驱动系统的控制装置的制作方法

文档序号:22679269发布日期:2020-10-28 12:38阅读:128来源:国知局
驱动系统的控制装置的制作方法

本发明涉及适用于车辆的驱动系统的控制装置。



背景技术:

日本特开2009-241633记载的电池状态检测系统搭载于具有怠速停止功能的车辆。在该电池状态检测系统中,计测铅蓄电池的端子间电压。并且,基于铅蓄电池的端子间电压来算出铅蓄电池的内部电阻,基于该内部电阻,推定铅蓄电池的劣化度。



技术实现要素:

通常,在铅蓄电池那样的能够充电的蓄电池中,如图4中的实线所示,从充满电的状态开始随着放电而内部电阻逐渐上升,对应于此而端子间电压也逐渐下降。而且,如图4中的实线所示,随着蓄电池的劣化而内部电阻逐渐上升,对应于此端子间电压也逐渐下降。在日本特开2009-241633那样的电池状态检测系统中,对充满电时的内部电阻或与放电相伴的内部电阻的变化的方式根据蓄电池的劣化的程度而变化的情况进行利用,基于内部电阻来推定铅蓄电池的劣化度。

然而,根据蓄电池的使用形态等,存在即使蓄电池劣化而内部电阻也未进行上述那样的变化的情况。具体而言,存在尽管与在充满电的状态下未产生劣化时的内部电阻没有大的差异,然而实际上产生劣化而能够放电的容量少的情况。在该情况下,成为如图4中的虚线所示,在接近充满电时内部电阻相应低,但是伴随着放电而内部电阻急剧上升这样的蓄电池的特性。在日本特开2009-241633记载那样的电池状态检测系统中,蓄电池劣化的结果是,未想到蓄电池的特性成为上述那样的特性的情况,无法适当地判定这样的劣化。

为了解决上述课题,本发明涉及一种控制装置,适用于车辆的驱动系统,所述车辆的驱动系统具备作为驱动源的发动机、以所述发动机为动力源而被充电的蓄电池、由来自所述蓄电池的电力驱动而起动所述发动机的起动器、测定所述蓄电池的电压的电压传感器,其中,所述控制装置具备劣化判定部,在第一蓄电池起动电压与第二蓄电池起动电压之差大于预先确定的劣化判定阈值的情况下,所述劣化判定部判定为所述蓄电池已劣化,所述第一蓄电池起动电压是在驱动所述起动器时所述电压传感器测定出的电压,所述第二蓄电池起动电压是在与测定出所述第一蓄电池起动电压的定时不同的定时驱动所述起动器时所述电压传感器测定出的电压。

在上述结构中,驱动起动器是在发动机的起动时,起动器以外的电动辅机的消耗电力为大致恒定的可能性高。而且,即使假设起动器以外的电动辅机的消耗电力存在差异,与起动器的消耗电力相比也相应小。因此,通过将驱动起动器时的蓄电池的起动电压彼此进行比较,能排除电动辅机的消耗电力等的影响,适当地判定蓄电池的劣化状态。并且,在第一蓄电池起动电压与第二蓄电池起动电压之差大时判定为蓄电池劣化,由此,即使是伴随着放电而内部电阻急剧上升那样的蓄电池的劣化的方式,也能够判定该蓄电池的劣化。

在上述控制装置中,可以是,所述控制装置具备发动机控制部,在所述发动机正在被驱动的状态下,在满足了预先确定的暂时停止条件时,所述发动机控制部使驱动的所述发动机暂时停止,在所述劣化判定部判定了蓄电池的劣化时,即使满足所述暂时停止条件,所述发动机控制部也禁止发动机的暂时停止。根据上述结构,能够避免在蓄电池劣化而能够放电的容量减小的情况下,由于发动机的暂时停止蓄电池未被充电,而过度被放电的情况。

在上述控制装置中,可以是,在禁止所述发动机的暂时停止的禁止状态下,在所述蓄电池的充电量大于预先确定的充电量的情况下,所述发动机控制部解除所述发动机的暂时停止的禁止。

根据上述结构,当蓄电池的充电量大于预先确定的充电量时,即使蓄电池劣化,也能够进行发动机的暂时停止。在该情况下,通过解除发动机的暂时停止的禁止,能够增加发动机的暂时停止的机会。

在上述控制装置中,可以是,在将从所述禁止状态解除了所述发动机的暂时停止的禁止的状态设为临时许可状态时,在所述临时许可状态下,在所述第一蓄电池起动电压与所述第二蓄电池起动电压之差大于临时许可禁止阈值的情况下,所述发动机控制部再次禁止所述发动机的暂时停止,所述临时许可禁止阈值被确定为比所述劣化判定阈值小的值。

根据上述结构,在一旦判定了蓄电池的劣化时,即使假设发动机的暂时停止的禁止被解除,也容易再次禁止发动机的暂时停止。因此,即使在设为蓄电池的内部电阻急剧增大那样的劣化的方式的情况下,也能够避免蓄电池的过度的放电。

在上述控制装置中,可以是,在将从所述禁止状态解除了所述发动机的暂时停止的禁止的状态设为临时许可状态时,在临时许可状态下所述第一蓄电池起动电压与所述第二蓄电池起动电压之差小于所述劣化判定阈值的状态持续了预先确定的期间的情况下,所述劣化判定部判定为所述蓄电池未劣化。

根据上述结构,在蓄电池的劣化判定错误而蓄电池实际上未劣化的情况或将劣化的蓄电池更换为新的蓄电池的情况下,判定为蓄电池未劣化。伴随于此,成为发动机的暂时停止被禁止之前的状态,因此在判定为蓄电池未劣化之后,容许发动机的暂时停止,能够增加发动机的暂时停止的机会。

附图说明

下面将参考附图描述本发明示例性实施例的特征、优点以及技术和工业意义,附图中类似的数字表示类似的元件,并且其中:

图1是驱动系统的概要图。

图2是表示驱动起动器时的电压的变化的坐标图。

图3是表示发动机的控制模式的许可状态、禁止状态、临时许可状态的关系的图。

图4是表示劣化引起的内部电阻相对于充电量的变化的坐标图。

具体实施方式

以下,参照附图,说明适用于车辆的驱动系统的控制装置的一实施方式。首先,说明驱动系统的整体结构。

如图1所示,驱动系统10具备作为车辆的驱动源的发动机11。在发动机11驱动连结有基于从发动机11输出的驱动转矩进行驱动而发电的交流发电机12。

在交流发电机12电连接有通过交流发电机12的发电电力充电的铅蓄电池13。即,铅蓄电池13作为以发动机11为驱动源而被充电的蓄电池发挥功能。在铅蓄电池13安装有检测铅蓄电池13的端子间的电压、电流及温度的蓄电池传感器21。即,蓄电池传感器21作为电压传感器发挥功能。

在铅蓄电池13电连接有接受来自铅蓄电池13的供电而进行驱动的车载设备14。作为车载设备14,例如为车载的音频设备、空调器等电动辅机。而且,在铅蓄电池13电连接有使发动机11起动的起动器14a作为车载设备14之一。起动器14a安装于发动机11,当起动器14a通过来自铅蓄电池13的电力进行驱动时,发动机11起动。

车辆具备适用于驱动系统10的控制装置30。控制装置30具有基于各种信号来判定铅蓄电池13的劣化的劣化判定部40、对发动机11的起动及停止进行控制的发动机控制部50。

从蓄电池传感器21向控制装置30的劣化判定部40输入表示铅蓄电池13的端子间电压v的信号。并且,劣化判定部40的存储部41存储发动机11起动时的冲击电压vs。在此,如图2所示,发动机控制部50在使发动机11起动时,通过来自铅蓄电池13的电力来驱动起动器14a。此时,通过比较大的电流流动而铅蓄电池13的端子间电压v产生比较大的下降。在本实施方式中,将起动器14a驱动时的铅蓄电池13的端子间电压v中的最低的电压设为冲击电压vs。

如图1所示,每当驱动起动器14a时,劣化判定部40的存储部41存储冲击电压vs。在该实施方式中,存储部41存储过去2次的冲击电压vs。而且,存储部41在存储新的冲击电压vs时,消去较旧的冲击电压vs。

劣化判定部40的算出部42将存储部41存储的过去2次的冲击电压vs中的旧的一方设为第一蓄电池起动电压vs1,将新的一方设为第二蓄电池起动电压vs2,算出两者之差的绝对值即电压差vd。即,如图2所示,电压差vd是驱动起动器14a时的第一蓄电池起动电压vs1和在与测定出第一蓄电池起动电压vs1的定时不同的定时驱动起动器14a时的第二蓄电池起动电压vs2之差。

如图1所示,劣化判定部40的判定部43在算出部42算出的电压差vd大于预先确定的劣化判定阈值vdl1的情况下,判定为铅蓄电池13劣化。需要说明的是,劣化判定阈值vdl1预先通过试验等,如图4的虚线所示,确定为在铅蓄电池13产生伴随着放电而内部电阻急剧上升那样的劣化时,能够检测与该内部电阻的上升相伴的电压下降那样的电压值。

如图1所示,从检测加速踏板的操作量的加速踏板传感器22向控制装置30的发动机控制部50输入表示加速踏板的操作量的信息。而且,从检测车辆的行驶速度即车速的车速传感器23向发动机控制部50输入表示车速的信息。此外,从检测制动踏板是否被操作的制动踏板传感器24向发动机控制部50输入表示制动踏板是否被操作的信息。而且,向发动机控制部50输入表示在使发动机11从停止至驱动时使用的点火开关25的接通及断开状态的信号。

发动机控制部50在发动机11正在被驱动的状态下,在满足了预先确定的执行条件时,使驱动的发动机11暂时停止。发动机11的暂时停止的执行条件是满足例如加速踏板的操作量为0、车速为0、制动踏板被操作这全部的条件。发动机控制部50在满足了执行条件时,使发动机11暂时停止,并且在发动机11暂时停止时,在不再满足执行条件时,使起动器14a驱动,由此使发动机11再起动。

另外,发动机控制部50基于向控制装置30输入的铅蓄电池13的端子间电压v、电流、温度,算出铅蓄电池13的充电量soc。需要说明的是,在本实施方式中,充电量soc是铅蓄电池13能够放电的电力量。即,假设为充满电时,已劣化的情况的充电量soc比未劣化的情况的充电量soc小。在图4中,为了便于说明,关于状态不同的电池的特性,在右端记载为充满电。因此,在状态不同的电池间,充满电时的充电量soc不同。

如图3所示,发动机控制部50将与发动机11的暂时停止的许可或禁止相关的控制模式切换为发动机11能够暂时停止的许可状态、禁止发动机11的暂时停止的禁止状态、暂且许可发动机11的暂时停止的临时许可状态中的任一状态。

发动机控制部50在劣化判定部40判定为铅蓄电池13未劣化的情况下,使发动机11的控制模式成为许可状态。而且,发动机控制部50在发动机11的控制模式为许可状态时,在满足了禁止条件a的情况下,使发动机11的控制模式成为禁止状态。每当起动器14a被驱动时,发动机控制部50判定是否满足禁止条件a。禁止条件a是劣化判定部40判定了铅蓄电池13的劣化的条件。

发动机控制部50在发动机11的控制模式为禁止状态时,在满足率临时许可条件b1的情况下,使发动机11的控制模式为临时许可状态。每当起动器14a被驱动时,发动机控制部50判定是否满足临时许可条件b1。需要说明的是,当发动机11的控制模式从禁止状态向临时许可状态转移时,解除发动机11的暂时停止的禁止。而且,即使发动机11的控制模式从禁止状态向临时许可状态转移,也未判定为铅蓄电池13未产生劣化,因此依然是铅蓄电池13被判定为劣化的状态。

临时许可条件b1是点火开关25从断开成为接通的次数(所谓行程数)成为预先确定的次数n的条件。在此,在发动机11的控制模式为禁止状态时,如果点火开关25从断开切换为接通,则推定为发动机11被驱动而铅蓄电池13被充电。并且,由于发动机11被禁止暂时停止且发动机11被驱动的期间长,因而能够推定为铅蓄电池13的充电量soc增大。因此,在本实施方式中,在发动机11的控制模式为禁止状态时,在点火开关25从断开成为接通的次数成为了预先确定的次数n以上的情况下,可看作为铅蓄电池13的充电量soc成为了预先确定的规定充电量socl以上。需要说明的是,规定充电量socl预先通过试验等,算出为如下的充电量soc,即,即使从发动机11的暂时停止开始使发动机11再起动,也预先确保一定程度的充电量soc作为铅蓄电池13的充电量soc,为此所需的充电量soc。而且,关于次数n,预先设想一定的期间作为点火开关25从断开切换为接通并再次成为断开为止的1行程的期间,预先通过试验等确定为了将铅蓄电池13充电规定充电量socl所需的次数。

发动机控制部50在发动机11的控制模式为临时许可状态时,在满足了再禁止条件b2的情况下,使发动机11的控制模式成为禁止状态。发动机控制部50每当起动器14a被驱动时,判定是否满足再禁止条件b2。需要说明的是,如果发动机11的控制模式从临时许可状态向禁止状态转移,则发动机11的暂时停止再次被禁止。再禁止条件b2是劣化判定部40的算出部42算出的电压差vd比确定为小于劣化判定阈值vdl1的值的再禁止阈值vdl2大的条件。这样,临时许可状态虽然容许发动机11的暂时停止,但是容易再次向禁止状态转移,这一点与许可状态不同。

发动机控制部50在发动机11的控制模式为临时许可状态时,如果满足再许可条件c,则再许可发动机11的暂时停止。发动机控制部50每当起动器14a被驱动时,判定是否满足再许可条件c。再许可条件c是劣化判定部40判定为铅蓄电池13未产生劣化的条件。

另外,劣化判定部40在发动机11的控制模式为临时许可状态时,判定铅蓄电池13的劣化是否消除。用于判定为铅蓄电池13的劣化消除的条件是判定为在发动机11的控制模式为临时许可状态时被反复判定的再禁止条件b2连续地不满足预先确定的次数m的条件。换言之,判定为铅蓄电池13的劣化消除而铅蓄电池13未产生劣化的条件是电压差vd小于再禁止阈值vdl2的状态持续一定期间的条件。需要说明的是,次数m通过将作为能够确认铅蓄电池13未产生劣化的情况的期间而预先确定的期间(几小时~几十小时)除以作为1行程的期间而预先确定的期间来求出。

接下来,说明基于劣化判定部40的铅蓄电池13的劣化判定、及基于发动机控制部50的发动机11的控制模式的切换处理的作用。需要说明的是,在以下的说明中,说明随着时间从定时t1向定时t3经过而铅蓄电池13的放电量增加,充电量soc下降的情况。而且,如图4中的虚线所示,成为在铅蓄电池13产生劣化,与接近充满电时未产生劣化的铅蓄电池13的内部电阻之差小,但是随着放电而内部电阻急剧增大那样的特性。

如图4所示,在铅蓄电池13的充电量soc为大致充满电的定时t1起动器14a被驱动,然后,隔着发动机11的停止,再次在定时t2起动器14a被驱动。此时,如图4中的虚线所示,在定时t2的时间点,如果作为铅蓄电池13的充电量soc而相应的充电量soc残留,则铅蓄电池13的内部电阻在定时t2时与定时t1时大致相同。因此,在定时t1驱动起动器14a时的冲击电压vs即第一蓄电池起动电压vs1与在定时t2驱动起动器14a时的冲击电压vs即第二蓄电池起动电压vs2为大致相同值,两者的电压差vd成为大致0。其结果是,在定时t2的时间点,劣化判定部40判定为铅蓄电池13未产生劣化。伴随于此,发动机控制部50使发动机11的控制模式仍为许可状态。

在定时t2之后,再次在定时t3驱动起动器14a。此时,如图4中的虚线所示,在定时t3的时间点,如果铅蓄电池13的充电量soc下降,则铅蓄电池13的内部电阻与定时t2时相比急剧增大。因此,在定时t2驱动起动器14a时的冲击电压vs即第一蓄电池起动电压vs1与在定时t3驱动起动器14a时的冲击电压vs即第二蓄电池起动电压vs2的电压差vd大于劣化判定阈值vdl1。其结果是,在定时t3的时间点,劣化判定部40判定为铅蓄电池13产生劣化。而且,由于劣化判定部40判定了劣化,因此如图3所示,禁止条件a满足,发动机11的控制模式从许可状态向禁止状态切换。

在发动机11的控制模式处于禁止状态的情况下,禁止该发动机11的暂时停止而继续发动机11的驱动,因此在整体上,铅蓄电池13的充电量soc增加。并且,通过发动机11的暂时停止被禁止的状态下的行程数成为次数n,从而铅蓄电池13的充电量soc变得比规定充电量socl大时,发动机控制部50将发动机11的控制模式从禁止状态向临时许可状态切换。

在发动机11的控制模式处于临时许可状态的情况下,该发动机11的暂时停止被临时许可而发动机11的驱动被暂时停止,因此在整体上,铅蓄电池13的充电量soc减少。并且,在铅蓄电池13的充电量soc减少而铅蓄电池13的内部电阻相应升高时,即,电压差vd大于再禁止阈值vdl2时,发动机控制部50将发动机11的控制模式从临时许可状态向禁止状态切换。

在此,在发动机的11的控制模式为临时许可状态的情况下,将已劣化的铅蓄电池13更换为新的铅蓄电池13。在未劣化的铅蓄电池13中,即使充电量soc变化,内部电阻也不会那么急剧变化。因此,在更换为新的铅蓄电池13的情况下,电压差vd不会成为再禁止阈值vdl2以下,电压差vd大于再禁止阈值vdl2的状态继续。其结果是,判定为铅蓄电池13未产生劣化而将发动机11的控制模式从临时许可状态切换为许可状态。

需要说明的是,在上述的说明中,说明了随着时间从定时t1向定时t3经过而铅蓄电池13的充电量soc下降的情况。相对于此,即使在随着时间经过而铅蓄电池13的充电量soc上升的情况下,只要电压差vd大于再禁止阈值vdl2,就将控制模式从许可状态切换为禁止状态。

接下来,说明本实施方式的效果。在本实施方式中,起动器14a被驱动是在发动机11的起动时,起动器14a以外的车载设备14的消耗电力为大致恒定的可能性高。而且,即使假设起动器14a以外的车载设备14的消耗电力存在差异,与起动器14a的消耗电力相比也相应小。因此,通过将驱动起动器14a时的铅蓄电池13的冲击电压vs彼此进行比较,能够排除车载设备14的消耗电力等的影响,适当地判定铅蓄电池13的劣化状态。并且,在第一蓄电池起动电压vs1与第二蓄电池起动电压vs2之差大时判定为铅蓄电池13劣化,由此即使是伴随着放电而内部电阻急剧上升那样的铅蓄电池13的劣化的方式,也能够判定该铅蓄电池13的劣化。

在本实施方式中,在判定了铅蓄电池13的劣化的情况下,将发动机11的控制模式切换为禁止状态,禁止发动机11的暂时停止。因此,能够避免在铅蓄电池13劣化而能够放电的容量减小的情况下,由于发动机11的暂时停止而铅蓄电池13未被充电,过度地被放电的情况。

在本实施方式中,即使在发动机11的控制模式切换为禁止状态之后,只要铅蓄电池13的充电量比预先确定的规定充电量socl大,就将控制模式切换为临时许可状态,容许发动机11的暂时停止。因此,即使铅蓄电池13已劣化,通过铅蓄电池13的充电量soc也能够实现发动机11的暂时停止。这样,通过解除发动机11的暂时停止的禁止,能够增加发动机11的暂时停止的机会。

在本实施方式中,在一旦判定到铅蓄电池13的劣化时,即使假设控制模式切换为临时许可状态而解除了发动机11的暂时停止的禁止,也容易再次禁止发动机11的暂时停止。因此,即使在设为铅蓄电池13的内部电阻急剧增大那样的劣化的方式的情况下,也能够避免铅蓄电池13的过度的放电。

在本实施方式中,在铅蓄电池13的劣化判定存在错误而铅蓄电池13实际未劣化的情况或劣化的铅蓄电池13更换为新的铅蓄电池13的情况下,判定为铅蓄电池13未劣化。伴随于此,由于成为发动机11的暂时停止被禁止之前的状态,因此在判定为铅蓄电池13未劣化之后,容许发动机11的暂时停止,能够增加发动机11的暂时停止的机会。

上述实施方式可以如以下那样变更实施。本实施方式及以下的变更例可以在技术上不矛盾的范围内组合实施。蓄电池的种类并不局限于铅蓄电池13。只要是具有在蓄电池劣化而充电量soc减小的情况下,在接近充满电时内部电阻几乎不变化,当充电量soc减小时内部电阻急剧变化的特性的蓄电池,就能够适用为上述实施方式的蓄电池。

控制装置30可以不进行与发动机11的暂时停止相关的控制模式的切换处理。在该情况下,在劣化判定部40判定了铅蓄电池13的劣化的情况下,可考虑进行通过使车辆的指示灯点亮而对驾驶者唤起注意这样的处理。而且,使该指示灯点亮的处理可以加入到发动机11的控制模式的切换所涉及的处理中进行。此外,也可以在劣化判定部40判定了铅蓄电池13的劣化的情况下,考虑进行限制车载设备14被供电的电力量的处理。而且,可以将限制该车载设备14被供电的电力量的处理加入到发动机11的控制模式的切换所涉及的处理中进行。

用于判定为满足了临时许可条件b1的条件并不局限于上述实施方式的例子。例如,可以算出铅蓄电池13的充电量soc,在算出的充电量soc成为了规定充电量socl以上时,判定为满足临时许可条件b1。

控制装置30可以省略发动机11的控制模式中的临时许可状态而仅通过许可状态和禁止状态这2个种类构成控制模式。在该情况下,例如,对于控制装置30,若劣化判定部40判定铅蓄电池13已劣化,在更换铅蓄电池13时,在修配工厂等中,只要控制模式未重置,就使发动机11的控制模式仍为禁止状态。

控制装置30可以不将发动机11的控制模式从临时许可状态向许可状态切换。在该情况下,一旦判定铅蓄电池13的劣化时,将发动机11的控制模式切换为禁止状态或临时许可状态中的任一个。并且,在更换铅蓄电池13时,通过在修配工厂等中将控制模式重置,从而将控制模式切换为许可模式即可。

再许可条件c并不局限于上述实施方式的例子。例如,再许可条件c可以是在预先确定的一定期间不满足再禁止条件b2的条件,也可以是在预先确定的一定期间不满足禁止条件a的条件。在该情况下,利用计时器测定不满足再禁止条件b2的时间,在该时间超过了预先通过试验等而确定的一定期间时,能够判定为满足了再许可条件c。至少,再许可条件c只要是电压差vd小于劣化判定阈值vdl1的状态持续了预先确定的期间即可。

蓄电池传感器21并不局限于上述实施方式的例子。可以分为测定铅蓄电池13的端子间电压v的电压传感器、测定电流的电流传感器、测定温度的温度传感器。只要至少能够测定铅蓄电池13的端子间电压v即可。

第一蓄电池起动电压vs1及第二蓄电池起动电压vs2可以不是冲击电压vs。例如图2所示,当起动器14a被驱动时,铅蓄电池13的端子间电压v瞬间地下降至冲击电压vs。然后,通过其反作用,端子间电压v上升,但是端子间电压v再次下降而取得极小值。将该极小值设为起动器14a使发动机11进行曲轴转动时的曲轴转动电压vc。并且,可以将驱动起动器14a时的曲轴转动电压vc1设为第一蓄电池起动电压,将在与之不同的定时驱动起动器14a时的曲轴转动电压vc2设为第二蓄电池起动电压,从而判定铅蓄电池13的劣化。此外,例如,可以采用从成为冲击电压vs至成为曲轴转动电压vc为止的平均电压作为蓄电池起动电压。

存储第一蓄电池起动电压和第二蓄电池起动电压的定时可以不是每当起动器14a被驱动时。例如,在起动器14a被驱动时,可以从上次起动器14a被驱动开始存在一定的充放电量时或经过了一定的期间之后,存储第二蓄电池起动电压。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1