在换高速档和换低速档转矩相期间的发动机转矩控制的制作方法

文档序号:3899002阅读:167来源:国知局

专利名称::在换高速档和换低速档转矩相期间的发动机转矩控制的制作方法
技术领域
:本发明涉及用于电动-机械变速器的控制系统。
背景技术
:这部分的描述仅提供与本发明相关的一些背景信息,且有可能不构成现有技术。已公知的动力系结构包括含有内燃机和电机的转矩发生装置,其M变速器装置将转矩传给输出件。典型的动力系包含双模式、复合-分流、电动-机械变速器,其利用输入元件以接收来自于优选为内燃机的原动机动力源的驱动转矩,以及输出元件。该输出元件可以是被操作地连接于机动车的动力传动系统以用来向其传递牵引转矩。电机,像马达或发电机一样工作的,可以独立于来自内燃机的转矩输入而产生转矩输入给变速器。该电机可以将经过车辆动力传动系统所传递的车辆动能转换成可存储在能量存储设备中的能量。控制系统监控来自于车辆和驾驶员的各种输入,并且为动力系提供可操作控制,这包括控制变速器的工作范围状态和换档,控制转矩发生装置,以及调节能量存储装置和机器装置之间的能量交换以管理变速器的输出,包括转矩和旋转速度。混合动力系中的变速器,如上面所描述地,ffiii传递和操作转矩实现多种功能从而提供转矩给输出元件。为了实现所需的特定的功能,变速器在多个内于变速器的、限定了经由变速器的转矩的传输的工作范围状态或者组态之间进行选择。已公知的变速器利用包括固定档位状态或者具有限定传动比的状态在内的工作范围状态而工作。例如,变速器可以利用四个顺序排列的固定档位状态并且允许在这四个档位状态之间进行选择从而在输出元件速度的宽范围内提供输出转矩。附件地或者可替换地,已公知的变速器也允许连续改变的工作范围状态或者模式工况,例如通过使用行星齿轮组来实现,其中变速器所提供的传5动比可以在一个范围内被改变从而调节由特定的一组输入设备所提供的输出速度和输出转矩。此外,变速器可以在空档状态下运行,也就是中止所有经由变速器而被传递的转矩。另外,变速器可以在换向模式下运行,也就是接收以特定旋转方向的用于通常的向前运行的输出转矩以及逆转输出元件的旋转方向。通择不同的工作范围状态,变速器对于给定的输入可以提供一个范围的输出。混合动力系车辆中的,装置的运行需要多个转矩支承轴或装置的操作,所述支承轴或装置用来连接至上面提到的发动机、电机以及动力传动系统。来自发动机的输入转矩和来自一个或多个电机的输入转矩可以被独立地或者联合地应用来提供输出转矩。但是,被需求来自变速器的输出转矩的改变,例如由于驾驶员踏板位置的改变或者由于工作范围状态的变换,必须被平稳地处理。特别难以操作的是输入转矩,其被同步地供应给变速器,对于控制输入具有不同的反应时间。基于单一的控制输入,各种装置在不同的时间可以改变各自的输入转矩,从而对于供应通过变速器的全部转矩导致了增加的突然改变。对于供应给变速器的各种输入转矩的突然的或者不协调的改变可以导致在车辆的加速中的显而易见的改变或者颠簸,这会不利地影响到车辆的驾驶性能。处于混合驱动系统的各种上述组件之间的各种控制方案和操作性连接都是公知的,并且控制系统必须能够来从^3I器上接合以及脱离所述各种组件,从而执行混合动力系系统的功能。在变速器中,结合以及脱离己公知是通过使用可选择性操作离合器来完成的。离合器是本领域所熟知的用来结合以及脱离转轴的装置,包括转轴之间的旋转速度和转矩差异的处理。接合或者锁住,脱离或者解锁,被接合或者被锁住操作下的运行,以及被脱离或者被解锁操作下的运行都是必须被处理的离合器状态,从而为了实现对于车辆的恰当地并且平稳地操作。离合器在多种设计和控制方法中都是已公知的。一种已公知的离合^M就是通过分离或者结合两个连接表面来操作的机械式离合器,例如离合片,当被结合时,运行来在彼itb^间施加摩擦转矩。一种用于控制这种机械式离合器的控制方法包括应用液压控制系统,该系统通过液压管线实施被传递的液压压力来施压或者释放两个连接表面之间的夹紧力。如此地被操作,离合器不是以双重的模式被操作,也就不能实现一个范围的接合状态,也就是从完全脱离到同步但没有接合,到接合但只有最小的夹紧力,再到接合并且具有一定的最大夹紧力。施加于离合器的夹紧力确定了离合器在离合器滑脱之前可以传送多少数量的反作用转矩(reactivetorque)。ilil调节夹紧力而实现的对于离合器的各种控制允许在锁住和解锁之间的转换,并且进一步允许在锁住的传动过程中实现滑脱。另外,液压管线所能施加的最大夹紧力也可以根据车辆运行状况而改变,并且可以基于控制战略而被调整。离合器已公知被不同步地操作,并且被设计来在锁定状态和解锁状态之间的转变过程中提供一定程度的滑脱。其它离合器己公知被同步地操作,并且被设计来匹配连接表面的速度或者在连接表面被夹紧在一起之前进行协调。本发明主要使用同步离合器。当离合器连接表面意图被同步化并且被锁住时,无论何时只要施加在离合器上的反作用转矩超过所施加的夹紧力所产生的有效转矩容量,离合器连接表面之间的滑脱或者相对旋转运动就会发生。在变速器中出现的滑脱导致变速器内的非预期的转矩控制损失,因为变速器反转矩的突然改变而导致发动机速度控制损失和电t腿度控制损失,以及导致车辆加速度的突然改变,M于驾驶性能产生了负面效果。变速器口j以使用单个离合器,该离合器在输入和输出之间传递反作用转矩。变速器也可以使用多个离合器而在输入和输出之间传递反作用转矩。工作范围状态的选择取决于离合器选择性的接合,允许的不同的组合导致了不同的工作范围状态。从一个工作范围状态到另一个工作范围状态的改变或者转变包括变换至少一个离合器状态。典型的从一个固定档位状态,即包括两个离合器初始地处于锁定状态,到另一个固定档位状态,即包括至少一个不同的接合离合器的转变涉及卸载第一个离合器,转变穿过空转或者惯性速度相态,以及接着加载第二个离合器。连接至被锁住的离合器的动力传动系统在被卸载之前即被输出转矩所起动,该输出转矩是由于输入转矩和出现在变速器中的减速比而在变速器所产生的。在这样的转矩传动状态中,在变化期间被如此配位的离合器被称作处于转矩相。在转矩相中,车辆速度和车辆加速度是输出转矩和其它作用在车辆上的力的函数。卸载离合器则从先前被锁定的并且同步化的离合器移除所有输入转矩。在这种布置中,变速器被称作处于惯性皿阶段。取决于变速器的具体布置,这样的惯性速度阶段可以导致车辆惯性滑行,或者另一个被加载的离合器在第一个离合器处于惯性速度阶段时可以继续通过变速器提供输出转矩。随着将被加载的第二个离合器是被同步化的并且被加载的,变速器再次进入一个转矩相,其中车辆速度和车辆加速度是输出转矩和其它作用在车辆上的力的函数。当由于离合器卸载和加载而导致输出转矩改变或者中断是变速器工作范围状态变化的一个正常部分时,输出转矩改变的依次处理减小了改变所带来的对于驾驶性能的冲击。如上面所描述地,变速器工作范围状态的转变包括变换离合器。使用多个离合器的车辆在变换过程中的各种接合状态下可以保持在工作范围状态的转变过程中的转矩的传递。但是,发动机操作和转矩输出可能是不能接受工作范围状态的改变的。如上面所述,转变被设计用于同步操作的离合器从锁定状态到解锁状态需要所有转矩被从离合器上移除。如果两个离合器初始地被锁住并且从包括发动机在内的输入单元传递转矩,以及一个离合器必须在即将进行的离合器转换之前被卸载的话,被从输入单元上传递的全部转矩必须被仍然保持被锁住的离合器所传递。保持被锁住的离合器具有能够被该离合器所传递的最大转矩容量。发动机输出已公知是缓慢改变的,工作范围状态的转变tti&t也包括从发动机中的平稳输出,从向保持驾驶性能,并且在改变期间创造顾客对于改变的最小可察觉性。一种在变速器工作范围状态转变开始时的用来处理来自混合动力变速器中的输入单元的转矩的,,地处理转矩发生的改变并且没有影响至拨动机输出的,但是最终地保护变嚨器不受发生滑脱影响的方法将是有益的。
发明内容一种动力系,包括机械地-可操作地联接至内燃机的电动-机械变速器和适合用Mil对于多个离合器的选择性应用从而选择性地传递机械动力给输出元件的电机。一种用于控制动力系的方法,包括指令从固定档位工作范围状态到第二工作范围状态的换档,在所述指令换档的转矩相期间,指令减小的反作用转矩i!31将要停止运行的离合器(off-goingclutch),以及通过控制发动机输入转矩来减小M31所述将要停止运行的离合器的所述反作用转矩。下面将会通过实例并参照附图对一个或者多个实施例进行描述,其中图1为根据本发明的包含双模式、复合-分流、电动-机械混合变速器的示例8性动力系的示意图,该变速器可操作itt接到发动机和第一、第二电t几上面;图2为根据本发明的示例性分布式模块控制系统的示意框亂图3fflil图表示出了根据本发明的示例性混合动力系组件对于转矩请求改变的反应时间;图4示出了根据本发明的用于示例性混合动力系变速器,尤其是如在图1和表1中的示例性实施方-t^述的混合动力系变速器的档位变换关系;图5-7示出了根据本发明的进行组合从而实现示例性变速器换档的示例性程序;图5是根据本发明的关于离合器在示例性过渡解锁状态过程中的转矩术语的图表显示;图6是根据本发明的关于离合器在示例性过渡锁定状态过程中的转矩术语的图表显示;图7是根据本发明的描述了变速器的示例性惯性阶段的术语的图表显示;图8是根据本发明的一个实例的图表显示,其中系统约束被施加在实时控制信号上,临时地越过控制信号所设定的max/min值;图9显示了根据本发明的用于控制和管理动力系系统中的$转巨以及功率流的示例性控制系统结构,其中动力系系统具有多个转矩发生装置并且存在于以可执行的算法和校准的方式存在的控制模块。图10尉艮据本发明的执行换档过程中的举例说明的数据流的示意图,图中更为详细地描述了如图9中所示系统的控律孫统结构的示例性执行过程的更多细节;图11是根据本发明的用于控制发动机运行的战术控制系统内的举例说明的信号流的示意图,其被参照图1和图2的混合动力系系统和图9中的控制系统结构进行描述;图12是根据本发明的描述了变速器的示例性惯性速度阶段的术语的图解显示,包括最小和最大发动机转矩;以及图13是根据本发明的描述了变速器的示例性惯性速度阶段的术语的图解显示,包括作用来改变发动机输出的最小和最大发动机转矩。具体实施例方式9现在錄附图,其中绘图只是为了阐述本发明的一些示例性具体实施方式,而并不是为了限制实施例,图l和2描述了示例性电动-机械混合动力系。根据本发明的示例性电动-机械混合动力系在图1中被描述,其包括可操作地连接于发动机14的双模式、复合-分流、电动-机械混合变速器10,以及第一和第二电机(^MG-A,)56和('MG-B,)72。发动机14和第一电机56以及第二电机72,它们每一个都产生可以被传递给变速器10的动力。由发动机14和第一电机56以及第二电机72所产生的并且被传递给,器10的动力被描述为输入转矩,这里被分别标记为Tt、TA、TB,以及速度,这里被分别标记为N!、NA、NB。示例性的发动机14包括多缸内燃机,其可选择性地在多个工况(状态)下运行,从而ffl31轴12将转矩传递给变速器10,并且也可以是火花点火或者压燃发动机。该发动机14包括曲轴(未示出),所述曲轴可操作地被联接于变速器10的输入轴12。旋转速度传繊11监l^f俞入轴12的旋车til^。来自发动机14的动力,包括旋转速度和输出转矩,可以不同于给予变速器10的输入速度Nj和输入转矩力,这是由于处于发动机14和变速器10之间的输入轴12上的转矩消耗部件的布置所致,例如液压泵(未示出)禾口/或转矩管理设备(未示出)。示例性的变速器10包括三组行星齿轮组24,26和28,以及四个可选择性地啮合的转矩传递装置,即离合器C170,C262,C373和C475。如这里所使用的,离合器是指任何类型的摩擦转矩传递装置,例如包括单一的或复合的离合器盘或群,带式离合器以及制动器。液压控制电路('HYD,)42^^地由变速器控制模块(在下文中简称为7CM')17进行控制,并且是可操作地控制离合器状态。离合器C262和C475,地包括液压-致动旋转摩擦离合器。离合器Cl70和C373伏选地包括可选择性地被连接到变速器壳体68上的液压控制固定装置。針离合器Cl70,C262,C373和C475漸爐地由液压作用,M31液压控制回路42选择性地接收加压液压流体。第一电机56以及第二电机72itt地包括三相交流电机,每一个都包括定子(未示出)和转子(未示出)以及各自的旋转变压器80和82。用于每个电机的马达定子被安装于变速器壳体68的外部,并且还包括带有从中穿过的电绕组的定子铁心。用于第一个电机56的转子被支撑在毂衬齿轮(hubplategear)上,该齿M过第二行星架26可操作t鹏接到轴60上。用于第二个电机72的转子被固定地附接于空心轴套66(sleeveshafthub)上。'^旋转变压器80,82都4,地包括可变磁阻装置,该装置包含旋转变压器定子(未示出)以及旋转变压器转子(未示出)。旋转变压器80,82被分别适当地定位在并且安装在第一电机56和第二电机72上。旋转变压器80,82各个的定子被可操作地连接于用于第一电机56和第二电机72的定子中的一个。旋转变压器的转子被可操作地连接于用于相应的第一电机56和第二电机72的转子。每个旋转变压器80,82被信号地和可操作地连接于变速器功率变换器控制模块(以下简称'TPM')19,并且每一个感测和监控旋转变压器转子相对旋转变压器定子的旋转位置,因lt,控第一电机56和第二电机72各个的旋转位置。此外,从旋转^ffi器80和82所输出的信号被说明来为第一电机56和第二电机72提供旋转速度,也就是分别地为NA和NB。变速器10包括输出元件64,例如轴,其被可操作i鹏接于车辆(未示出)的动力传动系统90,以提供输出动力给动力传动系统90,例如被传递给车轮93,其中的一个被显示在图1中。输出元件64中的输出动力的特征在于输出旋车键度No和输出转矩T0。变速器输出速度传感器84监控输出元件64的旋车键度和旋转方向。*车轮93伏选地被装配有传|94,其被用来监控^速度Vss_whl,车轮速度的输出被关于图2所描述的分布式控制模块系统中的控制模i央所监控以确定ffi速度,以及绝对的和相对的车轮速度用于制动控制、牵引控制和车辆加速管理。来自发动机14和第一电机56以及第二电机72的输入转矩(分别地T!、TA、TB)由于从燃料或储存在电能存储装置(以下简称TSD')74中的电能的能量转化所产生。ESD74是ffiii直流电传导导线27连接到TPIM19的高压直流电。传导导线27包括接触开关38。当接触幵关38被关闭时,在通常的操作下,电流可以在ESD74和TPM19之间流动。当接触开关38被打开时,在ESD74和TPM19之间的电流被切断。TPIM19使用传导导线29给并且从第一电机56传输电力,并且TPM19使用传导导线31给并且从第二电机72传输电力,响应于对于第一电机56以及第二电机72的转矩请求以实现输入转矩TA和TB。电流根据ESD74是被充电还是放电而被传递给ESD74或从ESD74被传递。TPM19包括一对功率变换器(未示出)和各自的电机控制模块(未示出),该电机控制模块配置成接收转矩请求,并且据此来控制变换器的状态,从而用ii于提供马达驱动或者再生功能以实现输入转矩TA和TB。功率变换器包括已公知的互补型三相电力电子装置,并且每一个都包括多个绝缘栅双极晶体管(未示出),M31高频换接,用以从ESD74将直流电转化成交流电,用来为第一电机56和第二电机72提供能量。绝缘栅双极晶体管构成一种换接模式动力供给并被配置用来接收控制指令。典型地,对于每个三相电机的每一相都存在着一对绝缘栅双极晶体管。绝缘栅双极晶体管的工作状态被控制以提供发动机驱动机械动力或者电力再生功能。三相变换器经由直流电传导导线27接收和提供直流电并且将它传递给三相交流电源或者从三相交流电源传递出,直流电分别经由传导导线29和31被传导给第一电机56和第二电机72和从第一电机56和第二电机72而被传导出,从而使得第一电机56和第二电机72按照马达或发电机的模式而工作。图2是分布式控制模块系统的示意性方块图。下文中将描述的元件是整个车辆控制结构的一付集,且提供图1中的示例性动力系的幼伺系统控制。该分布式控制模块系统合成有关的信息和输入,且执行算法来控制执行器以实现控制目标,所述目标包括涉及燃油经济性,排放,性能,驱动性能以及保护包括ESD74和第一电机56以及第二电机72的电池在内的硬件。该分布式控制模土央系统包括发动机控制模块(以下简称'ECM,)23,TCM17,电池组控制模块(以下简称^BPCM,)21以及TPM19。混合控制模块(以下简称'HCP,)5为ECM23、TCM17、BPCM21和TPIM19提供监督性的控制和协调。用户界面('UI,)13优选地被信号地连接于多个设备,ffiil它,车辆驾驶员就能控制或者指挥电动-机械混合动力系的操作。所述设备包括加iim板113('AP'),从中驾驶员转矩请求被确定,以及驾驶员制动踏板112('BP'),变速器档位选择器114('PRNDL,),和车辆速度巡航控制(未示出)。变速器档位选择器114可能具有离散数量个驾驶员可选择位置,包括输出元件64的旋转方向以实现向就左向和反向中的一个。前面提到的控制模块经由局域网(以下简称'LAN')总线6而与其它控律蝶块,传繊和执行器通信。该LAN总线6允许在各种控制模块之间进行关于运行参数状态和执行器指令信号的结构化通信。所采用的特定的通信协议是面向应用的。LAN总线6和合适的协议在前面提到的控制模块和其他控制模块之间规定了强大的通讯和多控制模块界面,所述的其他控制模块可提供如防抱死制动,牵引控制和车辆稳定性等功能。多个通信总线可以被用来改善通信速度并且提供某种级别的信号冗余度和完整性。单个控制模块之间的通信也可以ili!4OT直i^I信而被执行,例如串行外围接口('SPI')总线。HCP5为动力系提供监督控制,对ECM23、TCM17、TPIM19和BPCM21的操作进行协调。基于来自UI13和包括ESD74在内的动力系的各种指令信号,HCP5产生各种指令,包括驾驶员转矩请求('Toreq'),纟好动力传动系统90的指令输出转矩('Tcmd,),发动机输入转矩请求,用于变速器10所使用的转矩传递离合器Cl70,C262,C373,C475的离合器转矩;以及分别用于第一电机56和第二电机72的转矩请求。TCM17被可操作地连接于液压控制回路42并且提供各种功能,包括监控各种压力感测设备(未示出)、产生控制信号并将该控制信号发送给各种电磁线圈(未示出)从而控制压力开关以及控制包含在液压控制回路42内的阀门。ECM23可操作地连接于发动机14,起到从传感器中获取,及通过多条离散的线来控制发动机14的执行器的作用,为了简化,如集结的双向接通电缆35所示的。ECM23接收来自于HCP5的发动机输入转矩请求。ECM23确定实际发动机输入转矩TV基于监控到的发动机速度和负荷,转矩在此值处被及时提供给变速器IO,其也被通信给HCP5。ECM23监控来自旋$,度传感器11的输入以确定发动机输入3IS给输入轴12,其转变为变速器输A3S度Nj。ECM23监控来自传感器(未示出)的输入以确定其它发动t几工作参数的状态,包括例如进气管压力,发动机冷却液^j度,环境空气温度和环境压力。发动机负荷可以例如从进气管压力或者可选择地Am控驾驶员给予加速足杳板113的输入而被确定。ECM23产生并通信指令信号以控制发动机执行器,包括,例如燃料喷射器,点火模块和节气门控制模块,它们都没有被示出。TCM17可操作i魅接到变速器10上,并监控来自传感器(未示出)的输入从而确定变速器工作参数的状态。TCM17产生并且与执行器通信控制信号以控制变速器10,包括控制液压控制电路42。从TCM17传给HCP5的输入包括为每个离合器,也就是C170,C262,C373和C475,所估算的离合器转矩,以及输出轴64的旋转输出速度N0。出于控制目的,其他执行器和传SI可被用来由TCM17向HCP5提供附加信息。TCM17监控来自压力传动开关(未示出)的输入,并且选择性地、液压控制电路42的压力控制电磁阀(未示出)和换13档电磁阀(未示出),从而鄉择性地致动各离合器CI70,C262,C373和C475,以实现如下面所描述的各种变速器的工作范围状态。BPCM21被信号地连接于传感器(未示出)以监控ESD74,包括电压和电流参数状态,以向HCP5提供ESD74的电池的参数状态的指示信息。电池的参数状态包括电池充电状态,电池电压,电池温度,和标记范围为PBAT-MN至PBAT-MAX的可用电量。控制模块ECM23、TCM17、TPIM19禾口BPCM21中的每一个tfci^地是通用的数字计算机,包括微处理器或中央处理器,存储介质,包括只读存储器('ROM')、随机存取存储器('RAM,)、电可编程只读存储器('EPROM,),高速计时器,模-数('A/D')和数-模('D/A')电路,以及输A/输出电路和设备('I/O')和适宜的信号调节和缓冲电路。*控制模块包括一组控制算法,其包括存储于存储介质中的一个的内在程序指令和校准,其被执行,从而提供每个计算机各自的功能。在各计算机之间的信息传递^i^tiMOTLAN总线6和SPI总线来完成。控制算法被在当前的循环周期间被执行,这样每个算法在每个循环周期间被至少执行一次。存储于非易失性存储装置中的算法被中央处理单元的一个所执行,以监控来自于传感装置的输入并且执行控制和诊断程序,从而使用预置的校准来控制执行器的操作。循环周期被定时间隔地执行,例如在动力系运行期间每3.125,6.25,12.5,25和100毫秒。可选择地,算法可以响应于事件的发生而被执行。示例性的动力系选择性地按照几个状态中的一个进行操作,所述状态可以被根据发动机状态而被描述,发动机状态包括发动机运转状态('ON')和发动机停车状态('OFF')中的一个,并且变速器工作范围状态包括多个固定档位运行模式和无级变3Iii行模式,参照下面的表1所描述的。表l<table>tableseeoriginaldocumentpage14</column></row><table>画一Eng—OffOFFEVT模式nC262固—Eng一OnONEVT模式nC262FG3ON固定传动比3C262C475FG4ON固定传动比4C262C373每一个变速器工作范围状态在表中都进行了描述并且指示了哪一个特定的离合器Cl70,C262,C373和C475被使用于每一种工作范围状态。为了将第三行星齿轮组28的齿圈元件"接地",通过仅仅使用离合器C170,第一无级变速模式,即EVT模式I或Ml则被选择。发动机的状态可以是ON('MI_En^_On,)或者OFF('M—Eng—Off,)中的一个。为了将轴60连接至第三行星齿轮组28的行星架上,Mil仅仅J顿离合器C262,第二无级变速模式,即EVT模式n或ME则被选择。发动机的状态可以是ON('M2_Eng—On,)或者OFF('M2—Eng_Off,)中的一个。从本说明书的意图出发,当发动机状态是OFF的时候,发动机输AiI度NE等于每分钟('RPM')0转,艮口,发动机曲轴不旋转。固定档位操作提供了变速器10的输入对输出也就是WNo的固定比率操作。第一固定档位操作(卞G1,)通过使用离合器Cl70和C475而被选择。第二固定档位操作(卞G2,)i!31使用离合器Cl70和C262而被选择。第三固定档位操作(TG3')通过使用离合器C262和C475而被选择。第四固定档位操作(TG4,)皿使用离合器C262和C373而被选择。输入速度对输出速度的固定比率操作随着增加的固定档位操作而增加,固定档位操作的增加是由于行星齿轮24、26和28中的传动比的减小而导致的。第一电机56和第二电机72的旋转速度,分別地Na和Nb,取决于机械结构的内旋,如通过离合所限定的并且和在输入轴12上所测量到的输AiI度成比例。相应于经由加速踏板113和制动踏板112的为用户界面13所获得的驾驶员输入,HCP5和一个或者多个其它控制模块确定指令的输出转矩TCMD,意图来满足输出元件64上将被执行的并且被传递至动力传动系统90的驾驶员转矩请求TaREQ。最终的车辆加速度被其它的因素包括,例如道路阻力加载、道路坡度和努两质量所影响。基于动力系的多种运行指标,对于变速器10的工作范围状态被确定。这包括如前面描述的经由加速踏板113和制动踏板112发送给用户15界面13的驾驶员转矩请求。根据动力系转矩要求来预测变速器工作范围状态,且该转矩要求是由按照电能产生模式还是转矩产生模式来操作第一电机56和第二电机72的指令而引起的。变速器工作范围状态可以由例如被起动于HCP5的混合战略控制模块中的最优化算法或程序来确定,该最优化算法或程序根据驾驶员动力要求,电池充电状态,以及发动机14与第一电机56和第二电机72的能量效率来确定最适宜的系统效率。控制系统根据被执行的最优化程序的结果来管理来自于发动机14以及第一电机56和第二电机72的转矩输入,并且系统效率因此被最优化,从而管理燃油经济性及电池充电。此外,还可以根据部件或系统的故障来确定操作。HCP5监控转矩发生装置,以及确定从变速器10中被需要来实现期望的输出转矩的动力输出以满足驾驶员转矩请求。如从上面的说明中将会很明显的是,ESD74和第一电机56以及第二电机72之间是被可操作地电联接在一起的,从而实现它们之间的功率通量。另外,发动机14,第一电机56和第二电机72,以及电动-机械变速器10之间被机械地可操作地联接起来,从而彼lfct间传递动力,并且产生给予输出元件64的功率通量。如上面所讨论的,管理输出辦巨以保持驾驶性能在控制混合动力系中是优先的。响应于通过变速器10所施加的输出转矩请求的、转矩上的任何改顿于供应给动力传动系统的输出转矩都会导致改变。转矩请求的改变可以来自于驾驶员输入,比如涉及驾驶员转矩请求的踏板位置,车辆中的自动控制改变,例如巡航控制或者其它控制战略,或者相应于环境条件的发动机改变,例如车辆遇到上坡或者下坡。通过控制施加给混合动力系内的变速器的各种输入转矩的改变,辅加速度的突然改变可以被控制以及最小化,从而减小对于驾驶性能的负面效果。如所属领域的技术人员所知的,任何控制系统包括反应时间。对于动力系的工作点的改变,包括对于动力系被需求用来实现期望的车辆操作的各种组件的速度和转矩,被控制信号的改变所驱动。这些控制信号改变作用于动力系的各种组件,并且根据它们各自的反应时间在它们每个中产生反应。施加于混合动力系的任何控制信号的改变指示了一个新的转矩请求,例如,被驾驶员转矩请求所驱动的或者被需求来执行变速器换档的,在它们^t受影响的转矩发生装置中弓胞了反应,从而来为各个输入转矩执行所需求的改变。发动机所提供的输入转矩的改变被发动机转矩请求所控制,例如被ECM所控制,该发动机转矩请求设定了发动机所产生的转矩。发动机内的、来改变发动机的转矩请求的反应时间受到多个因素的影响,例如本领域所熟知的温度,并且发动机运行改变的细节很大程度上取决于所使用的发动机的特点以及所使用的燃烧的模式或多种模式。在许多情形中,发动机转矩请求改变的反应时间对于混合驱动系统来说是反应时间最长的部件。电机中的转矩请求改变的反应时间包括来激活任何必须的开关、继电器或者其它控制元件的时间,以及所应用的电能改变时给电秒UI电或者断电的时间。图3图表地描述了根据本发明的示例性混合动力系组件改变转矩请求的反应时间。包括发动机和两个电机的示例性混合动力系系统的组件被举例说明。转矩请求以及所导致的每个转矩发生装置所产生的输入转矩的改变都被显示了。如上面所描述地,数据显示了电机决速地响应了转矩请求的改变,但是发动a^Jl转矩请求的改变则比较漫。一种方法被公开,其中发动机的反应时间以及混合动力系内的电机或者机器装置的反应时间被用来并行控制实时提前转矩请求,该请求控制发动机,和控制电机的实时转矩请求,以及被各自的反应时间协调一致的转矩请求,从而来基本上执行对于输入转矩的同步改变。如上面所述,因为来自发动机的输入转矩的改变相对于来自电机的输入转矩的改变已公知是一贯需要较长的反应时间的,本方法的示例性具体实施方式可以实JM于发动机和电机的转矩请求的改变,如上面所述的并行作用的,包括对于更快速反应装置、电动马达的提前期。该提前期可以实验地、经验地、预测地Mil模拟或者其它能够用来精确预测发动机和电机运行的技术而被导出,并且多个同一个混合动力系可以使用多个提前期,这取决于不同的发动机设置、条件、操作和档位以及车辆状态。一个根据本发明的、可以被用来结合装置反应时间的实验数据或者估计而计算提前期的示例性的方程包括下列等式T提前=丁提前鹏一T細鹏[1]其中T等于用在这里所描述的方法中的提前期,T,^(t表具有较长反应时间的装置的反应时间,以及T,⑩代表具有较短反应时间的装置的反应时间。方程式1假定使用了两个转矩发生装置。如果不同的系统被使用,例如包括具有长提前期的发动机,具有中等提前期的第一电机,和具有短提前期的第二电17机,提前期可以通过比较所有的转矩发生装置而导出。在本示例性系统中,如果包括所有的三个转矩发生装置的话,两个提前期将被用来使得每个装置中的反应同步化,其中一个用于发动机的提前期被比较于电机中的每一个。在不同的时间,同一个系统可以在发动机停止的情况下运行并且从变速器上脱离,以及比较于第一电机和第二电机的提前期将被用来使得两个电机中的反应同步化。在这种方式中,提前期可以导出,各种转矩发生装置之间的协调的反应时间可以被导出。禾IJ用提前期来执行并行的转矩请求给不同的转矩发生装置,从而相应于驾驶员转矩请求的改变而实现对于输出转矩基本上同步的改变的示例性方法包括基本上立即地发出改变给发动机转矩实时请求,在发动机内给新的发动机输出转矩起动一个改变。该新的发动机输出转矩,结合电动马达工作状态,仍然由HCP进行管理,从而提供被需求来推进车辆的总输入转矩的一部分给变速器。从发动机转矩实时请求改变的工作点上,如上面所描述地,计及发动机和电机之间反应时间的差异提前期终止。在提前期之后,被发送给电机或者机器装置的转矩请求的改变被执行,该转矩请求的改变由HCP进行管理从而满足一部分驾驶员转矩请求,并且电机改变电机工作状态,并且如上面所描述地,由发动机或者电机所提供的输入转矩的变化基本上同步地改变。如在上面所公开的方法中所描述的,发动机转矩实时请求和电机的转矩请求被公开用于并行控制具有不同的反应时间以反作用于驾驶员转矩请求的改变的不同的转矩发生装置。驾驶员转矩请求的改变可以包括在特定的变速器工作范围状态下所期望的输出转矩的简单改变,或者驾驶员转矩请求的改变可以结合于变速器在不同的工作范围状态之间的换档而被需求。结合于变速器换档的驾驶员转矩请求的改变比包含在单一工作范围状态中的改变更为复杂,因为各种混合动力系组件的转矩和轴转速必须被管理从而来在没有出现滑脱的情况下传递被从第一离合器施加于先前没有使用的第二离合器的转矩,如上面所描述的。变速器中的换档,如上面所描述地,频繁地涉及卸载第一离合器,过渡穿过空转或者惯性速度相态,以及接着加载第二个离合器。在仅使用发动机的传统机动的变速器中,变速器内从一个固定档位状态到另一个固定档位状态的改变通常包括卸载第一离合器,允许车辆简短地滑行穿过空转或者惯性速度相态,以及然后加载第二离合器。但是,如上面关于图1和表1所描述的,混合动力系变速器被频繁地以成对或者成组的形式被应用,并且变速器中的换档可以仅包括卸载所应用的离合器中的一个,并在整个换档过程中保持第三离合器的接合状态时,接着加载另一个离合器。图4说明了根据本发明的示例性混合动力系变速器中的齿轮变换关系,特别是在图1和表1中的示例性具体实施方式中所描述的混合动力系。输AiI度Nh被相对于输出速度No进行绘图。在任何固定档位状态,No由相应的Ni按照固定档位状态图所确定。在EVT模式I或者EVT模式n中的运行可以发生在图表中所显示的M区域内,其中连续变化传动比被用来从固定输入转矩提供动力,例如电机所提供的。如在图l中的实施例里面所描述的离合器C1-C4的状态被在表1中进行描述。例如,在第二个固定档位状态中的运行需要离合器C1和C2被使用或者被加载,同时离合器C3和C4不被使用或者加载。当图4描述了图1中所显示的示例性动力系中的齿轮变换的可能性时,本领普通技术人员将会意识到这种对于齿轮变换的描述对于任何混合动力系的变速器都是可能的,并且本公开不是意图受到这里所描述的具体实施方式的限制。图4可以描述示例性系统在固定档位状态或者EVT模式下的运行,如上面所描述地,并且她也可以被用来描述各种变速器工作范围状态之间的换档转变。图表中的区域和线条描述转变期间工作范围状态的操作。例如,在EVT模式区域内的固定档位状态之间的转变需要在固定档位状态之间按照EVT模式进行操作。對以地,从EVT模式I到EVT模式II的转变则需要穿过第二固定档位状态的转变,该第二固定档位状态处于两种模式之间的边界线上。根据图1和图4以及表l,示例性魏器从第三固定档位状态至i傑四固定档位状态的变换被进一步描述。参照图4,开始以及1允选的工作范围状态都存在于EVT模式n的区域内。因此,从第三固定档位状态到第四固定档位状态的变换首先需要从第三固定档位状态变换到EVT模式n,然后再从EVT模式n变换到第四固定档位状态。现在参照表l,开始于第三固定档位状态的混合动力系变速器将应用离合器C2和C4。表1进一步描述了在第一次变换的目的地EVT模式n中的运行,其包括离合器C2被应用。因此,从第三固定档位状态变换到EVT模式n需要离合器C4从被应用而被改不被应用的状态,并且需要保持离合器C2被应用。此外,表l描述了第二次变换的目的地第四固定档位状态下的运行,其中离合器C2和C3被应用。因此,从EVT模式n变换到第四固19定档位状态需要离合器C3被应用和加载,并且需要离合器C2保持被应用。因此,离合器C4和C3在示例性换档过程中被过渡使用,而离合器C2在齡换档过程中保持一直被使用而且传递转矩给动力传动系统。被应用于这里所公开的方法的是,在变速器换档过程中的输入转矩的改变可以通过基于各种元件的反应时间协调纟合予多个转矩发生装置的信号指令而被最优化,从而减小对于驾驶性能的负面影响。如上所述,许多变速器换档过程可以被分解为三个阶段第一转矩相,在该阶段中开始时应用的离合器从转矩-承载、锁住、同步化的离合器状态变换到解锁和失同步离合器状态;惯性速度阶段,在该阶段中起作用的离合器解锁并且处于过渡状态;第二转矩相,在该阶段中先前没有使用的第二离合器从解锁和去同步化离合器状态变换到转矩-承载、锁住和同步化离合器状态。如上所述的,优,过变速器换档来避免离合器的打滑,从而避免对驾驶性能的不利影响,当施加穿过离合器的反作用转矩舰离合器的实际转矩容量时,则产生离合器打滑。因此,在变速器换档期间,输入转矩必须相对于目前使用的离合器的实际转矩容量而被操作,这样可以完成变速器换档,而不会出现打滑。当凝中工序可以被用于柳顷)Wl行离合器加载或卸载的必需步骤,同时保持离合器的转矩容量超过反作用转矩时,解锁转变所包括的时间对于驾驶性能同样重要。因此,当仍然能作用来防止打滑时,并行执行相关转矩请求和离合器容量指令是有利的。这种意图来弓l起关于变速器换档的离合器状态改变的控制改变的并行实现,发生在尽可能短的时间间隔内。因此,如上面的实施例中所描述的,对于发动机和电机,协调变速器换档过程中所涉及的离合器中的容限转矩于转矩请求,对于在换档时保持驾驶性能也是重要的。图5-7描述了根据本发明所公开的示例性的、结合起来完成示例性的变il器换档的程序。图5是根据本发明的,示例性过渡解锁状态过程中关于离合器的傲巨术语的图解表示。图中最左边的线条表示离合器运行处于锁住状态。该图描述了离合器控制系统形成的离合器指令转矩和由此导致的估算容限转矩。由指令转矩产生的离合器内的离合器容限转矩是多种因素的结果,包括可得到的夹紧压力、离合器的设计和条件因素,以及离合器对于离合器控制系统变化的反应时间。如图中初始的锁定区域的示例性的数据所示,已公知指令锁住离合器的转矩超过离合器容量,并且允许影响离合器的其它因素来确定所产生的离合器容量。20并且在图中描述了处于锁定状态的离合器状态的最左边,由于来自发动机和电机转矩的输入转矩所导致的、估算的施加到离合器的反作用转矩被描述。在标记着"初始解锁状态"的时刻,离合器控制系统或TCM内部的逻辑,已经确定了需要离合器从锁住到解锁状态变换,改变指令转矩到比容限转矩低的水平,但是仍然高于当前施加到离合器的反作用转矩。在这点上,离合器控制系统内部的机构更改设定值以调整离合器内部的夹紧力,该内部机构例如为示例性的液压离合器控制系统内部的变压力控制电磁线圈。结果是,随着施加到离合器的夹持力的变化,容限转矩开始变化。如上所述的,离合器在反应时间后对指令转矩的改变作出反应,具体的离合器的反应时间依赖于其具体的应用。在图5的示例性图表中,容限转矢树指令转矩的减少作出反应,并随之开始减少。如上所述,在同样的解锁状态期间,由输入转矩和电机转矩弓l起的反作用转矩也必须从离合器卸载下来。在解锁状态,如果反作用转矩没有被维持在低于容限转矩时,就会弓胞不希望的打滑。在解锁状态幵始时,在图5中基本上相同的点,该点处容限转矩被减小从而弓l发解锁状态,限制被触发并且被施加于来自发动机和电机的输入转矩,以实现各自的向下倾斜直至零。如在这里所讨论的方法和上面所述的示例性实施例中所描述的,限制的变化包括发动机转矩实时请求,并且转矩实时请求按照同步的程序而被执行,并实现一被校准于多种转矩供给装置反应时间的提前期,因此所导致的来自转矩供给装置的输入转矩被基本上同步地咸少。图5描述了执行这种转矩请求同步变化的方法,该方法通过以约束发动机转矩实时请求的离合器反作用转矩实时提前最小/最大和以约束给予电机的转矩请求的离合器反作用转矩实时最小/最大的方式对转矩请求施加限制。这些最大反作用转矩值表示被允许的将被命令来自各个转矩供给装置的最大转矩实际的发动机转矩实时请求和实际的实时转矩请求可小于反作用转矩值的最大值,但是随着最大值M^,实际,请求值也将最终减少。来自发动机和电机的输入转矩同时提供所有输入转矩的一部分,其中每个都达到所限定的最大值,同时每部分都被HCP所控制。作为校准提前期的结果,离合器反作用转矩提前实时最小/最大和离合器反作用转矩实时最小/最大基本上在同一时间;i!^了对离合器施加的反作用转矩,导致如图5所示的实际离合器反作用转矩减少。如所属领域的技术人员将会理解的,另外需要利用其它保护装置以在解锁过程中确保容限转矩保持^31反作用转矩。多种这样的方法被设想,可能使用的一组示例性的关系在图5中被描述。例如,可以使用校准的偏移量关系以确保命令调整离合器容量保持皿实际离合器反作用转矩,直到实际转矩越过低于某个临界点(threshod)。为此目的示例性的临界值在图5中被限定,作为反作用转矩的校准临界点。在保持这个容限转矩请求高于实际离合器反作用转矩,并且记住所有装置具有对于请求改变的反应时间,所述装置包括离合器夹紧机构,响应于离合器指令变化并结合这个偏移量关系,容限转矩的变化的延迟将保持容限转矩超过实际离合器反作用转矩。另外,另一个临界值,用于转矩估算的校准临界值可以被用来限定转矩相的结束。例如,如果由算法模拟的离合器运行所确定的离合器容限转矩的估计值在校准阶段处于低于临界值,那么离合器可被确定处于解锁状态。图6图示了根据本发明所公开的与示例性过渡锁住状态过程中的离合器有关的转矩关系。如上所述,在许多变速器换档过程中,第二离合器被同步化和锁住,转矩被施加于离合器。图中駄边的线条表示离合器运行处于解锁状态。锁住状态的激发需要一系列辅助指令,这些指令对于离合器从解锁状态变换到锁住状态是必需的。如上关于在变速器换档期间变换到第二转矩相所述的,包括连接到对应的转矩供应轴上的轴和连接到输出元件上的轴在内的离合器必须被同步化。一旦附接于这些轴上的离合器连接表面已经被衰减,并且以同样的旋转速度移动,夹持力开始应用到离合器,将离合器带入到锁住状态,并开始增加离合器的容限转矩。如上关于在转矩相避免打滑所述的,在作用于离合器的转矩可以被增加之前,必须增加离合器容量。为了实现输入转矩的应用,所述输入转矩导致反作用转矩尽可能快的传递给离合器,可提前控制离合器容量增大,以完成离合器容量最初的增大,与离合器到达锁住状态相符。根据此方法的通过利用提前期来计及反应时间,反作用转矩可被及时控制具有短的滞后而郷让离合器容限转矩的增加。本方法的示例性实施例,如图5所示,与施加至啭矩请求柳艮制相反地动作,根据被选择避免打滑的校准的等变率(ramprate),对可传给发动机和电机的转矩请求施加限制。如图6所示,从作为约束发动机转矩请求的离合器反转矩提前实时最小/最大开始增加时,并且在校准提前期之后,作为约束电机转矩请求的离合器反转矩实时最小/最大增加。根据这里所公开的方法,通过利用提前期,来自发动机和电机的输入转矩的增加基本上同步地增加了施加到离合器上的反作用转矩。根据施加到每个限制上的校准等变率,随着施加至啭矩发生装置上柳蹄啲升高,HCP可以控制发动机和电机以实现从离合器所需要的反作用转矩的一部分,每个都达到各自的最大值。这样,为了补偿反应时间发动机和电机的转矩请求被协调,以在换档过程中基本上同步地增加来自于^转矩发生装置的输入转矩。在Jl^示例性的变速器换档中所4顿的校准等变率是一个选择出的值,该值将快速地调整输入转矩水平达到所期望的范围,并且低于离合器容限转矩,以避免打滑。等变率将实验地、经验地、预计性地得以导出,通过模型或其它技术以精确地预计发动机和电机的运行,并且同一混合动力系可使用多个等变率,这取决于不同的发动^Ol作状态、条件或运行档位和操纵离合器容限转矩的控制系统的工况。在解锁工程中用于减少输入转矩的等变率可以但不需要与锁住状态中用于增加输入转矩的等变率相反。同样,在变速器两个变换状态中使用的、用来协调输入转矩的提前期可以但不需要相同的时间间隔值,并且可以根据及其元件的特殊工况而变化。如上所述,在变速器换档期间,例如在上述示例性的变速器中所限定的两个固定档位状态之间,,器通过处于第一转矩相和第二转矩相之间的惯性速度阶段。在这个惯性速度阶段,原来应用的离合器和将要应用的离合器处于解锁状态,就在同步化破坏之前,输入元件初始地以与穿过第一离合器元件的共用的旋转速度旋转。为了完成在第二阶段应用和加载的第二离合器内部实行同步化,将被连接到第二离合器的输入元件必须改变输入速度以一个新的传动比匹配于ffl31变速器附接的动力传动系统。在本领域,多种方法是已公知可以来实现这种同步化的。但是在混合动力系的变速器中的换档期间,换档通常穿越工作范围状态而发生,那里至少一个离合器仍然被应用,而另外一个离合器处于惯性速度阶段。这意味着,在惯性速度阶段,通过仍然处于应用中的离合器,给予各种转矩发生装置的被需求来在第二离合器的输入速度和输出速度之间实现同步化的改变仍然冲击车辆的驾驶性能。因此,这里所描述的禾,提前期以基本上同步地实现对于输入转矩的改变的方法可以额外地展现出对于驾驶性能的优势,并在惯性速度P介段期间可以继续被使用。根据本发明所公开的内容,图7图示了穿过^I器换档的惯性逸变阶段用以实现同步化的示例性的方法。变速器换档对于换档程序的可描述的两个条件的作用在图中分两部分描述,它们具有一个共同的时间轴。顶部描述了输AM,或者是被附接于转矩发生装置的输入轴的旋转速度,该轴开始时通过最初被使用的第一离合器而被连接。上部的虚线表示在换档开始前、离合器处于锁住状态时的输入速度的速度曲线。底部的虚线表示必须被达到的从而来同步化第二离合器的输入速度和输出速度的输入速度的速度曲线。两个虚线之间的变换表示为完成换档必须发生的输入速度的变化。图7的底部描述了输入加速度,或关于输入速度对时间的导数。这种情况下,输入加速度被描述为具有相对快的反应速度的被电机或多个电机所驱动的实时输入加速度或加速度曲线,并且该关系图接近地模拟了实际输入加速度的轨迹曲线。实时输入加速度显示了速率的变化,为了将输入速度从关于第一离合器的处于同步状态的初始输入速度转变成关于第二离合器的处于同步状态的目标输入iiit,所m率的变化必须得以实现。最初的平直部分描述了在换档开始前,俞AiI度增加时的加速度,并且这个常量反映了图7上部分的左部分中输AiI度的斜率。在换档幵始时,基于例如踏板位置的驾驶员输入和包括确定忧选的工作范围状态在内的变速器控制系统内的算法,确定相关于将被需要来实现同步化的目标输入速度和需要的来完成换档的目标输入加速度曲线而被作出。在换档被完成之后,被计算用来支持目标加速度率的输入加速度率可以被称作输入加速度预测提前,并且其描述了在惯性速度阶段被完成之后需要存在的输入加速度。输入加速度实时提前通过把驾驶员请求的转矩、被变换到的工作范围状态和其他相关变量作为因子的算法而被预测。因为,如在图7的顶部所描述的,输A3I度在惯性3Iit阶段必须被改变从而实现换档,并且因为输入加速度描述了输入速度的变化率,在惯性速度阶段期间被控制的装置的输入加速度必须反应惯性速度阶段过程中将被实现的输AilJt的改变。在图7中所展示的示例性娜中,其中输AiI度需要被减小从而来实现变速器换档,装置的输入加速度必须变成表示输A3I度改变的负值。一旦输入速度己经被减小至肖^I多实现转变成被需求来同步化输入速度和输出速度的目标输AiI度的水平时,输入加速度改变来匹配输入加速度预测提前。这样,输入速度和输入加速度在惯性速度阶段可以被控制来匹配目标输入速度和目标输入加速度,为了实现平稳的变速器换档,目标输A3I度和目标输入加速度是必须的。如上所述,混合动力系变速器中的变速器换档需要在工作范围状态之间的转换,其中惯性速度阶段必须按照上面所述被实现,至少一个离合器仍然被使用并且从转矩发生装置将转矩传递给动力传动系统。通过给予各种转矩发生装置的转矩请求所驱动的对于输入转矩的改变必须实现所需要的输入速度和输入加速度改变并且在整个惯性速度阶段过程中要维持驾驶性能。因此,这里所描述的利用提前期来基本上同步地引发输入转矩改变的方法可以被应用在惯性速度阶段过程中,为了基本上同步地引发输入转矩改变,而引发给予各种转矩发生装置的转矩请求的改变。图7描述了为了改善变速器换档期间的驾驶性能,协调转矩发生装置的反应时间,以及校准于相关反应时间之间的差异的提前期。如上所述,发动机在转矩发生装置中具有较长的反应时间。为了尽可能快速地调整输入速度和输入加速度从而实现用于换档的目标速度和加速度值,输入加速度实时提前被通过算法而预测。该输入加速度实时提前包括发动机转矩请求改变的反应时间,并且曲线化了可以被执行而达到目标值的提前装置中的输入速度和输入加速度最快的改变。该输入速度的快速改变必须包括前面提到的发动机中转矩请求改变的反应时间,以及发动机在输入加速度实时提前期间加速或者减速将要花费的时间。如在图7中所描述的,即将进行的换档的预期中的输入加速度实时提前可以触发必不可少的指令给在惯性速度阶段的预期中的发动机,因为相对长的发动机反应时间,由此产生的来自发动机的输入转矩直到过一会才会幵始减小。一旦输入加速度实时提前已经被确定,跟随输入加速度实时提前一个如上所述的校准于反应时间的提前肌输入加速度实时随着来自发动机的响应基本上同时可以被用来控制电机从而匹配输入速度和输入加速度的改变。这样,发动机和电机在对目标输入速度和目标加速度的影响上基本上被同步化。上面的方法描述了这样一些斷兄,其中^3I器运行有接合的离合器或多个离合器以及被从至少一个输入转矩到输出转矩或者转矩发生装置之间应用的转矩。但是,空档工作范围状态被已公知是所有离合器处于解锁状态并且没有转矩被施加通过变速器。所属领域的技术人员将会理解到,出于多种原因,无论是发动机还是电机在空档状态中都可以被设置成空转或者运行的状态,并且变速器被附接于转动装置的部分可以继续旋转。在这样一种空档运行状态中,变速器的这种部分可以施加轻微的阻力给转动装置,并且可以mii地加速到高旋转速度。变速器这种高速旋转的部分可以导致多种问题,包括噪音和震动问题以及损害转动部分,或者如果变速器随后通过离合器被连接,存储有动能的转动部分可以导致变速器中的可察觉到的颠簸。上面的监控动力系部分以及为了维持对于动力系的各个部分的转矩和速度的控制而发送提前和实时控制信号给转矩发生装置的方法可以被应用在空档工作范围状态之中而来监控各种组件的速度,被监控或被预测为离合器滑脱加速度预测提前以及通过按照提前控制信号和实时控制信号施加限制于离合器滑脱加速度,所述提前控制信号例如离合器滑脱加速度实时提前,所述实时控制信号例如实时离合器滑脱加速度。按照这种方式被操作,动力系在空档工作范围状态中可以被控制,维持变速器的各种部分的速度于一个优选的范围之内。上面的方法将转矩管理程序描述为正值的比较。所属领域的技术人员将会理解到的是离合器转矩被描述为正的和负的转矩,也就是按照一个旋转方向或另一个旋转方向应用的转矩。上面的方法可以被用于正的或者负的转矩应用中,其中转矩的数量被按照这样一种方式被调节,即所应用的反作用转矩的数量不超过具体离合器的转矩容限的数量。对于最小和最大反作用转矩值的一^f寺殊的结论被在图8中说明。图8图解地说明了这样一个实例,,其中输入加速度实时提前在惯性速度阶段已经为发动机控制而被确定,并且另外,相应的输入加速度实时在惯性速度阶段已经为电机控制而被确定。在一个实例中,其中负的输入加速度或者减速度在惯性速度阶段发生于发动机,这种状况是最普遍的例子,其中发动机简单地被允许减速,M发动机内的内部摩擦力和抽吸力。但是当电机减速时,这种状况最普遍地在具有电机仍然处于供电的情况下被实现,或者相反地,按照再生的模式运行。因为电机仍然在系统控制下并且相关于车辆系统的其他部分而运行,马达仍然要承受系统约束,例如可用于驱动马达的电池电量。图8施加这样一种系统约束于最小输入加速度限制条件。这种约束与实时输入加速度接触的地方,电机控制系统内的算法改变实时输入加速度从而满足所述限制条件。一旦限制条件不再限制电机运行于实时输入加速度之内,运行算法恢复输入加速度从而引起对于输入M所期望的改变。图9示出了用于控制和管理在具有多个转矩产生装置的动力系系统中的转矩和功率流的控制系统结构,下面就根据图1和图2所示的混合动力系系统和在前面已经提到过的以可执行的算法和校验的形式存在的控制模块进行描述。该控制系统结构可以应用于任何具有多个转矩产生装置的动力系系统,包括,例如具有单个电机的混合动力系系统、具有多个电机的混合动力系系统以及非混合动力系系统。图9中的控制系统结构示出了有;^言号在控制模块之间的传递。运行时,监测加速踏板113和制动踏板U2上的驾驶员输入以确定驾驶员转矩请求('To—req')。监测发动机14和变速器10的运行以确定输AM度('Ni')和输出速度('No')。战略最优化控制系统('战略控制')310基于输出速度和驾驶员转矩请求确定优先的输入转速(Des')和变速器工作范围状态("混合范围状态Des'),并基于混合动力系的其他运行参数被优化,所述其他运行参数包括电池能量限制和发动机14、变速器10和第一电机56和第二电机72的响应限制。战略最优化控制系统310最好在每100毫秒循环周期和每25毫秒循环周期ffiilHCP5被执行。在换档执行和发动机启动/停止控制系统('换档执行和发动机启动/停止')320中利用战略最优化控制系统310的输出用以指令变速器运行的改变('变速器指令'),包括改变工作范围状态。如果优化工作范围状态不同于当前的工作范围状态,这包括通过指令采用一个或多个离合器C170、C262、C373和C475和其他变速器指令命令执行工作范围状态的改变。当前工作范围状态('混合范围状态实际,)和输AiI度曲线(<Ni—Prof,)可以被确定。该输入曲线为即将到来的输A3I度的估算,4腿的包括一作为即将到来的循环周期的目标输入速度的标量参数值。在变速器工作范围状态改变期间,发动机运行指令和驾驶员转矩请求基于输入速度曲线。在其中一个控制循环周期期间,基于输出速度、输A3I度和驾驶员转矩请求和变速器当前工作范围状态反复执行战术控制系统('战术控制和运行,)330来确定发动机指令('发动机指令')用以运行发动机,包括一从发动机14到变速器10的优选输入转矩。发动机指令也包括发动机状态,其包括其中一个全缸运行状态和减缸运行状态,其中部分发动机气缸停止工作并不供纟含燃料,发动机状态包括供给燃料状态和切断燃料状态中的一个。在TCM17中估算每个离合器的离合器转矩('Td'),包括当前采用的离合器和未釆用的离合器,以及在ECM23中确定随输入元件12变化的当前发动机输入转矩('Ti')。在本实施例里,输出和马达转矩控制系统('输出和马达转矩确定')340被执行用来确定来自动力系('To—cmd,)的优选输出转矩,其包括用以控制第一电机56和第二电机72的马达转矩指令('TA',%,)。该ite输出转矩基于針离合器的估算离合器转矩(多个)、当前来自发动机14的输入转矩、当前工作范围状态、输入速度、驾驶员转矩请求和输入速度曲线。第一电机56和第二电机72基于该优选输出转矩通过TPIM19的控制满足优选马达转矩指令。马达转矩控制系统340包括算法代码,其在6.25毫秒和12.5毫秒循环周期间定期被执行以确定优选马达转矩指令。图10是执行换档过程中的举例说明的数据流的示意图,根据本发明,其更为详细地描述了如图9中所示系统的控制系统结构的示例性执行过程的更多细节。动力系控制系统400被显示包括几个混合驱动组件,其中包括发动机410、电机420和离合器液压回路430。控制模块中的战略控制模块310,换档执行模块450,离合器容量控制模块460,战术控制和操作模块330,输出转矩和马达转矩确定模块340以及离合器控制模块490被显示,它们处理信息并发送控制指令给发动机410、电机420和离合器液压回路430。这些控制模块可以被物理地分隔开,可以被一起组合在多个不同的控制装置中,或者可以被整体地实施在单一的实体的控制装置内。模块310是战鹏制模i央,其执行关于如图9中所示的优选的动力系的工作点和优选的工作范围状态的决定。模块450是一个换档执行模块,其接收来自于战略控制模块310和其它关于换档起动的源的输入。模块450处理关于当前被施加于离合器的反作用转矩和伏选的将要被转换到的工作范围状态的输入。模块450然后利用算法,确定用于执行换档的参数,所述参数包括描述转矩提供装置所需求的输入转矩的平衡的混合范围状态参数,确定关于被需求来执行变换到优选的工作范围状态的目标输AiI度和输入加速度提前预测的细节,其中输入加速度实时提前如前面所描述的,离合器反作用转矩实时提前muVmax和离合器反作用转矩实时min/max值如前面所描述的。从控制模块450,离合器反作用转矩参数和混合范围状态信息被送到离合器容量控制模块460,提鹏制参数和信号被送给战术控制和操作模块330,并且实时控制参数和信号被送给输出转矩和马达转矩确定模块340。根据这里所描述的方法,离合器容量控制模块460处理反作用转矩和混合范围状劍言息并且产生描述离合器反作用转矩限制以及通过模块330实5贩动机控制、通过模块340实现电机控制、通过模块490实现离合制的逻辑。战术控律'脚操作模块330包括用于发送转矩请求和实施限制于发动机410所供应的输入转矩的、并且供给、另外描述了被从发动机供应给模i央340用于电机420的控制的输入转矩的装置。输出转矩和马达转矩确定模块340同样接收和处理信息从而发送电机转矩请求给电机420。另外,模块340产生离合器反作用转矩指令供离合器控制模块490所使用。模块490处理来自模块460和340的^言息并且为了实现被需求来操作变速器的需求的离合器容限转矩而发送液压指令。数据流的这个具体实施例显示了一种可能的示例性程序,禾,该程序,车辆的转矩发生装置和相关的离合器可以被根据这里所公幵的方法所控制。所属领域的技术人员将会理解的是所使用的具体程序可以改变,并且本发明不是要受限于这里所描述的具体实施例。图11详细描述了用于控制发动机14运行的战术控制系统('战术控制和运行')330内的信号传输,并参照图1和图2的混合动力系系统和图9中的控制系统结构进行描述。战术控制系统330包括战^ft优化控制M^各350和系统限制控制通路360,其优选的被一致的执行。战术最优化控制ffl]各350的输出被输入至拨动机状态控制系统370。发动机状态控制系统370和系统限制控制31^各360的输出被输入到发动机响应类型确定系统('发动机响应类型确定')380用于控制发动机状态、实时发动机转矩请求、预测发动机转矩请求和发动机响应鄉。来自发动机14的输入可以描述为发动机工作点,发动纟几工作点包括发动机速度和发动机转矩,发动机转矩可以被转换成与,器10输入元件起作用的输Ait度和输入转矩。当发动机14为电火花点火发动机时,发动机工作点的改变可以fflil控制利用电子节气门控制系统(未示出)控制发动机节气门位置改变发动机14的进气量来实现,包括打开发动机节气门以增加发动机转矩和关闭发动机节气门以减小发动机转矩。发动机工作点的改变可以通过调整点火定时(timing)来实现,包括自平均最佳转矩点火定时延迟点火定时以减小发动机转矩。当发动机14为压燃式发动机时,发动机工作点ffi31控制喷油量被控制,并通过比平均最佳转矩喷油定时延迟喷油定时以减小发动机转矩被调整。发动机工作点也可以被改变用于实现输入转矩的改变,ffi51在发动机状态在全缸状态和减缸状态之间控制和通过控制发动机供给燃料状态和切断燃料状态之间的发动机状态,其中在切断燃料状态时发动机旋转并不供给"燃料。在运行中,监控至咖速踏板113和制动踏板112的驾驶员输入以确定驾驶员转矩请求。输出元件64和输出元件12的当前速度,g卩,No禾BNi,被确定。变速器14的当前工作范围状态和当前发动机状态被确定。电育游储装置74的最大和最小电功率限制被确定。乡合予加速踏板113和制动踏板112的驾驶员输入分别包括可确定的驾驶员转矩请求输入,其包括实时加速输出转矩请求('输出转矩请求AccelImmed')、预测加速输出转矩请求('输出转矩请求AccelPrdtd')、实时制动输出转矩请求('输出转矩请求BrakeImmed')、预测制动输出转矩请求('输出转矩请求BrakePrdtd')和轮轴车转巨响应类型('轮轴转矩响应类型,)。如这里所使用的,术语"加速"指当驾驶员对M器档fe^择器114的选择位置指令车辆以向前方向运行时,向前推进优选的导致车速增加超过当前车速的驾驶员请求,以及当车辆运行被指令以侄阵的方向时类似的倒车概响应。措词"减速"和"制动"指的导致车辆从当前车速减速的驾驶员请求。实时加速输出转矩请求、预测加速输出转矩请求、实时制动输出转矩请求、预测制动输出转矩请求和轮轴转矩响应类型被独立地输入到图9所示的控制系统。实时加速输出转矩请求包括基于*好加速踏板113的驾驶员输入而确定的实时转矩请求。控制系统响应于实时加速输出转矩请求控制来自混合动力系系统的输出转矩以产生车辆的正向加速。实时制动输出转矩请求包括基于给予制动踏板112的驾驶员输入而确定的实时制动请求。控制系统响应于实时制动输出转矩请求控制来自混合动力系系统的输出转矩以产生车辆的减速。通过控制来自混合动力系系统的输出转矩实现的减速和通过车辆制动系统(未示出)实现的车辆减速结合在一起来减小车速以完成驾驶员制动请求。实时加速输出转矩请求基于当前发生的给予加速踏板113的驾驶员输入被确定,并且包括在输出元件64产生实时输出转矩tm来使,加速的请求。实时加速输出转矩请求是不定形的,但是可以被动力系控制外的影响车辆运行的事件所定形。这种事件包括在用于防抱死制动控制、牵引控制和糊稳定性控制的动力系控制中的ffi等级中断,其可以被用来非定形或者比例限制实时加速输出转矩请求。预测加速输出转矩请求基于纟好加i!F斜及113的驾驶员输入被确定,包括在输出元件64最优化的或优选的输出總巨。例如当防抱死、牵引控制或者稳定性中任一个都没有正在被指令时,预观咖速输出转矩请求最好与实时加速输出转矩请求相等。当防抱死、牵弓腔制或者稳定性中任一个正在被指令,响应于关于防抱死制动控制、牵引控制和车辆稳定性控制的输出转矩指令,预测加速输出转矩请求可以随着正在减小的实时加速输出转矩请求保持最佳输出转矩。混合制动转矩包括在车轮93产生的摩擦力制动转矩和在输出元件64产生的输出转矩的组合,所述输出转矩响应于给予制动踏板112的驾驶员输入,与动力传动系统90起作用从而降低车速。实时制动输出转矩请求基于当前发生的给予制动足對及112的驾驶员输入而被确定,并且包括在输出元件64产生实时输出转矩以实现与动力传动系统90作用、优选地降低车速的反作用转矩的请求。实时制动输出转矩请求基于给予制动踏板112的驾驶员输入和控制摩擦力制动器产生摩擦力制动转矩的控制信号而被确定。预测制动输出转矩请求包括响应于给予制动踏板112的驾驶员输入的输出元件64中的最优化或优选的制动输出转矩,以不考虑到制动踏板112的驾驶员输入时在输出元件64产生的能够允许的最大制动输出转矩为割牛。在一个实施例中,在输出元件64产生的最大制动输出转矩鄉艮制到-0.2g。当车速接近零时,不考虑给予制动踏板112的驾驶员输入,预测制动输出转矩请求可以被逐渐减小到零。如使用者所期望的,可以存在在其下预测制动输出转矩请求被设为零的运行状况,例如,当驾驶员对器档位选择器114的设置被设定到倒车齿轮时,以及当变速器(未示出)被设定到四轮驱动低档时。在预测制动输出转矩请求被设为零的运行状况是那些因为车辆的运行因素而不被优选的混合制动。轮轴转矩响应包括通过第一电机56和第二电机72用于成形和比例限制输出转矩响应的输入状态。轮轴转矩响应类型的输入状态可以是活动状态或非活动状态,其中活动状态^t地包括满足性受限状态和最大范围状态中的一个。当指令轮轴转矩响应类型为活动状态时,输出转矩指令为实时输出转矩。优选地,这种响应类型的转矩响应尽可能她決。战术最优化控制通路350作用于基本上稳定状态的输入从而选择优选的发动机状态以及确定从发动机14到^I器10的优选的输入转矩。输入在换档执行和发动机启动/停止控制系统320中发生。战賴优化控制通路350包括最优化方案('战术最优化,)354从而来确定优选的输入转矩用于操作发动机14处于全汽缸状态('输入转矩满,),处于减缸状态('输入转矩减活,),处于燃料切断的全汽缸状态('输入转矩满FCO'),处于燃料切断的减缸状态('输入转矩减活FCO,),以及im的发动机状态((发动机^:态,)。给予优化方案354的输入包括变速器10的提前工作范围状态('提前混合动力范围状态'),提前预测输入加速度曲线('预观啲提辦俞入加鹏曲线'),在提前工作范围状态下通过每个处于使用中的离合器的预测的离合器反作用转矩范围('预测的离合器反作用转矩Min/Max'),预测的电池电量限制(,页测的电池电量限制')和预测的制动输出转矩请求(,恸输出转矩请求Prdtd')。用于加速和制动的预测输出转矩请求被组合并通过预测输出转矩整形滤波器352而被成形于轮轴转矩响应类型,从而产生净预测输出转矩('ToNetPrdtd')和预观咖速器输出车统('ToAccelPrdtd,),它们是被乡好优化方案354的输入。变速器10的提前工作范围状态包括变速器10的工作范围状态的定时移位提前,从而在工作范围状态的指令的改变与实际的工作范围状态之间提供响应时间延迟。因此变速器10的提前工作范围状态是指令的工作范围状态。提前预测输入加速度曲线包括输入元件12的预测输入加速度曲线的定时移位提前,从而在预测输入加速度曲线中的被指令的改变和在预测输入加速度曲线中测量到的改变之间提供响应时间延迟。因此提前预测输入加速度曲线是在定时移位之后发生的输入元件12的预则输入加速度曲线。被称为'提前'的参数被用来M利用具有变响应时间的装置而提供穿过动力系的集中于普通输出元件64中的车錄巨的一致变换。具体地,发动机14可以具有300—600ms数量级的响应时间,并且每一个转矩传递离合器C170、C262、C373和C475可以具有150—300ms数量级的响应时间,以及第一电机56和第二电机72可以具有10ms数量级的响应时间。优化方案354确定用于操作发动机14处于发动机状态的花费,所述发动机状态包括操作发动机处于供油的并且全汽缸状态('PCOSTFULLFUEL'),操作发动机处于不供油并且全汽缸状态(TCOSTFUIXFCO,),操作发动机处于供油并且减缸状态(TCOSTDEACFUEL,),操作发动机处于不供油并且减缸状态(卞COSTDEACFCO')。所估算的用于操作发动机14的花费与实际发动机状态('实际发动机状态')以及可容许的或者可允许的发动机状态('允许的发动机状态')--起被输入给稳定分析系统('稳定和判优,)356,从而tt择一个发动机状态作为优选的发动机状态('最佳的发动机状态,)。用来操作发动机14处于全汽缸状态以及处于减缸状态、燃料被切断或者没有被切断的怖先的输入转矩被输入给发动机转矩变换计算机355并且分别被变换成优选的处于全汽缸状态('最佳满发动机转矩')和减缸状态('最佳减活发动机转矩')下的发动机转矩,以及燃料切断时的处于全汽缸状态("满发动机转矩FCO')和减缸状态('减活发动机转矩FCO')下的发动机转矩,通过计及在发动机和变速器之间被引入的不期望的以及其它载荷。用于操作发动机处于全汽缸状态和减缸状态的优选发动机转矩和优选的发动机状态包括给予发动机状态控制系统370的输入。用于操作发动机14的花费包括操作费用,该操作费用基于包括车辆驾驶性能、燃油经济性、排放和电池使用情况在内的因素而被确定。花费归结于并且相关于燃料和电能的消耗,并且相关于混合动力系的特定工作点。较低的运行花费可以相关于对于每个发动机速獻负荷工作点下的高变换效率下的较低的燃油消耗、较低的电池能量使用,以及樹氐的排放,并且还要考虑到当前发动机14的运行状态。在处于全汽缸状态和减缸状态下的优选的发动机状态和优选的发动机转矩被输入给发动机状态控制系统370,该发动机状态控制系统370包括发动机状态机(,动机状态机')372。发动机状态机372基于优选的发动机状态和优选的发动机转矩而确定目标发动机转矩('目标发动机转矩')和发动机状态('发动机状态')。目标发动机转矩和目标发动机状态被输入给变换滤波器374,该变换滤波器374监控任何被指令的对于发动机状态的转变并且过滤目标发动机转矩来提供被过滤的目标发动机转矩('被过滤的目标发动机转矩')。发动机状态机372输出指令,该指令指示从减缸状态和全汽缸状态中选出一个('DEAC被选择,),以及指示从发动机供油状态和M^燃油切断状态中选出一个(TCO被选择,)。从减缸状态和全汽缸状态中选出一个,以及从发动机供油状态和燃油切断状态中选出一个,被过滤的目标发动机转矩,以及最大和最小发动机转矩被输入给发动机响应判定系统380。系统限制控制通路360确定对于输入转矩的限制,包括f^I多被变速器10反作用的最小和最大输入转矩(,入转矩混合最小'和'输入转矩混合最大')。最小和最大输入转矩基于对于变速器10、第一电机56和第二电机72的限制而被确定,其中包括离合器转矩和电池电量限制,这影响到变速器io对于当前循环周期间的输入转矩起反应的能力。纟好系统限制控制ffl^各360的输入包括加^F對及113所测量到的实时输出转矩请求('输出转矩请求AccelImmed')和制动踏板112所测量到的实时输出转矩请求(,俞出转矩请求BrakeImmed'),它们被组合并通过实时输出转矩整形滤波器362而被成形于轮轴转矩响应类型,从而产生净实时输出转矩('ToNetlmmed,)和实时加速器输出转矩('ToAccelImmed')。净实时输出转矩和实时加速器输出转矩被输入给限制方案('输出和输入转矩限制')364。其它被输入给限制方案364的输入包括变速器10的提前工作范围状态,实时提前输入加速度曲线('提前输入加速度曲线Immed'),在提前工作范围状态中用于每个应用中的离合器的提前实时离合器反作用转矩范围('提前实时离合器反作用转矩Min/Max,),以及可用的电池电量('电池电量限制'),其包括范围PBA^MN到PBAT一MAX。目标的提前输入加速度曲线包括输入元件12的实时输入加逸芰曲线的定时移位提前,从而在实时输入加速度曲线中的被指令的改变和在实时输入加速度曲线中测量到的改变之间提供响应时间延迟。提前实时离合器反作用转矩范围包括离合器的实时离合器反作用转矩范围定时移位提前,从而在实时离合器反作用转矩范围中的被指令的改变和在实时离合器反作用转矩范围中测量到的改变之间提供响应时间延迟。限制方案364为变速器10确定输出转矩范围,并且然后基于,的输入而确定能够被变速器10反作用的最小和最大输入夂转巨。最小和最大输入转矩被输入给发动机转矩变换计算机355并且被转换成最小和最大发动机转矩(分别地'发动机转矩混合最小'和'发动机转矩混合最大'),ffi31计及在发动机14和变速器10之间被引入的不期望的以及其它载荷。被过滤的目标发动机转矩,发动机状态机372的输出和发动机的最小和最大发动机转矩被输入给发动机响应类型确定系统380,该系统将发动机指令输入给ECM23用以控制发动机状态、实时发动机转矩请求和预测发动机转矩请求。发动机指令包括实时发动机转矩请求(f动机转矩请求Immed')和预测发动机转矩请求('发动机转矩请求Prdtd,),这两个请求可以基于过滤后的目标发动机转矩而被确定。其他指令控制发动机状态处于发电机供油状态和减速断油状态('FCO请求')中的一个,和处于减缸状态以及全汽缸状态('减活请求')中的一个。其他输出包括发动机响应类型('发动机响应类型,)。当过滤后的目标发动机转矩处在最小和最大发动机转矩范围之内时,发动机响应类型是不活动的。当过滤后的目标发动机转矩处在最小和最大发动机转矩(^发动机转矩混合最小')和('发动机转矩混合最大,)柳艮制之外时,发动机响应类型是活动的,这指示了在发动机转矩中需要立即的改变,例如通过发动机点火控制和延迟来改变发动机转矩和输入转矩,使它们落入到最小和最大发动机转矩的限制之内。如上面所述,变速器工作范围状态的改变包括变换离合器。在变换过程中使用多个处于不同的接合状态的离合器的车辆在工作范围状态的改变过程中可以保持对转矩的传递。根据上面所述的示例性的四个离合器变速器,参考表1和图4,工作范围状态之间的多个转变是可预知的。在从一个固定档位状态到另一个工作范围状态的转变过程中,两个离合器初始地被接合,并且至少一个离合器按照步骤从锁定状态到解锁状态被转换,例如图5中的示例性步骤,以及至少一个离合器按照例如图6中的示例性步骤从解锁状态到锁定状态被转换。在过渡期间,离合器可以穿过空档状态,但是由于对于驾驶性能的冲击以及卸载和再加载发动机浪费了燃油的使用却无助于动力系的输出而导致的效率的损失,这种改变不是4雄的。相反,利用上面如图7中所示的示例性步骤中所述的惯性速度阶段则在变速器工作范围状态改变的^过程中都允许转矩从转矩发生装置到输出元件的连续传递。在这种方式中,关于空档过程中的改变而引起的浪费和不利的冲击可以被避免。在避免空档状态下的工作范围状态的改变是ite的,但发动机操作和发动机转矩输出却可能不适应于工作范围状态的改变。如上面所描述地,变换被设计用于从锁定状态到解锁状态同步操作的离合器需要所有的转矩被从该离合器上移除。如果两个离合器初始地被锁定并且从包括发动机在内的输入单元上传递转矩,一个离合器必须在即将进行的离合器转换之前被卸载,全部的正在被从输入单元上传递的转矩必须通过剩下的锁定离合器来传递。剩下的锁定离合器具有能够经由该离合器所传递的最大离合器转矩容量。为了避免打滑,输入给变速器的全部转矩,在上面所述的示例性动力系中的,TT、TA、Tb,必须不能,传递整个反作用转矩给输出元件的离合器的能力容限。i出已公知是缓侵改变的,并且工作范围状态的改变tt^地包括从发动机上平稳输出从而来保护驾驶性能以及在改变过程中对于客户造成最小的变化感知度。另外,对于发动机输出的改变产生了低效率的燃油消耗。例如,用于快速减小发动机输出的方法包括延迟点火定时或者提前喷油定时。这两个方法都可以减小燃烧过程的效率,并且这种效率的减小比通常的节流改变实现了对于发动机输出更快的改变。但是,效率的减小导致了燃油消耗却没有导致功输出,例如转矩。因此,通过变速器传递的反作用转矩的快速改变被^^feil过电机或者多个电机来实现,例如电机中的转矩减小或者通过反作用于^并且从^回收过多的转矩并且将它转换成可存储能量而减小该电机上所输出的转矩。当T冲这种过多的转矩m电机所能抵抗的转矩的限制时,ilil较慢的节流指令或者如上面所描述的通过燃烧效率的减小而实现的较快的改变,发动机^f^rcr+匕ArV4n/r^rc^rri、i4.+小工rn网i,曰^n血+if二+7fK::古腿iVi^v(sil^f左亡&FT壬rU毋Jff二击审阶段的术语的图解表示,根据本发明,所述术语包括最小和最大发动机转矩。如在图7中所示的,转矩和惯性速度阶段被描述,其中示例性的变速:t^刀始地被操作具有两个锁定离合器,并且基于激起工作范围状态转变的指令,离合器被从锁定状态转换劍军锁状态,以及输A5I度^必须根据目的工作范围状态而进行转变。图表的第二部分描述了变速器当前被置于的提前工作范围状态。第二部分中间的阶状过渡段描述了提前工作范围状态从固定档位转变成模态的位置点。变换离合器中的从锁定状态到解锁状态的这种转变在图表的第三部分被进一步描述,其中显示了对于变换中的离合器,离合器反作用转矩提前实时最大和最小傲匚聚于零点。如在上面图5中所述的,这些限制在准备同步转换成解锁状态过程中可以被用来从离合器中卸载转矩。图表的底部部分描述了在变速器转变过程中的发动机转矩。预测发动机转矩请求描述了示例性转变过程中的期望Tt的估算。在变速器转变过程中,这种估算可以基于多个预测发动机输出的因素而被进行,例如Toreq。例如在图ll中所描述的,发动机转矩混合最小和最大值描述了通过发动机控制战术系统的被应用于发动机的最小和最大发动机转矩。如关于图11所描述的,多个需要减小To的动作可以创造应用的发动机转矩减小。在变速器工作范围状态中的本示例性换档过程中,卸载的离合器中的转变需要最小和最大发动机转矩的减小。但是,所容许的Tt值的改变范围与预测发动机转矩请求不发生相互作用。在这个示例性的工作范围状态的转变中,由于战术控制330所施加的最小和最大发动机岸专矩,^不需要被改变。图13是用来描述变速器的示例性转矩和惯性速度阶段的术语的图解表示,根据木发明,所述术语包括作用来改变发动机输出的最小和最大发动机转矩。图13类似于图12描述了对于M、工作范围状态和关于变速器工作范围状态的改变的离合器反作用转矩提前实时最小和最大值的改变。但是,在图13中的示例性换档过程中,发动机战术控制系统根据电机能力和其它描述所需的转矩改变的变量所施加的最小和最大发动机转矩以实时发动机转矩请求的方式对于发动机转矩施加选择性的改变并且与之相互作用。如上面所描述地,这种发动机转矩的改变可以按照多种方式而被实现,所述方式包括燃烧效率的改变。在这样的情形中,发动机转矩可以被操纵来接受Tt上所需要的限制,从而在变速器内,并在可以接受柳艮制内实现用于工作范围状态转势万需的反作用转矩。能够被理解的是在本发明范围之内的修改是允许的。本发明已经具体参照tt:选实施例以及变型而被描述。另外的修改和改变对于他人在阅读和理解了说明书后可以被想到。本发明旨在包括所有这些落入本发明范围之内的修改和改变。权利要求1.一种用于控制动力系的方法,所述动力系包括机械地-可操作地联接至内燃机的电动-机械变速器和适合用来通过对于多个离合器的选择性应用从而选择性地传递机械动力给输出元件的电机,所述方法包括指令从固定档位工作范围状态到第二工作范围状态的换档;在所述指令换档的转矩相期间,指令减小的反作用转矩通过将要停止运行的离合器;以及通过控制发动机输入转矩来减小通过所述将要停止运行的离合器的所述反作用转矩。2.如权禾腰求1所述的方法,其中所述的通过控制发动机输入转矩来减小M所述将要停止运行的离合器的所述反作用转矩的步骤包括当所述减小步骤不能够被所述电机完全实现时,在所述发动机上施加实时发动机转矩请求。3.如权利要求2所述的方法,其中所述的在所述发动机上施加实时发动机转矩请求的步骤包括延迟点火定时。4.如权利要求2所述的方法,其中所述的在所述发动tU:施加实时发动丰几转矩请求的步骤包括提前喷油定时。5.如权利要求2所述的方法,其中所述的在所述发动WJ:施加实时发动机转矩请求的步骤包括指令发动机节流阀改变。6.如权利要求1所述的方法,其中所述变速fll皮进一步联接至第二电机;并且其中所述的通过控制发动机输入转矩从而减小穿过所述将要停止运行的离合器的所述反作用转矩的步骤包括当所述减小步骤不肖,被所述电机和所述第二电机实现时,在所述发动机上施加实时发动机转矩请求。7.如权利要求6所述的方法,其中所述的在所述发动机上施加实时发动机转矩请求的步骤包括延迟点火定时。8.如权利要求6所述的方法,其中所述的在所述发动机上施加实时发动机转矩请求的步骤包括提前喷油定时。9.如权禾腰求6所述的方法,其中所述的在所述发动初J:施加实时发动机转矩请求的步骤包括指令发动机节流阀改变。10.如权禾腰求1所述的方法,其中所述的通过控制发动机输入转矩从而减小ilil所述将要停止运行的离合器的所述反作用转矢巨的步骤包括监控被请求的输出转矩;监控描述被要求用来在没有导致打滑的情况下卸载所述将要停止运行的离合器的输入转矩限制的因素;在所述指令的换档过程中,基于所述被请求的输出转矩估算预测发动机转矩请求;基于所述的监控的因素,确定最小和最大发动机转矩;以及当所述预测发动机转矩请求超过所述最大发动机转矩时,在所述发动ah施加实时发动机转矩请求。11.如权利要求10所述的方法,其中所述的监控描述被要求用来在没有导致打滑盼瞎况下卸载所述将要停止运行的离合器的输入转矩限制的因素包括监控离合器反作用转矩提前实时最小值和离合器反作用转矩提前实时最大值。12.如权禾腰求11所述的方法,其中所述的监控描述被要求用来在没有导致打滑的情况下卸载所述将要停止运行的离合器的输入转矩限制的因素进一步包括监控承受负荷的离合器的离合器转矩容量。13.如权利要求11所述的方法,其中所述的监控描述被要求用来在没有导致打滑的情况下卸载所述将要停止运行的离合器的输入转矩限制的因素进一步包括监控在所述指令换档过程中的将要被达至啲输AiI度曲线。14.一种用于控制动力系的方法,所述动力系包括机械地-可操作地联接至内燃机的电动-机械变速器和适合用5l6im于多个离合器的选择性应用从而选择性地传递机械动力给输出元件的第一和第二电机,所述方B括监控从固定档位工作范围状态至U第二工作范围状态的指令换档;监控在所述指令换档的转矩相期间的通过将要停止运行的离合器的被指令的减小的反作用转矩;基于所述指令换档和所述被指令的减小的反作用转矩,确定最大发动机转矩;在所述指令换档过程中估算预观拨动机转矩请求-,以及当所述预测发动机转矩请求超过所述最大发动机转矩时,基于所述最大发动机转矩控制发动机输入转矩。15.如权利要求14所述的方法,其中所述的控制所述发动机输入转矩的步骤包括延迟点火定时。16.如权利要求14所述的方法,其中所述的控制所述发动机输入转矩的步骤包括提前喷油定时。17.如权禾腰求14所述的方法,其中所述的控制所述发动机输入转矩的步骤包括指令发动机节流阀改变。全文摘要本发明涉及在换高速档和换低速档转矩相期间的发动机转矩控制。一种动力系,包括机械地-可操作地联接至内燃机的电动-机械变速器和适合用来通过对于多个离合器的选择性应用从而选择性地传递机械动力给输出元件的电机。一种用于控制动力系的方法,包括指令从固定档位工作范围状态到第二工作范围状态的换档,在所述指令换档的转矩相期间,通过将要停止运行的离合器指令减小的反作用转矩,以及通过控制发动机输入转矩来减小通过所述将要停止运行的离合器的所述反作用转矩。文档编号B60W20/00GK101474997SQ20081015478公开日2009年7月8日申请日期2008年11月4日优先权日2007年11月4日发明者A·H·希普,J·-J·F·萨,L·A·卡明斯基申请人:通用汽车环球科技运作公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1