车辆和控制车辆的方法与流程

文档序号:17545115发布日期:2019-04-29 15:17阅读:167来源:国知局
车辆和控制车辆的方法与流程

本发明涉及车辆和控制车辆的方法。



背景技术:

在安装有燃料电池的燃料电池车辆中,在车辆减速等时刻处,车辆的驱动马达中会生成再生电力。该再生电力通常被用于对随燃料电池安装的二次电池等充电,从而提高燃料电池车辆中的能量效率。然而,在一些情况下,例如当二次电池的剩余容量(soc)等于或大于参考值时,不能对二次电池充电。在该情况下,常规地,使得随燃料电池车辆安装的空气压缩机等消耗不能用来对二次电池充电的再生电力(例如,参见日本未审查专利申请公布第2013-218789号(jp2013-218789a))。



技术实现要素:

然而,当执行上述控制时,辅助装置例如空气压缩机等可能会不受燃料电池车辆的用户的意图支配地突然开始消耗再生电力。因此,该燃料电池车辆的用户可能由于空气压缩机等的驱动噪声而产生陌生感。此外,除该燃料电池车辆外,被配置成使辅助装置消耗不能用来对二次电池充电的再生电力的任何车辆的用户都可能由于在开始消耗再生电力时生成的辅助装置的驱动噪声而产生陌生感。因此,存在对于下述技术的需求:在通过使用辅助装置(例如空气压缩机等)消耗不能用来对二次电池充电的剩余再生电力时抑制用户产生陌生感。

本发明可以按照以下方面来实现。

本发明的一方面涉及一种车辆,包括:电存储装置,其被配置成能够被充电;驱动马达,其被配置成由电力驱动并且被配置成生成再生电力;辅助装置,其可以由通过驱动马达的再生电力生成而生成的再生电力来驱动;以及控制单元,其中控制单元被配置成:i)当电存储装置处于电存储装置不能被充电的不可充电状态时,执行用于向辅助装置供应再生电力并且使辅助装置消耗再生电力的不可充电控制;并且ii)在生成再生电力并执行用于改变成在车辆中生成更大量的再生电力的操作模式的操作性操纵的情况下,即使当电存储装置处于电存储装置能够被充电的可充电状态时,执行用于向辅助装置供应再生电力并且使辅助装置根据该操作性操纵来消耗再生电力的特定操纵控制。

根据本发明的该方面中的车辆,当生成再生电力并执行用于改变成生成更大量的再生电力的操作模式的操作性操纵时,使辅助装置根据该操作性操纵来消耗再生电力。因此,用于消耗再生电力的辅助装置的驱动噪声的增大是伴随着由车辆的用户执行的前述操作性操纵而发生。因此,可以减少由于消耗再生电力造成辅助装置的驱动噪声增大而给用户带来的陌生感。

在上述方面中,控制单元可以被配置成:当执行操作性操纵并且由于随着车辆的行驶生成的再生电力而估计电存储装置采取不可充电状态时,执行特定操纵控制。

根据本发明的该方面中的车辆,可以在更适当的时刻执行使辅助装置消耗再生电力的操作。

在上述方面中,车辆还可以包括导航装置,其提供关于去往目的地的行驶路线的引导,其中,控制单元可以被配置成基于从导航装置获取的信息来估计电存储装置是否采取不可充电状态。

根据本发明的该方面中的车辆,可以进一步增强对电存储装置是否处于不可充电状态进行估计时的准确度。

在本发明的上述方面中,辅助装置可以包括第一辅助装置和第二辅助装置。第二辅助装置的驱动噪声比第一辅助装置的驱动噪声更安静。控制单元可以被配置成:当执行特定操纵控制时,使第一辅助装置消耗再生电力,并且当第一辅助装置不能单独消耗再生电力时,使用第二辅助装置以及第一辅助装置来消耗再生电力。

根据本发明的该方面中的车辆,即使当在执行特定操纵控制时第一辅助装置生成相对大的驱动噪声时,该驱动噪声的生成也是伴随着用于改变成生成更大量的再生电力的操作模式的操作性操纵而发生。因此可以抑制用户产生陌生感。此外,在第二辅助装置以及第一辅助装置被用于消耗再生电力的情况下,即使当第二辅助装置的驱动噪声的生成不是伴随着前述操作性操纵而发生时,也可以抑制用户产生陌生感,因为第二辅助装置的驱动噪声相对安静。

在本发明的上述方面中,辅助装置可以包括第一辅助装置和第二辅助装置。第二辅助装置的驱动噪声比第一辅助装置的驱动噪声更安静。控制单元可以被配置成:在执行不可充电控制时,使第二辅助装置消耗再生电力,并且当第二辅助装置不能单独消耗再生电力时,使用第一辅助装置以及第二辅助装置来消耗再生电力。

根据本发明的该方面中的车辆,当在执行不可充电控制时第二辅助装置不能单独消耗再生电力时,第一辅助装置以及第二辅助装置被用于消耗再生电力。因此,可以减轻由于辅助装置消耗再生电力而造成的辅助装置的驱动噪声,并且可以抑制用户产生陌生感。

本发明的另一方面涉及控制车辆的方法。该车辆包括:电存储装置,其被配置成能够被充电;驱动马达,其被配置成由电力驱动并且被配置成生成再生电力;以及辅助装置,其被配置成由通过驱动马达的再生电力生成而生成的再生电力来驱动。该方法包括:当电存储装置处于电存储装置不能被充电的不可充电状态时向辅助装置供应再生电力并且使辅助装置消耗再生电力;并且在生成再生电力并执行用于改变成在车辆中生成更大量的再生电力的操作模式的操作性操纵的情况下,即使当电存储装置处于电存储装置能够被充电的可充电状态时,向辅助装置供应再生电力并且使辅助装置根据该操作性操纵来消耗再生电力。

可以以各种实施方式实现本发明。例如,除了前述车辆和前述控制车辆的方法之外,本发明也可以以诸如消耗再生电力的方法、实现控制车辆的方法的计算机程序、存储有该计算机程序的非暂态存储介质等实施方式来实现。

附图说明

下面将参照附图描述本发明的示例性实施方式的特征、优点以及技术与工业意义,在附图中,相同的附图标记代表相同的元素,并且在附图中:

图1是表示燃料电池车辆的整体配置的框图;

图2是表示再生操作控制处理例程的流程图;

图3是表示另一再生操作控制处理例程的流程图;以及

图4是表示又一再生操作控制处理例程的流程图。

具体实施方式

a.第一实施方式

(a-1)燃料电池车辆的总体配置:

图1是示意性示出作为本发明的第一实施方式的燃料电池车辆10的整体配置的说明图。燃料电池车辆10配备有燃料电池系统15、电力电路600、加热系统700、驱动马达820和控制单元900。燃料电池系统15配备有燃料电池660、燃料气体供应系统200、氧化气体供应系统300、排气系统400以及冷却系统500。

燃料电池660具有其中多个单体电池被彼此叠压的堆叠配置,并且通过被供应含氢的燃料气体和含氧的氧化气体来生成电力。根据本发明的本实施方式的燃料电池660是聚合物电解质燃料电池。在构成燃料电池660的每个单体电池中,在阳极侧形成有燃料气体流过的流动通道(阳极侧流动通道)并且在阴极侧形成有氧化气体流过的流动通道(阴极侧流动通道),并且有电解质膜介于其间。此外,在燃料电池660的内部形成有用于冷却燃料电池660的制冷剂流过的制冷剂流动通道。顺便提及,燃料电池660可以不必是聚合物电解质燃料电池。可以采用其他燃料电池,例如固体氧化物燃料电池等。

燃料气体供应系统200配备有燃料气体罐210、燃料气体供应管220、燃料气体排放管230、燃料气体再循环管240、主阀250、调节器260、喷射器270、气液分离器280和氢泵290。燃料气体罐210是存储作为燃料气体的氢气的存储装置,并且其经由燃料气体供应管220连接至燃料电池660。在燃料气体供应系统200中,燃料气体罐210中存储的氢气通过由主阀250打开/关闭燃料气体供应管220的流动通道、并且经在调节器260中减压并且从喷射器270排出之后被供应至燃料电池660的阳极侧流动通道。

燃料气体排放管230是从燃料电池660排出的阳极废气流过的流动通道。燃料气体再循环管240连接至燃料气体排放管230并且连接至燃料气体供应管220的位于喷射器270下游的区域。从燃料电池660排出至燃料气体排放管230的阳极废气经由燃料气体再循环管240被再次导入燃料气体供应管220中。因此,在燃料电池系统15中,在通过电力生成来消耗氢的同时,燃料气体通过燃料气体排放管230、燃料气体再循环管240、燃料气体供应管220的一部分以及在燃料电池660中形成的燃料气体的流动通道进行循环。燃料气体再循环管240设置有前述氢泵290以生成用于使燃料气体在流动通道中循环的驱动力并且调节燃料气体的流量。

在燃料气体排放管230与燃料气体再循环管240彼此连接的部分处设置有气液分离器280。阳极废气包含诸如氮、蒸汽等杂质以及还没有通过电力生成而消耗的氢。气液分离器280将阳极废气中的水与气体(氢气、氮气等)分离开。在本发明的本实施方式中,经由气液分离器280从在前述流动通道中循环的燃料气体中去除杂质。稍后将描述杂质的去除。

氧化气体供应系统300配备有空气压缩机320、氧化气体供应管330和分流阀340。根据本发明的本实施方式的燃料电池660使用空气作为氧化气体。空气压缩机320通过由空气压缩机马达350驱动来压缩空气,并且经由氧化气体供应管330向燃料电池660的阴极侧流动通道供应空气。分流阀340被设置在氧化气体供应管330的、将在稍后描述的氧化气体旁通管450与氧化气体供应管330连接的连接部分处。

排气系统400配备有排气管410、压力调节阀420、燃料气体排出管430、放气阀440、氧化气体旁通管450以及消音器470。排气管410是阴极废气从燃料电池660排出的流动通道。压力调节阀420被设置在排气管410中。压力调节阀420调节燃料电池660中的氧化气体的压力。燃料气体排出管430将气液分离器280与排气管410彼此连接。放气阀440被设置在燃料气体排出管430上。当阳极废气中的氮浓度变高或当气液分离器280中的水的量变大时,控制单元900打开放气阀440并且从气液分离器280中排出水和气体。因此,如已经描述的那样,降低了在流动通道中循环的燃料气体中的杂质浓度。在本发明的本实施方式中,燃料气体排出管430连接至压力调节阀420下游的区域中的排气管410,并且经由放气阀440排出的阳极废气中的氢气在被排放至大气之前被阴极废气稀释。

氧化气体旁通管450将氧化气体供应管330与排气管410彼此连接。已经提到的分流阀340被设置在将氧化气体旁通管450与氧化气体供应管330彼此连接的连接部分处。当打开放气阀440时,控制单元900增加空气压缩机320的驱动量,并且控制分流阀340以使空气流过氧化气体旁通管450。因此,无论燃料电池660生成的电力量如何,都可以充分稀释经由放气阀440排出至排气管410的氢气。顺便提及,在本发明的本实施方式中,如稍后将描述的那样,可以增加空气压缩机320的驱动量以消耗再生电力。在该情况下,可以通过控制分流阀340并且使空气流过氧化气体旁通管450来抑制供应至燃料电池660的氧化气体的流量增加。消音器470被设置在将燃料气体排出管430和氧化气体旁通管450彼此连接的连接部分的下游的排气管410中,并且减轻排气噪声。

冷却系统500配备有制冷剂供应管510、制冷剂排出管515、制冷剂旁通管550、制冷剂泵525、散热器530以及切换阀565。制冷剂供应管510是用于向燃料电池660供应制冷剂的管,并且制冷剂泵525被布置在制冷剂供应管510中。制冷剂排出管515是用于从燃料电池660排出制冷剂的管。用于冷却制冷剂的散热器530被设置在制冷剂排出管515的下游部分与制冷剂供应管510的上游部分之间。散热器530设置有散热器风扇535。散热器风扇535将风输送至散热器530并且促使热量从散热器530散出。前述制冷剂泵525对通过制冷剂供应管510、制冷剂排出管515和燃料电池660中的制冷剂流动通道进行循环的制冷剂的流量进行调节。

制冷剂旁通管550是将制冷剂供应管510与制冷剂排出管515彼此连接的流动通道。切换阀565被设置在将制冷剂排出管515与制冷剂旁通管550彼此连接的连接部分处。切换阀565是能够改变流经散热器530的制冷剂的量与绕过散热器530流动的制冷剂的量之间的比率的阀,并且在本发明的本实施方式中其被配置为三通阀。在本发明的本实施方式中,如稍后将描述的那样,可以增加制冷剂泵525的驱动量以消耗再生电力。在该情况下,可以通过控制切换阀565使得制冷剂流过制冷剂旁通管550来抑制燃料电池660被过度冷却。

电力电路600配备有也属于燃料电池系统15的燃料电池660、fc升压转换器605(fdc605)、逆变器610、电池转换器630以及二次电池650。驱动马达820、低压辅助装置840和高压辅助装置860连接至电力电路600。

fc升压转换器605是将燃料电池660的输出电压升压至可以在驱动马达820中利用的高电压的dc/dc转换器。逆变器610将通过fc升压转换器605升压的dc电压转换成ac电压并且将该ac电压供应给驱动马达820。驱动马达820是驱动车辆的车轮的马达,并且其在车辆减速时执行再生以生成再生电力。

电池转换器630是双向dc/dc转换器,其将通过fc升压转换器605升压的电压或通过驱动马达820的再生操作生成的电压降低并且将降压后的电压供应给二次电池650,或者将二次电池650的电压升高并且将升压后的电压供应给逆变器610。用燃料电池660生成的电力和来自驱动马达820的再生电力对二次电池650充电。二次电池650用作电力供应器,其被配置成对驱动马达820和低压辅助装置840进行驱动。二次电池650可以被配置为例如锂离子电池或镍氢电池。二次电池650可以是可再充电的电存储装置。除了被配置为二次电池,该电存储装置可以例如是电容器。顺便提及,二次电池650设置有用于检测二次电池650的操作状态例如电压、电流、剩余容量(soc)等的电池传感器655。

低压辅助装置840和高压辅助装置860构成了布置在燃料电池车辆10的各部分中的一组辅助装置,并且包括燃料电池系统15中包括的燃料电池辅助装置以及与控制燃料电池车辆10的状态有关的车辆辅助装置。以相对低的电压驱动的低压辅助装置840可以包括作为车辆辅助装置的例如照明设备(如前灯、刹车灯等)、仪表板中的方向指示器、雨刮器、测量仪器等以及稍后将描述的导航装置80。此外,低压辅助装置840可以包括作为燃料电池辅助装置的用于打开/关闭设置在燃料气体、氧化气体和制冷剂的管线中的各种阀的驱动单元。以相对高的电压驱动的高压辅助装置860可以包括作为燃料电池辅助装置的例如制冷剂泵525、空气压缩机320、氢泵290和散热器风扇535。此外,高压辅助装置860可以包括作为车辆辅助装置的稍后将描述的加热系统700的电加热器730。顺便提及,通过使用dc/dc转换器(未示出),将通过进一步降低从将电池转换器630与二次电池650彼此连接的导线供应的电力而获得的电力供应给低压辅助装置840。此外,除了如图1所示的将高压辅助装置连接至将逆变器610与电池转换器630彼此连接的导线之外,可以将高压辅助装置860连接至将电池转换器630与二次电池650彼此连接的导线。

加热系统700用于加热燃料电池车辆10,并且配备有分支管705、三通阀740、热水供应管710、热水泵725、电加热器730、加热器芯720、热水排出管715和热水再循环管735。分支管705和热水排出管715连接至冷却系统500所配备的前述制冷剂排出管515。分支管705、热水供应管710和热水排出管715依次连接。分支管705被供应有从燃料电池660排出的加热过的制冷剂的一部分。三通阀740被设置在将分支管705与热水供应管710彼此连接的连接部分处。三通阀740调节从冷却系统500到加热系统700的制冷剂的分配。热水供应管710设置有生成用于使制冷剂在加热系统700的管线中流动的驱动力的热水泵725以及用于加热流过热水供应管710的制冷剂的电加热器730。在将热水供应管710与热水排出管715彼此连接的连接部分处设置有加热器芯720,其用于通过使用流过加热系统700的制冷剂的热量来加热空气。由加热器芯720加热的空气被输送到燃料电池车辆10中并且被用于加热车辆内部。热水排出管715使从加热器芯720排出的制冷剂返回至冷却系统500的制冷剂排出管515。热水再循环管735将热水排出管715与三通阀740彼此连接,并且使从加热器芯720排出的制冷剂返回至热水供应管710。

控制单元900被配置为微型计算机,并且具有cpu、rom、ram和输入/输出端口。控制单元900执行燃料电池系统15的电力生成控制并且执行对包括电力电路600的整个燃料电池车辆10的控制。控制单元900从设置在燃料电池车辆10的各部分处的传感器(包括设置在燃料电池系统15的各部分处的传感器、加速器操作量传感器、制动踏板传感器、换档位置传感器和车速传感器)获取输出信号,并且还从稍后描述的安装在燃料电池车辆10中的导航装置80获取与设定的行驶路线等有关的信息。然后,控制单元900将驱动信号输出至与燃料电池车辆10中的电力生成、行驶等有关的各部分。具体而言,控制单元900将驱动信号输出至已经提及的燃料电池辅助装置、车辆辅助装置等。此时,控制单元900可以控制从燃料电池660和驱动马达820去往二次电池650和各个辅助装置的电力的供应。顺便提及,执行上述功能的控制单元900可以不必被配置为单个控制单元。例如,控制单元900可以被配置为多个控制单元,例如与燃料电池系统15的操作有关的控制单元、与燃料电池车辆10的行驶有关的控制单元、执行对与行驶无关的车辆辅助装置的控制的控制单元等,并且可以在多个这些控制单元之间交换必要的信息。

控制单元900执行第一控制、第二控制和第三控制。在第一控制中,当二次电池650处于稍后将描述的可充电状态时,用再生电力对二次电池650充电。在第二控制中,当二次电池650处于稍后将描述的不可充电状态时,再生电力被供应至至少一个辅助装置并且因此被消耗。在第三控制中,在生成该再生电力并执行用于改变成在燃料电池车辆10中生成更大量的再生电力的操作模式的操作性操纵的情况下,即使当二次电池650处于可充电状态时,也将再生电力供应至至少一个辅助装置并且因此根据前述操作性操纵将其消耗。在下文中将详细描述由控制单元900执行的这些类型的控制。

(a-2)再生操作时的控制:

图2是表示由根据本发明的本实施方式的燃料电池车辆10的控制单元900执行的再生操作控制处理例程的流程图。当燃料电池车辆10启动时由控制单元900的cpu重复执行本例程。

当本例程启动时,控制单元900的cpu确定是否已经由燃料电池车辆10的驱动马达820生成再生电力(步骤s100)。在步骤s100中,例如,在车速传感器检测到车速等于或高于规定的参考值的同时加速器操作量传感器检测到加速器关闭时,可以确定已经生成再生电力。此外,当车速传感器检测到车速等于或高于规定的参考值的同时制动踏板传感器检测到制动踏板的操作时,可以确定已经生成再生电力。可替选地,可以在电力电路600中直接检测再生电力。在该情况下,除了在再生电力采取正值时确定已经生成再生电力之外,还可以在再生电力等于或大于规定的参考值时确定已经生成再生电力。

如果在步骤s100中确定没有生成再生电力(步骤s100中为“否”),则控制单元900的cpu结束本例程。

如果在步骤s100中确定已经生成再生电力(步骤s100中为“是”),则控制单元900的cpu基于换档位置传感器的检测信号来确定是否已经执行降档(步骤s110)。在本发明的本实施方式的步骤s110中,当执行降档操作并且当降档状态持续时确定已经执行降档。在根据本发明的本实施方式的燃料电池车辆10中可以利用五个换档位置。五个换档位置可以是例如五个档位p、r、n、d和b,其可以表示用于停车的换档位置、用于反向运动的换档位置、用于空档状态的换档位置、用于向前驾驶的换档位置和用于制动的换挡位置。与选择d档位时建立的操作模式相比,在选择b档位时建立的操作模式下会生成更大量的再生电力。在步骤s110中,例如当做出了从d档位至b档位的改变并且维持b档位时,确定已经执行降档。

顺便提及,根据本发明的本实施方式的燃料电池车辆10允许通过换档杆来改变换档位置,但是也可以采用不同的配置。例如,可以设置用于输入在燃料电池车辆10的操作模式之间进行改变的命令的开关来取代换挡杆。此外,由这样的开关等设定的操作模式可以包括生成更大量的再生电力的操作模式和生成更少量的再生电力的操作模式。在步骤s110中,可以不必确定是否已经执行降档,但是可以确定是否已经在燃料电池车辆10中执行用于改变成生成更大量的再生电力的操作模式的操作性操纵。

如果在步骤s110中确定已经执行降档,即,已经执行用于改变成生成更大量的再生电力的操作模式的操作性操纵(步骤s110中为“是”),则控制单元900的cpu向至少一个辅助装置发送驱动信号以增加辅助装置驱动量(步骤s120)并且结束本例程。因此,使得至少一个辅助装置消耗再生电力。也就是说,如果在步骤s110中执行用于改变成生成更大量的再生电力的操作模式的操作性操纵,则即使当二次电池650处于可充电状态时,也根据前述操作性操纵通过使用至少一个辅助装置来消耗再生电力。此外,如果在步骤s110中降档状态持续,则继续进行通过使用至少一个辅助装置来消耗再生电力的操作。在生成再生电力(步骤s100中为“是”)并且执行降档(步骤s110中为“是”)的情况下使至少一个辅助装置消耗再生电力的步骤s120中的控制也被称为“第三控制”或“特定操纵控制”。

具体而言,例如,可以使用空气压缩机320作为消耗再生电力的前述辅助装置中的至少之一。在本文中应当注意,当生成再生电力时驱动马达820不需要负荷。如果当生成再生电力时燃料电池660中基本上没有生成电力并且空气压缩机320停止,则在步骤s120中启动空气压缩机320并且空气压缩机320开始消耗再生电力。此外,在生成了再生电力时,如果由于例如燃料电池车辆10中的空调驱动的原因导致燃料电池660生成电力,则在步骤s120中空气压缩机320的驱动量增加到超过前述空调等所需的负荷。如到目前为止所述的那样,步骤s120中的“辅助装置驱动量增大”包括“驱动量从至少一个辅助装置被驱动的状态增大”和“至少一个辅助装置的启动”。

可以采用除空气压缩机320以外的各种辅助装置作为用于在步骤s120中消耗再生电力的至少一个辅助装置,但是期望采用高压辅助装置860以使得可以充分地消耗再生电力。例如,可以使用制冷剂泵525、氢泵290、散热器风扇535或电加热器730来代替空气压缩机320。可替选地,可以使用再一种燃料电池辅助装置或再一种车辆辅助装置。可以使用从上述辅助装置中选择的多个辅助装置来消耗再生电力。顺便提及,当空气压缩机320被用于消耗再生电力时,在期望抑制供应至燃料电池660的氧化气体的流量增加的情况下,可以控制分流阀340以增大经由氧化气体旁通管450流动的气体量。此外,当制冷剂泵525或散热器风扇535被用于消耗再生电力时,在期望抑制燃料电池660的冷却效率改变的情况下,可以控制切换阀565以改变经由制冷剂旁通管550流动的制冷剂的流量。此外,当电加热器730被用于消耗再生电力时,在期望抑制车辆的内部变暖的情况下,可以抑制将由加热器芯720加热的空气输送到车辆中的操作,或者可以进一步增加散热器风扇535的驱动量以降低制冷剂的温度。

如果在步骤s110中确定没有执行降档(未执行用于改变成生成更大量的再生电力的操作模式的操作性操纵)(步骤s110中为“否”),则控制单元900的cpu确定二次电池650是否处于二次电池650不能被充电的不可充电状态(步骤s130)。不可充电状态可以是例如二次电池650的剩余容量等于或大于作为不应再对二次电池650充电的值的规定的参考值的状态。此外,不可充电状态可以是已经连续对二次电池650充电规定的参考时间或更长时间的状态。当连续对二次电池650充电时,二次电池650中的物质可能偏置。因此,从抑制二次电池650劣化的观点出发,希望限制对二次电池650的连续充电时间,因此可以基于连续充电时间来确定二次电池650是否处于不可充电状态。可替选地,例如,即使当二次电池650中的可充电电力采取正值时,再生电力的量超过二次电池650中的可充电电力的任何状态都可以被视为不可充电状态。

如果在步骤s130中确定二次电池650处于不可充电状态(步骤s130中为“是”),则控制单元900的cpu转至步骤s120并且结束本例程。也就是说,增大辅助装置驱动量,并且使得至少一个辅助装置消耗再生电力。当在生成再生电力(步骤s100中为“是”)并且没有执行降档(步骤s110中为“否”)的情况下确定二次电池650处于不可充电状态(步骤s130中为“是”)时使至少一个辅助装置消耗再生电力的步骤s120中的控制也被称为“第二控制”。在二次电池650因此处于不可充电状态的情况下使至少一个辅助装置消耗再生电力的控制也被称为“不可充电控制”。

如果在步骤s130中确定二次电池650不处于不可充电状态,即,二次电池650处于二次电池650可以被充电的可充电状态(步骤s130中为“否”),则控制单元900的cpu执行利用再生电力对二次电池650充电的控制(步骤s140)并且结束本例程。如果尚未利用再生电力对二次电池650充电,则在步骤s140中开始利用再生电力对二次电池650充电。如果已经利用再生电力对二次电池650充电,则在步骤s140中继续利用再生电力对二次电池650充电。当在生成再生电力(步骤s100中为“是”)并且没有执行降档(步骤s110中为“否”)的情况下确定二次电池650处于可充电状态(步骤s130中为“否”)时利用再生电力对二次电池650充电的步骤s140中的控制也被称为“第一控制”。

如到目前为止所述的那样,在本发明的本实施方式中,通过重复执行图2的再生操作控制例程,在生成再生电力(步骤s100中为“是”)的情况下执行降档(步骤s110中为“是”)时,根据降档的执行开始第三控制(特定操纵控制)。然后,在生成再生电力(步骤s100中为“是”)的情况下维持着降档状态(步骤s110中为“是”)时,继续进行第三控制。当之后再生电力消失(步骤s100中为“否”)时,取消第三控制。此外,即使已经生成再生电力(步骤s100中为“是”),但当操作模式改变为执行升档等(步骤s110中为“否”)时,根据二次电池650处于可充电状态还是不可充电状态来进行从第三控制到第一控制或第二控制的改变。

对于被配置成如上文所述的根据本发明的本实施方式的燃料电池车辆10,当生成再生电力并执行降档(用于改变成生成更大量的再生电力的操作模式的操作性操纵)时,增加辅助装置驱动量并且使至少一个辅助装置消耗再生电力。通过采用该配置,用于消耗再生电力的至少一个辅助装置的驱动噪声是伴随着由燃料电池车辆10的用户执行的操作性操纵而增大。因此,可以减少由于消耗再生电力造成的辅助装置驱动噪声增大带给用户的陌生感。也就是说,可以抑制由于辅助装置驱动噪声突然增大导致用户产生陌生感。这是因为当辅助装置驱动噪声随着用户执行的操作性操纵而增大时,用户倾向于感觉到辅助装置驱动噪声的增大与他或她自己执行的操作性操纵有关。更具体地,当在例如安装有作为驱动源的发动机的车辆中执行降档时,发动机噪声通常根据降档的执行而增大。当辅助装置驱动噪声随着用户对前述操作性操纵的执行而增大(或生成)时,可以通过带给用户与辅助装置驱动噪声增大类似的感觉来减少陌生感。

此外,根据本发明的本实施方式,当用户执行如上所述的操作性操纵时,使得至少一个辅助装置消耗再生电力。因此,在二次电池650由于其剩余容量增大而实际上采取不可充电状态之前,可以开始消耗再生电力。因此,可以增强抑制二次电池650的剩余容量变得过大的操作的可靠性。此外,在本发明的本实施方式中,在由至少一个辅助装置消耗再生电力之前,不需要确定二次电池650是否处于不可充电状态。因此,可以简化使至少一个辅助装置消耗再生电力的操作。

此外,根据本发明的本实施方式,采用用于改变成生成更大量的再生电力的操作模式的操作性操纵作为伴随着辅助装置驱动噪声增大的由用户执行的操作性操纵。也就是说,当生成了大量的再生电力并且通过利用再生电力对二次电池650充电而改变成二次电池650可能采取不可充电状态的操作模式时,使至少一个辅助装置消耗再生电力。因此,即使当在不确定二次电池650是否处于不可充电状态的情况下使至少一个辅助装置消耗再生电力时,也可以抑制二次电池650的剩余容量过度下降。

顺便提及,当在生成再生电力(步骤s100中为“是”)并且执行降档(步骤s110中为“是”)的情况下在步骤s120中执行第三控制时,二次电池650也可以处于可充电状态。在该情况下,当在步骤s120中使至少一个辅助装置消耗再生电力时,可以通过使用部分再生电力对二次电池650充电,直到二次电池650的剩余容量达到上限。同样以该方式,获得了上述效果,即通过当执行降档时执行增大辅助装置驱动量的操作来消耗再生电力从而抑制用户产生陌生感,并且通过当再生电力增大时在降档时使至少一个辅助装置消耗再生电力来抑制二次电池650的剩余容量变得过大。

此外,在本发明的本实施方式的步骤s130中,即使在二次电池650的剩余容量没有达到二次电池650不能被充电的上限的情况下,当再生电力的大小超过二次电池650可以被充电的电力时,也可以确定二次电池650处于不可充电状态。在该情况下,当在步骤s120中选择第二控制来使至少一个辅助装置消耗再生电力时,可以通过使用部分再生电力对二次电池充电直到二次电池650的剩余容量达到前述上限。

b.第二实施方式

图3是表示由根据本发明的第二实施方式的燃料电池车辆10的控制单元900执行的再生操作控制处理例程的流程图。根据本发明的第二实施方式的燃料电池车辆10与根据本发明的第一实施方式的燃料电池车辆10在配置方面相似,因此将省略其详细描述。图3中的流程图和图2所示的本发明的第一实施方式的流程图有共同点。因此,用相同的步骤编号来分别表示共同的步骤,并且将省略其详细描述。

与本发明的第一实施方式一样,在根据本发明的第二实施方式的燃料电池车辆10中可以执行第一控制、第二控制和第三控制。本发明的第二实施方式与本发明的第一实施方式的不同之处在于:在确定应当执行哪种类型的控制时,确定是否估计出当燃料电池车辆10继续行驶时二次电池650采取不可充电状态。

也就是说,在本发明的第二实施方式中,如果在步骤s100中确定已经生成再生电力(步骤s100中为“是”),则控制单元900的cpu确定是否估计出二次电池650采取不可充电状态(步骤s105)。如果在步骤s105中确定估计出二次电池650采取不可充电状态(步骤s105中为“是”),则控制单元900的cpu执行从前述步骤s110开始的处理。此外,如果在步骤s105中确定未估计出二次电池650采取不可充电状态(步骤s105中为“否”),则控制单元900的cpu执行从前述步骤s130开始的处理。在下文中将描述步骤s105中作出的确定。

根据本发明的第二实施方式的燃料电池车辆10配备有导航装置80,该导航装置提供关于去往目的地的行驶路线的引导,并且各种信息从导航装置80输入至控制单元900(参见图1)。导航装置80具有位置信息检测单元(未示出)和地图信息存储单元(未示出)。位置信息检测单元检测燃料电池车辆10的位置信息。地图信息存储单元存储地图信息。地图信息包括例如要在地图上描绘的各种特征,更具体地,建筑物、道路、交通灯或诸如山脉、河流等的自然对象等。此外,除了各个特征的高度等之外,在特征是建筑物的情况下地图信息还包括诸如建筑物的类型、形状、地址等与特征相关的信息,并且在特征是道路的情况下地图信息还包括诸如道路的类型、形状、名称等与特征相关的信息。顺便提及,地图信息的至少一部分可以通过通信从燃料电池车辆10的外部获取而不是存储在导航装置80中。

控制单元900从前述导航装置80获取从当前位置去往目的地的行驶路线以及关于该行驶路线的地图信息,估计燃料电池车辆10的行驶状态,并且确定是否估计出二次电池650采取不可充电状态(步骤s105)。具体而言,例如,控制单元900基于前述地图信息来确定行驶路线上是否存在下坡路段,当存在下坡路段时导出与下坡路段相关的信息,例如下坡路段的高度差、下坡路段的长度、下坡路段的平均倾斜角度等,并且确定是否前述与下坡路段相关的信息中的至少一条信息超过规定的参考值。如果前述与下坡路段相关的信息中的至少一条信息超过了规定的参考值,则估计燃料电池车辆10的行驶状态为再生电力过大的状态,因此可以在步骤s105中确定估计出二次电池650采取不可充电状态。顺便提及,当在步骤s105中基于从导航装置80获取的信息来估计二次电池650是否采取不可充电状态时,可以进一步获取二次电池650的剩余容量(soc),并且可以在行驶路线上行驶期间综合地确定二次电池650是否采取不可充电状态。

可替选地,可以通过附加使用关于在设定的行驶路线上设置的交通灯的信息来进行步骤s105中的确定。例如,在各个地点处设置有发送关于在道路上设置的各个交通灯的交通灯信息(包括交通灯如何变化的周期)的道路机器并且可以在这些道路机器与燃料电池车辆10之间进行道路与车辆的通信的情况下,燃料电池车辆10可以通过道路与车辆的通信获取关于在行驶路线上设置的交通灯的交通灯信息。然后,当基于所获取的信号灯信息和例如当前车速等估计出燃料电池车辆在行驶路线上行驶时由于信号灯而停车的频率等于或高于规定的参考频率时,可以在步骤s105中确定估计出二次电池650采取不可充电状态。注意,这里的频率是指估计出车辆由于交通灯而停车的频率。

顺便提及,可以在不使用从导航装置80获取的信息的情况下进行步骤s105中的确定。作为该确定的示例,将描述基于关于交通灯的信息的确定。例如,燃料电池车辆10可以安装有图像拍摄装置并且通过连续拍摄在车辆行驶方向上车辆前方空间的图像并对所拍摄的图像进行分析来确定前方是否存在交通灯并且在存在交通灯时确定该交通灯是否为红色。然后,如果确定前方存在交通灯并且该交通灯为红色,则控制单元900可以将根据当前车速所认为的停车时会生成的再生电力与从二次电池650的当前剩余容量(soc)获得的可充电的能量彼此进行比较,并且确定是否估计出当该车辆在前述交通灯处停车时二次电池650采取不可充电状态。

通过采用该配置,与本发明的第一实施方式不同,当确定估计出二次电池采取不可充电状态时还使至少一个辅助装置消耗再生电力。因此,可以在与只有满足生成再生电力和降档的条件的情况相比更适当的时刻执行使至少一个辅助装置消耗再生电力的操作。具体而言,在例如虽然已经生成再生电力并且执行降档但后来车辆行驶在上坡路段的情况下,即使当用再生电力对二次电池650充电时,二次电池650的剩余容量也不可能变得过大。在本发明的本实施方式中,例如,在上坡路段之前,不会估计二次电池650采取不可充电状态而是估计出能够用再生电力对二次电池650充电,因此可以提高燃料电池车辆10的能量利用率。特定地,可以通过使用由导航装置80获取的信息来提高在步骤s105中对二次电池650是否采取不可充电状态进行估计时的准确度。

c.第三实施方式

图4是表示由根据本发明的第三实施方式的燃料电池车辆10的控制单元900执行的再生操作控制处理例程的流程图。根据本发明的第三实施方式的燃料电池车辆10与根据本发明的第一实施方式的燃料电池车辆10在配置方面相似,因此将省略其详细描述。图4中的流程图和图2所示的本发明的第一实施方式的流程图具有共同点。因此,用相同的步骤编号来分别表示共同的步骤,并且将省略其详细描述。

与本发明的第一实施方式一样,在根据本发明的第三实施方式的燃料电池车辆10中可以执行第一控制、第二控制和第三控制。本发明的第三实施方式与本发明的第一实施方式的不同之处在于:当执行第二控制和第三控制以使辅助装置消耗再生电力时,供使用的辅助装置被区分了优先级。

在本发明的第三实施方式中,用于消耗再生电力的辅助装置被分类为第一辅助装置和与第一辅助装置相比驱动噪声更安静的第二辅助装置。然后,作为第三控制,当在步骤s120中使辅助装置消耗再生电力时,按优先级驱动第一辅助装置。此外,作为第二控制,当在步骤s135中使辅助装置消耗再生电力时,按优先级驱动第二辅助装置。顺便提及,对图2的描述已经给出了步骤s120中包括的第二控制和第三控制二者。然而,在本发明的第三实施方式中,在第二控制中使用的辅助装置和在第三控制中使用的辅助装置的优先级彼此不同。因此,在图4中,第三控制的步骤s120和第二控制的步骤s135被描绘成使得彼此区分开。

在本文中应当注意,按优先级驱动是指使用按优先级驱动的辅助装置来消耗再生电力,并且当按优先级驱动的该辅助装置没有足够高的能力来消耗待消耗的再生电力时,附加地使用其他辅助装置来消耗再生电力。

第一辅助装置可以例如是选自空气压缩机320和散热器风扇535的辅助装置。此外,第二辅助装置可以例如是选自电加热器730、制冷剂泵525和氢泵290的辅助装置。在下文中将引用将空气压缩机320用作第一辅助装置并且将电加热器730用作第二辅助装置的示例来更详细地描述第二控制和第三控制。

在本发明的第三实施方式中,在执行第三控制的步骤s120中,按优先级使用空气压缩机320作为使其消耗再生电力的辅助装置。具体而言,当pa表示空气压缩机320的驱动电力命令值,ph表示电加热器730的电力命令值,pamax表示空气压缩机320的最大电力消耗,pm表示再生电力(由驱动马达820生成的电力),并且pbalw表示可以用来对二次电池650充电的电力时,空气压缩机320的驱动电力命令值pa和电加热器730的电力命令值ph可以由以下所示的等式(1)和(2)来分别表示。顺便提及,在等式(1)中,min(a,b)表示a和b中较小的一个。

pa=min(pamax,pm)...(1)

ph=pm-pa...(2)

因此,如果在步骤s120中空气压缩器320的最大电力消耗pamax等于或大于再生电力pm,则空气压缩器320消耗全部再生电力。此外,如果在步骤s120中空气压缩机320的最大电力消耗pamax小于再生电力pm,则由空气压缩机320消耗的电力量等于空气压缩机320的最大电力消耗pamax。此时,电加热器730消耗不能通过驱动空气压缩机320消耗的再生电力,如等式(2)所示。

如果在步骤s120中二次电池650的可充电电力pbalw是正值,则可以通过使用再生电力的一部分来对二次电池650充电。以这种方式,抑制了制冷剂被电加热器730加热。因此,当在燃料电池车辆10中没有输入关于加热的命令时更易于调节制冷剂的温度。在该情况下,用以下所示的等式(2a)来代替前述等式(2)。

ph=pm-pbalw-pa...(2a)

二次电池650的可充电电力pbalw基于二次电池650的温度和二次电池650的充电/放电历史以及二次电池650的剩余容量(soc)而波动。控制单元900总是在获取这些信息的同时计算可充电电力pbalw。

顺便提及,当空气压缩机320的最大电力消耗pamax等于或大于再生电力pm时,在等式(2)和(2a)中的每个等式中的电加热器730的电力命令值ph等于或小于0。在该情况下,当没有输入关于车辆加热的命令时,不向电加热器730供应电力。此外,当已经输入关于车辆加热的命令时,电加热器730消耗与该命令的输入对应的电力。

在本发明的本实施方式中,如果在步骤s110中检测到降档操作(在步骤s110中为“是”)并且在执行步骤s120时再生电力相对较小,则仅空气压缩机320被用于开始消耗再生电力。然后,当由于再生电力随后增加而导致再生电力pm超过空气压缩机320的最大电力消耗pamax时,使用电加热器730以及空气压缩机320来消耗再生电力。

此外,在本发明的第三实施方式中,在执行第二控制的步骤s135中,按优先级使用电加热器730作为使其消耗再生电力的辅助装置。具体而言,当phmax表示电加热器730的最大电力消耗时,电加热器730的电力命令值ph和空气压缩机320的驱动电力命令值pa可以由如下所示的等式(3)和(4)来分别表示。

ph=min(pm,phmax)...(3)

pa=min((pm-ph),pamax)...(4)

在步骤s135中,如等式(3)所示当电加热器730的最大电力消耗phmax等于或大于再生电力pm时,电加热器730消耗全部再生电力。此外,当电加热器730的最大电力消耗phmax小于再生电力pm时,由电加热器730消耗的电力量等于电加热器730的最大电力消耗phmax。此时,空气压缩机320消耗不能通过电加热器730消耗的再生电力,如等式(4)所示。

在步骤s135中,当二次电池650的可充电电力pbalw是正值时,可以通过使用再生电力的一部分对二次电池650充电。以这种方式,抑制了制冷剂被电加热器730加热。因此,当在燃料电池车辆10中没有输入关于加热的命令时,更易于调节制冷剂的温度。在该情况下,用以下所示的等式(3a)来代替前述等式(3),并且用以下所示的等式(4a)来代替前述等式(4)。

ph=min((pm-pbalw),phmax)...(3a)

pa=min((pm-pbalw-ph),pamax)...(4a)

顺便提及,当电加热器730的最大电力消耗phmax等于或大于再生电力pm时,在等式(4)和(4a)中的每个等式中的空气压缩机320的电力命令值pa等于0。在该情况下,燃料电池660基本停止生成电力。如果不需要向燃料电池660供应氧化气体,则不向空气压缩机320供应电力。此外,当燃料电池660生成电力时,空气压缩机320被供应电力使得可以根据由燃料电池660生成的电力量来供应氧化气体。

在本发明的本实施方式中,如果在步骤s110中确定没有执行降档(步骤s110中为“否”),则在步骤s130中确定二次电池650处于不可充电状态(步骤s130中为“是”)。当在执行步骤s135时再生电力相对较小时,仅电加热器730被用于消耗再生电力。然后,当由于再生电力随后增加而导致再生电力pm超过电加热器730的最大电力消耗phmax时,使用空气压缩机320以及电加热器730来消耗再生电力。

如果在步骤s120和步骤s135中即使使用了空气压缩机320和电加热器730也不能消耗再生电力,则可以使用又一辅助装置来消耗再生电力。

对于被配置成如上文所述的根据本发明的第三实施方式的燃料电池车辆10,当执行第三控制时,按优先级使用驱动噪声相对大的第一辅助装置来消耗再生电力。因此,即使当第一辅助装置生成相对大的驱动噪声时,该驱动噪声的生成是伴随着降档(用于改变成生成更大量的再生电力的操作模式的操作性操纵)而发生,因此可以抑制用户产生陌生感。此外,在本发明的本实施方式中,当在第三控制中第一辅助装置不能充分消耗再生电力时,在降档之后进一步使第二辅助装置开始消耗再生电力。在该情况下,第二辅助装置的驱动噪声相对安静。因此,即使当在与用户执行的操作性操纵不同的时刻使第二辅助装置开始消耗再生电力时,也能够抑制用户产生陌生感。

此外,根据本发明的第三实施方式,当执行第二控制时,按优先级使用驱动噪声相对安静的第二辅助装置来消耗再生电力。在该情况下,即使当确定二次电池650处于不可充电状态(步骤s130中为“是”)并且突然开始由第二辅助装置消耗再生电力的操作时,因为第二辅助装置的驱动噪声相对安静,所以也可以抑制用户产生陌生感。然后,通过按优先级使用第二辅助装置,可以抑制第一辅助装置被使用。此外,在本发明的本实施方式中,当在第二控制中第二辅助装置不能充分消耗再生电力时,附加地开始由第一辅助装置消耗再生电力。在该情况下,按优先级使用第二辅助装置,因此可以减少由第一辅助装置消耗的电力量,并且可以进一步减轻驱动噪声相对大的第一辅助装置的驱动噪声。因此,可以通过附加地使用第一辅助装置来抑制由于消耗再生电力而导致用户产生陌生感。

在本发明的第三实施方式中,在执行第三控制时按优先级使用第一辅助装置消耗再生电力,并且在执行第二控制时按优先级使用第二辅助装置消耗再生电力,但是本发明的第三实施方式可以采用与其不同的配置。例如,在执行第三控制或执行第二控制时,可以选择与前述辅助装置不同的辅助装置作为消耗再生电力的辅助装置。

d.其他实施方式

本发明的第二实施方式和本发明的第三实施方式可以彼此组合。也就是说,当估计出电存储装置采取不可充电状态时执行第三控制的配置和根据驱动噪声来选择在第三控制或第二控制中将按优先级来用以消耗再生电力的辅助装置的配置可以彼此组合。

本发明不限于其前述实施方式,而是可以在不脱离其主旨的范围内以各种配置来实现。例如,与各个方面的技术特征对应的本发明的实施方式中的技术特征可以彼此替换或以适当的方式彼此组合,以解决前述问题中的一个、一些或全部或者实现前述效果中的一个、一些或全部。此外,可以以适当的方式删除技术特征,除非它们被描述为是在本说明书中绝对必要的。此外,例如,在本发明的每个前述实施方式中已经描述了在燃料电池车辆中执行本发明的控制的示例。然而,本发明的控制适用于被配置成能够实现再生电力生成并且在不能用再生电力对二次电池充电的情况下使辅助装置消耗再生电力的任何车辆。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1