑制波长变换部件10中产生气泡。

如上所述,能够制造图1所示的波长变换部件10。对于在无机纳米荧光体颗粒1的表面存在有残留膜3的情况,可以如下操作进行确认。将波长变换部件粉碎,一边流通He气一边将该粉碎物加热至600℃,可以通过是否能够在挥发的气体中检测到CO2气体进行判断。在检测到CO2气体的情况下,在无机纳米荧光体颗粒1的表面存在残留膜3。

实施例

<波长变换部件的制造>

(实施例1)

作为无机纳米荧光体颗粒,使用具有CdSe(核)/ZnS(壳)的核壳结构、且粒径为3nm(绿色)和6nm(红色)的颗粒。其中,在无机纳米荧光体颗粒的表面,作为有机保护膜,相对于无机纳米荧光体颗粒1颗粒附着有约50个具有碳原子数10的脂肪族烃基的有机分子。使在作为分散介质的辛烷中包含1质量%的该无机纳米荧光体颗粒的分散液浸透到玻璃粉末(组成(质量比)SnO 72%、P2O5 28%,平均粒径D50:4μm,软化点:290℃)的预成型体(压粉体)中,除去分散介质,由此可以制作附着有无机纳米荧光体颗粒的玻璃粉末的预成型体。玻璃粉末与无机纳米荧光体颗粒的质量比(玻璃粉末﹕无机纳米荧光体颗粒)为50﹕1。

在真空气氛中、以烧制温度300℃对该附着有无机纳米荧光体颗粒的玻璃粉末的预成型体进行烧制,制造波长变换部件。

(比较例1)

除了使烧制温度为550℃以外,与实施例1同样操作制造波长变换部件。

<发光强度的评价>

实施例1所得到的波长变换部件的颜色形成为与无机纳米荧光体颗粒分散液相同的颜色,而比较例的波长变换部件中,无机纳米荧光体颗粒分散液的颜色因烧制而消失。对各波长变换部件照射激发光(波长460nm)时,从实施例1的波长变换部件观察到了发光,但从比较例1的波长变换部件没有观察到发光。这样,在实施例1中,能够抑制因烧制而引起的无机纳米荧光体颗粒的劣化。

<残留膜的确认>

将实施例1和比较例1所得到的波长变换部件粉碎后,一边流动He气一边将该粉碎物加热至600℃,利用四极质谱仪(M-101QA-TDM、Canon-anelva公司制)对挥发的气体进行分析。

在实施例1中检测到了CO2气体,但在比较例1中未检测到CO2气体。因此可知,在实施例1中存在残留膜,但在比较例1中不存在残留膜。

如图4所示,在比较例1的波长变换部件11中,不存在残留膜,无机纳米荧光体颗粒1与玻璃基质2直接接触,可以认为无法抑制在制造工序中无机纳米荧光体颗粒1与玻璃基质2的反应。

与之相对,如图1所示可知,根据本发明,以使残留膜3存在于无机纳米荧光体颗粒1的表面的方式进行烧制,能够抑制在制造工序中无机纳米荧光体颗粒1与玻璃基质2发生反应,能够抑制无机纳米荧光体颗粒1的劣化。

符号说明

1…无机纳米荧光体颗粒

2…玻璃基质

3…残留膜

4…附着有保护膜的荧光体颗粒

5…有机保护膜

6…玻璃粉末

10…波长变换部件

11…波长变换部件

20…附着有荧光体的玻璃粉末

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1