车辆用控制装置的制作方法

文档序号:29611648发布日期:2022-04-13 09:24阅读:44来源:国知局
车辆用控制装置的制作方法

1.本发明涉及设置于混合动力车辆的车辆用控制装置。


背景技术:

2.在具备发动机及马达的混合动力车辆中搭载有具备无级变速器等变速器的动力传动系统(参照专利文献1~5)。另外,通过控制装入动力传动系统的离合器机构,能够切换动力传动系统内的发动机动力及马达动力的传递路径,切换发动机模式及马达模式等行驶模式。
3.现有技术文献
4.专利文献
5.专利文献1:国际公开第2013/145104号
6.专利文献2:日本特开2018-52320号公报
7.专利文献3:日本特开2001-245404号公报
8.专利文献4:日本特开2006-160104号公报
9.专利文献5:日本特开2019-187130号公报


技术实现要素:

10.发明所要解决的问题
11.但是,为了随着行驶模式的切换来联接离合器机构,需要使离合器机构输入侧和输出侧的转速同步。另外,在动力传动系统中装入变速器等,因此,为了使离合器机构输入侧和输出侧的转速同步,需要不仅进行发动机及马达的旋转控制,还要进行变速器的变速控制。但是,为了进行变速器的变速控制需要时间,因此,难以快速地切换行驶模式。
12.本发明的目的在于,快速地切换行驶模式。
13.用于解决问题的技术方案
14.本发明提供一种车辆用控制装置,其设置于混合动力车辆,包括:无级变速器,其经由输入路径连接于发动机及第一马达,且经由输出路径连接于车轮;离合器机构,其设置于所述输出路径;第二马达,其连接于车轮;行驶控制部,其控制所述发动机、所述第一马达、所述第二马达、所述无级变速器及所述离合器机构,作为行驶模式,具有将所述离合器机构控制成联接状态的第一模式和将所述离合器机构控制成释放状态的第二模式,所述行驶控制部在将行驶模式从所述第一模式切换成所述第二模式的情况下,将所述离合器机构控制成释放状态,且在维持所述无级变速器的变速比的状态下停止所述无级变速器;在将行驶模式从所述第二模式切换成所述第一模式的情况下,控制所述无级变速器,使所述离合器机构输入侧和输出侧的转速同步,且将所述离合器机构控制成联接状态。
15.发明效果
16.根据本发明,行驶控制部在将行驶模式从第一模式切换成第二模式的情况下,将离合器机构控制成释放状态,且在维持无级变速器的变速比的状态下停止无级变速器。由
此,能够将行驶模式从第二模式快速地切换成第一模式。
附图说明
17.图1是表示具备本发明一实施方式的车辆用控制装置的混合动力车辆的一例的概略图。
18.图2是表示车辆用控制装置的控制系统的一例的概略图。
19.图3是表示各行驶模式的设定区域的一例的模式图。
20.图4(a)及图4(b)是表示p2模式中的动力传动系统的工作状况的概略图。
21.图5(a)及图5(b)是表示p2+p4模式中的动力传动系统的工作状况的概略图。
22.图6是表示p4模式中的动力传动系统的工作状况的概略图。
23.图7是表示无级变速器的变速图(変速
マップ
)的一例的图。
24.图8是表示分界线l1、l3上的车速及请求驱动力的一例的图。
25.图9是表示分界线l1、l3上的目标变速比的一例的图。
26.图10是使用箭头x表示车速及请求驱动力的推移的一例的图。
27.图11(a)及图11(b)是表示沿着图10的箭头x切换行驶模式时的动力传动系统的工作状况的一例的图。
28.图12(a)及图12(b)是表示沿着图10的箭头x切换行驶模式时的动力传动系统的工作状况的一例的图。
29.图13是表示同步控制中的无级变速器的变速状况的一例的图。
30.图14是表示沿着图10的箭头x切换行驶模式时的动力传动系统的工作状况的一例的时序图(
タイミングチャート
)。
31.图15(a)~(c)是表示另一实施方式的车辆用控制装置具备的动力传动系统的图。
具体实施方式
32.以下,基于附图详细地说明本发明的实施方式。
33.[车辆结构]
[0034]
图1是表示具备本发明一实施方式的车辆用控制装置10的混合动力车辆11的一例的概略图。如图1所示,在混合动力车辆11中,作为动力源,搭载有具备发动机12、第一电动发电机(第一马达)mg1及第二电动发电机(第二马达)mg2的动力传动系统13。另外,在动力传动系统13中设置有具备初级带轮14及次级带轮15的无级变速器16。
[0035]
在初级带轮14的主轴17上经由输入路径18连接有发动机12及电动发电机mg1。即,发动机12的曲轴19经由发动机离合器20、输入轴21、变矩器22、涡轮轴23及输入离合器24连接于初级带轮14的主轴17。另外,电动发电机mg1的转子25经由链条机构26连接于输入轴21。这样,输入路径18利用发动机离合器20、链条机构26、输入轴21、变矩器22、涡轮轴23及输入离合器24构成。此外,图示的例子中,将电动发电机mg1与输入轴21在径向上偏离地配置,但不限于此,也可以在与输入轴21的同轴上配置电动发电机mg1。
[0036]
在次级带轮15的副轴30上,经由由输出离合器(离合器机构)31、输出轴32、差速器机构33及车轴34构成的输出路径35连接有车轮36。另外,电动发电机mg2的转子37经由齿轮组38连接于输出轴32。即,电动发电机mg2的转子37连接于输出离合器31与车轮36之间的输
出路径35。此外,图示的例子中,将电动发电机mg2与输出轴32在径向上偏离地配置,但不限于此,也可以在与输出轴32的同轴上配置电动发电机mg2。
[0037]
在初级带轮14上区划有主油室14a,在次级带轮15上区划有副油室15a。另外,在初级带轮14及次级带轮15上卷挂有驱动链条39。通过控制主油室14a和副油室15a的油压,能够控制初级带轮14及次级带轮15的槽宽。由此,能够使驱动链条39相对于各带轮14、15的卷绕直径变化,可进行从主轴17相对于副轴30的无级变速。
[0038]
另外,设置于输入路径18的发动机离合器20及输入离合器24、及设置于输出路径35的输出离合器31是可控制成联接状态和释放状态的液压离合器。通过将发动机离合器20控制成联接状态,能够将发动机12连接于变矩器22,通过将发动机离合器20控制成释放状态,能够将发动机12从变矩器22切离。另外,通过将输入离合器24控制成联接状态,能够将变矩器22连接于初级带轮14,通过将输入离合器24控制成释放状态,能够将变矩器22从初级带轮14切离。另外,通过将输出离合器31控制成联接状态,能够将次级带轮15连接于车轮36,通过将输出离合器31控制成释放状态,能够将次级带轮15从车轮36切离。
[0039]
为了向无级变速器16、变矩器22、发动机离合器20、输入离合器24及输出离合器31等控制供给工作油,在动力传动系统13中设置有由油泵等构成的液压系统40。在液压系统40中设置有由变矩器22的泵壳(
ポンプシェル
)22a驱动的机械泵41,并且设置有由电动马达42驱动的电动泵43。在液压系统40中,为了控制工作油的供给方及压力,还设置有由电磁阀及油路构成的阀体44。被该阀体44进行了调压的工作油经由未图示的液压回路供给至无级变速器16、变矩器22、发动机离合器20、输入离合器24及输出离合器31等。
[0040]
[控制系统]
[0041]
图2是表示车辆用控制装置10的控制系统的一例的概略图。此外,图2中表示简化的动力传动系统13。如图2所示,在车辆用控制装置10中,为了控制动力传动系统13的工作状态,设置有由微机等构成的各种控制器50~55。作为这些控制器,具有控制发动机12的发动机控制器50、控制无级变速器16及输出离合器31等的任务控制器51。作为控制器,还具有:控制电动发电机mg1的马达控制器52、控制电动发电机mg2的马达控制器53、控制连接于电动发电机mg1、mg2的电池56的电池控制器54、及集成控制各控制器50~54的主控制器55。这些控制器50~55经由can及lin等车载网络57相互通信自如地连接。
[0042]
为了掌握混合动力车辆11的行驶状态,在主控制器55中连接有各种传感器。作为连接于主控制器55的传感器,具有:检测加速踏板的操作状况的加速传感器60、检测制动踏板的操作状况的制动传感器61、检测车辆的行驶速度即车速的车速传感器62。作为连接于主控制器55的传感器,还具有:检测曲轴19的转速的发动机旋转传感器、检测输入轴21的转速的输入旋转传感器、检测主轴17的转速的主旋转传感器、检测副轴30的转速的副旋转传感器、及检测输出轴32的转速的输出旋转传感器等。
[0043]
主控制器(行驶控制部)55基于从各种传感器及控制器发送的信息设定发动机12、电动发电机mg1、mg2、无级变速器16、及各种离合器20、24、31等控制目标,并对于各控制器50~54输出基于这些控制目标的控制信号。然后,从主控制器55接收到控制信号的各控制器50~54控制发动机12、电动发电机mg1、mg2、无级变速器16及各种离合器20、24、31等。
[0044]
即,从主控制器55接收到控制信号的发动机控制器50向由喷射器及节气门等构成的发动机辅机70输出控制信号,控制发动机扭矩及发动机转速等。另外,任务控制器51向对
工作油进行调压的阀体44输出控制信号,控制无级变速器16、发动机离合器20、输入离合器24、输出离合器31及变矩器22等工作状态。另外,马达控制器52向连接于电动发电机mg1的逆变器71输出控制信号,并控制电动发电机mg1的马达扭矩及马达转速等。另外,马达控制器53向连接于电动发电机mg2的逆变器72输出控制信号,控制电动发电机mg2的马达扭矩及马达转速等。此外,对于逆变器71、72连接有锂离子电池等电池56。
[0045]
[行驶模式]
[0046]
作为混合动力车辆11的行驶模式,车辆用控制装置10具有“p2模式”、“p2+p4模式”及“p4模式”。p2模式是使用电动发电机mg1的行驶模式,p2+p4模式是使用电动发电机mg1、mg2的行驶模式,p4模式是使用电动发电机mg2的行驶模式。另外,使用电动发电机mg1的p2模式及p2+p4模式是将输出离合器31控制成联接状态的第一模式,不使用电动发电机mg1的p4模式是将输出离合器31控制成释放状态的第二模式。
[0047]
图3是表示各行驶模式的设定区域的一例的模式图。如图3所示,在模式图中,基于车速及请求驱动力设定有区划各行驶模式的执行区域的分界线l1~l3。即,在由车速及请求驱动力决定的车辆的行驶状态为低于分界线l1且低于分界线l2的行驶状态的情况下,作为行驶模式执行p2模式。另外,在为超过分界线l2且超过分界线l3的行驶状态的情况下,作为行驶模式执行p2+p4模式,在超过分界线l1且低于分界线l3的行驶状态的情况下,作为行驶模式执行p4模式。此外,对于车辆的请求驱动力即车辆的目标驱动力可基于例如司机的加速操作设定。即,加速踏板的踏入量越多,越大地设定请求驱动力,加速踏板的踏入量越少,越小地设定请求驱动力。
[0048]
图4(a)及(b)是表示p2模式中的动力传动系统13的工作状况的概略图。如图4(a)及(b)所示,在p2模式中,将输入离合器24及输出离合器31控制成联接状态,将电动发电机mg1控制成动力运行状态(力行状態)或再生状态,且将电动发电机mg2控制成空转状态。由此,能够经由无级变速器16向车轮36传递电动发电机mg1的马达动力,能够通过电动发电机mg1的马达动力使车辆行驶。
[0049]
此外,在仅利用电动发电机mg1确保请求驱动力的情况下,如图4(a)所示,发动机离合器20控制成释放状态,发动机12控制成停止状态。另一方面,在仅利用电动发电机mg1不能确保请求驱动力的情况下,如图4(b)所示,将发动机离合器20控制成联接状态,将发动机12控制成运转状态。另外,在由于电池56的电力耗尽等难以驱动电动发电机mg1的情况下,也可以仅使用发动机12使车辆行驶。这样,在仅使用发动机12的情况下,也可以设置从输入轴21切离电动发电机mg1的离合器,并且通过释放该离合器,停止电动发电机mg1的旋转。
[0050]
图5(a)及(b)是表示p2+p4模式中的动力传动系统13的工作状况的概略图。如图5(a)及(b)所示,在p2+p4模式中,将输入离合器24及输出离合器31控制成联接状态,将电动发电机mg1控制成动力运行状态或再生状态,将电动发电机mg2控制成动力运行状态或再生状态。由此,能够将电动发电机mg1、mg2的马达动力传递至车轮36,能够通过电动发电机mg1、mg2的马达动力使车辆行驶。
[0051]
此外,在p2+p4模式中,在仅利用电动发电机mg1、mg2确保请求驱动力的情况下,如图5(a)所示,发动机离合器20被控制成释放状态,发动机12被控制成停止状态。另一方面,在仅利用电动发电机mg1、mg2不能确保请求驱动力的情况下,如图5(b)所示,将发动机离合
器20控制成联接状态,将发动机12控制成运转状态。另外,在p2+p4模式中,在由于电池56的电力耗尽等而难以驱动电动发电机mg1、mg2的情况下,也可以仅使用发动机12使车辆行驶。这样,在仅使用发动机12的情况下,也可以设置从输入轴21切离电动发电机mg1的离合器,并且通过释放该离合器,停止电动发电机mg1的旋转。
[0052]
图6是表示p4模式中的动力传动系统13的工作状况的概略图。如图6所示,在p4模式中,将发动机离合器20、输入离合器24及输出离合器31控制成释放状态,将发动机12及电动发电机mg1控制成停止状态,将电动发电机mg2控制成动力运行状态或再生状态。由此,能够将电动发电机mg2的马达动力传递至车轮36,能够通过电动发电机mg2的马达动力使车辆行驶。此外,在p4模式中,将发动机12及电动发电机mg1控制成停止状态,将输出离合器31控制成释放状态,因此,无级变速器16控制成使初级带轮14及次级带轮15的旋转停止的停止状态。
[0053]
这样,在作为第一模式的“p2模式”或“p2+p4模式”中,将输出离合器31控制成联接状态,将无级变速器16控制成旋转状态,将发动机12和电动发电机mg1中的至少任一方控制成旋转状态,将电动发电机mg2控制成旋转状态。另一方面,在作为第二模式的“p4模式”中,将输出离合器31控制成释放状态,将无级变速器16控制成停止状态,将发动机12和电动发电机mg1双方控制成停止状态,将电动发电机mg2控制成旋转状态。此外,电动发电机mg1、mg2的旋转状态为电动发电机mg1、mg2的转子旋转的状态,是指动力运行状态、再生状态及空转状态。
[0054]
[无级变速器的变速控制]
[0055]
接着,对主控制器55进行的无级变速器16的变速控制进行说明。在行驶模式为p2模式或p2+p4模式的情况下,经由无级变速器16输出发动机动力及马达动力,因此,利用主控制器55控制无级变速器16的变速比。
[0056]
图7是表示无级变速器16的变速图的一例的图。如图7所示,在变速图中设定有表示低速侧的最大变速比的特性线l,并设定有表示高速侧的最小变速比的特性线h。另外,如以虚线所示,在变速图中设定有与请求驱动力对应的多个特性线。随着踏入加速踏板以增加请求驱动力,选择箭头α方向即上方的特性线。另一方面,随着放缓加速踏板的踏入以减少请求驱动力,选择箭头β方向即下方的特性线。
[0057]
例如,如以箭头γ所示,在以车速va的行驶中踏入加速踏板,对于车辆的请求驱动力增加的情况下,目标主转速从npa上升至npb,无级变速器16的目标变速比从“tra”变更成“trb”。即,无级变速器16的目标变速比从“tra”上升至低速侧的“trb”,与请求驱动力的增加对应,从无级变速器16输出的扭矩增加。此外,无级变速器16的变速比是主轴17的转速np相对于副轴30的转速ns的比(np/ns)。
[0058]
[通过分界线时的变速比]
[0059]
接着,对模式图的分界线l1、l3上的变速比进行说明。图8是表示分界线l1、l3上的车速及请求驱动力的一例的图,图9是表示分界线l1、l3上的目标变速比的一例的图。
[0060]
如图8中以箭头a所示,当通过车速或请求驱动力上升,使车辆的行驶状态超过分界线l1时,将行驶模式从p2模式切换至p4模式。即,如图8中以符号s1所示,在行驶模式从p2模式切换至p4模式的定时,请求驱动力为“rf1”,车速为“v1”。在此,如图9中以符号s1所示,在选择请求驱动力与“rf1”对应的特性线lf1,且车速为“v1”的情况下,将无级变速器16的
目标变速比设定成“tr1”。
[0061]
如图8中以箭头b所示,当通过车速或请求驱动力下降,使车辆的行驶状态低于分界线l1时,将行驶模式从p4模式切换至p2模式。即,如图8中以符号s2所示,在行驶模式从p4模式切换至p2模式的定时,请求驱动力为“rf2”,车速为“v1”。在此,如图9中以符号s2所示,在选择请求驱动力与“rf2”对应的特性线lf2,且车速为“v1”的情况下,将无级变速器16的目标变速比设定成“tr2”。
[0062]
如图8中以箭头c所示,当通过车速或请求驱动力上升,使车辆的行驶状态超过分界线l3时,将行驶模式从p4模式切换至p2+p4模式。即,如图8中以符号s3所示,在行驶模式从p4模式切换至p2+p4模式的定时,请求驱动力为“rf3”,车速为“v3”。在此,如图9中以符号s3所示,在选择请求驱动力与“rf3”对应的特性线lf3,且车速为“v3”的情况下,将无级变速器16的目标变速比设定成“tr3”。
[0063]
如图8中以箭头d所示,当通过车速或请求驱动力下降,使车辆的行驶状态低于分界线l3时,将行驶模式从p2+p4模式切换至p4模式。即,如图8中以符号s4所示,在行驶模式从p2+p4模式切换至p4模式的定时,请求驱动力为“rf4”,车速为“v4”。在此,在图9中以符号s4所示,在选择请求驱动力与“rf4”对应的特性线lf4,且车速为“v4”的情况下,将无级变速器16的目标变速比设定成“tr4”。
[0064]
[行驶模式切换控制]
[0065]
以下,对行驶模式切换控制的执行顺序进行说明。图10是使用箭头x表示车速及请求驱动力的推移的一例的图,图10中表示行驶模式从p2模式经由p4模式到达p2+p4模式的状况。此外,图10中表示的符号s1、s3表示与图8及图9中表示的符号s1、s3相同的行驶状态。另外,图11及图12是表示沿着图10的箭头x切换行驶模式时的动力传动系统13的工作状况的一例的图。
[0066]
如图10中以符号α1所示,在车速或请求驱动力低于分界线l1、l2的情况下,将行驶模式设定成p2模式。即,如图11(a)所示,将输入离合器24及输出离合器31控制成联接状态,将电动发电机mg1控制成动力运行状态,将电动发电机mg2控制成空转状态。由此,如以箭头f1所示,能够将电动发电机mg1的马达动力经由无级变速器16传递至车轮36。此外,图示的例子中,将发动机离合器20控制成释放状态,将发动机12控制成停止状态。
[0067]
接着,如图10中以符号α2所示,当通过车速或请求驱动力上升,使车辆的行驶状态到达分界线l1时,将行驶模式从p2模式切换至p4模式。即,如图11(b)所示,将输入离合器24及输出离合器31控制成释放状态,将无级变速器16控制成停止状态,将电动发电机mg1控制成停止状态,将电动发电机mg2控制成动力运行状态。由此,如以箭头f2所示,能够将电动发电机mg2的马达动力传递至车轮36。
[0068]
这样,在将行驶模式从p2模式切换至p4模式时,在将输出离合器31控制成释放状态之后,将无级变速器16控制成停止状态,但无级变速器16在维持p2模式中的变速比的状态下控制成停止状态。即,即使在不使用无级变速器16的p4模式中,不将无级变速器16的变速比控制成最小变速比h或最大变速比l,而是无级变速器16在维持p2模式中的变速比的状态下控制成停止状态。
[0069]
接着,如图10中以符号α3所示,当通过车速或请求驱动力上升,使车辆的行驶状态到达分界线l3时,将行驶模式从p4模式切换至p2+p4模式。在此,为了将行驶模式从p4模式
切换至p2+p4模式,需要将输出离合器31控制成联接状态,但在联接输出离合器31时,从抑制输出离合器31的联接振动的观点来看,需要使离合器输入侧和输出侧的转速同步。
[0070]
因此,如图12(a)所示,为了使输出离合器输入侧和输出侧的转速同步,动力传动系统13在将输出离合器31维持成释放状态的状态下,将输入离合器24控制成联接状态,将电动发电机mg1控制成动力运行状态,控制无级变速器16的变速比。由此,能够如以箭头f2所示,将电动发电机mg2的马达动力传递至车轮36,且如以箭头f3所示,通过电动发电机mg1的马达动力提高副轴30的转速。通过这种同步控制,当输出离合器31的输入侧和输出侧的转速差收敛于规定范围时,如图12(b)所示,将输出离合器31控制成联接状态。由此,如以箭头f1、f2所示,能够将电动发电机mg1、mg2的马达动力传递至车轮36。
[0071]
在此,图13是表示同步控制中的无级变速器16的变速状况的一例的图。如图13中以箭头xa所示,在图12(a)所示的同步控制中,将无级变速器16的变速比从“tr1”控制成“tr3”。即,如图10中以符号α2所示,为了从p2模式切换至p4模式,在释放输出离合器31且无级变速器16停止时,如图9中以符号s1所示,以“tr1”控制无级变速器16的变速比。而且,如图10中以符号α3所示,在联接输出离合器31且切换至p2+p4模式时,如图9中以符号s3所示,向“tr3”控制无级变速器16的变速比。
[0072]
即,在释放输出离合器31的p4模式中,维持最近的p2模式中的无级变速器16的变速比tr1,因此,在向p2+p4模式转换时的同步控制中,如图13中以箭头xa所示,将无级变速器16的变速比从“tr1”控制成“tr3”。由此,能够缩小同步控制中的无级变速器16的变速幅度(変速幅),因此,能够快速地完成变速控制及同步控制,能够快速地切换行驶模式。
[0073]
即,在释放输出离合器31的p4模式中,在将无级变速器16的变速比控制成最小变速比h或最大变速比l的情况下,如图13中以箭头xb、xc所示,同步控制中的无级变速器16的变速幅度扩大,因此,不能快速地完成变速控制及同步控制,难以快速地切换行驶模式。与之相对,本实施方式的车辆用控制装置10在释放输出离合器31的p4模式中,将无级变速器16的变速比维持成最小变速比h和最大变速比l之间的变速比,因此,能够缩小同步控制中的无级变速器16的变速幅度,能够快速地切换行驶模式。
[0074]
上述的说明中,对行驶模式从p2模式经由p4模式到达p2+p4模式的状况进行了说明,但不限于此。例如,即使在如图8中以箭头a所示将行驶模式从p2模式切换至p4模式之后,如以箭头b所示将行驶模式从p4模式切换至p2模式的情况下,也能够缩小同步控制中的无级变速器16的变速幅度。另外,即使在如图8中以箭头d所示将行驶模式从p2+p4模式切换至p4模式之后,如以箭头b所示将行驶模式从p4模式切换至p2模式的情况下,也能够缩小同步控制中的无级变速器16的变速幅度。另外,即使在如图8中以箭头d所示将行驶模式从p2+p4模式切换至p4模式后,如以箭头c所示将行驶模式从p4模式切换至p2+p4模式的情况下,也能够缩小同步控制中的无级变速器16的变速幅度。
[0075]
[行驶模式切换控制(时序图)]
[0076]
接着,按照时序图说明上述的行驶模式切换控制。图14是表示沿着图10的箭头x切换行驶模式时的动力传动系统13的工作状况的一例的时序图。另外,图14中,转速n1为副轴30的转速即输出离合器31的输入侧转速,转速n2为输出轴32的转速即输出离合器31的输出侧转速。此外,在图14中,为了简单地说明行驶模式切换控制,将p2模式及p4模式中的无级变速器16的变速比保持成一定。
[0077]
如图14中以时刻t1所示,在将行驶模式设定成p2模式进行行驶时(符号a1),将输入离合器24及输出离合器31控制成联接状态(符号b1,c1),将电动发电机mg1控制成动力运行状态(符号d1),将电动发电机mg2控制成空转状态(符号e1)。在p2模式中,联接输出离合器31,因此,作为离合器输入侧和输出侧转速的转速n1、n2相互一致(符号f1)。另外,在p2模式中,将无级变速器16的变速比控制成“tr1”(符号g1)。
[0078]
如以时刻t2所示,当将行驶模式从p2模式切换至p4模式时(符号a2),将输入离合器24及输出离合器31控制成释放状态(符号b2,c2),将电动发电机mg1控制成停止状态(符号d2),将电动发电机mg2控制成动力运行状态(符号e2),将无级变速器16控制成停止状态(符号h1)。这样,将无级变速器16控制成停止状态,但无级变速器16在维持p2模式中的变速比的状态下控制成停止状态。即,即使在不使用无级变速器16的p4模式中,不将无级变速器16的变速比控制成最小变速比h或最大变速比l,而是无级变速器16在维持p2模式中的变速比的状态下控制成停止状态(符号g2)。
[0079]
如以时刻t3所示,当决定对于p2+p4模式切换行驶模式时,将输入离合器24控制成联接状态(符号b3),将电动发电机mg1控制成动力运行状态(符号d3)。然后,向p2+p4模式中的目标变速比即“tr3”控制无级变速器16的变速比(符号g3)。这样,通过电动发电机mg1的动力运行控制及无级变速器16的变速控制,输出离合器31的输入侧转速n1向输出侧转速n2上升(符号f2)。然后,如以时刻t4所示,当输入侧转速n1到达输出侧转速n2时(符号f3),消除输出离合器输入侧和输出侧的转速差,因此,将输出离合器31控制成联接状态(符号c3),从p4模式向p2+p4模式的切换完成(符号a3)。由此,能够缩小无级变速器16的变速幅度并缩短同步时间ts1,能够快速地切换行驶模式。
[0080]
在此,在释放输出离合器31的p4模式中,在将无级变速器16的变速比控制成最小变速比h或最大变速比l的情况下(符号j1,j2),同步控制中的无级变速器16的变速幅度扩大。因此,放缓同步控制中的输入侧转速n1的上升速度(符号j3),同步时间ts2比“ts1”长,因此,难以快速地切换行驶模式。与之相对,本实施方式的车辆用控制装置10在释放输出离合器31的p4模式中,将无级变速器16的变速比维持成最小变速比h和最大变速比l之间的变速比,因此,能够缩小同步控制中的无级变速器16的变速幅度,并能够快速地切换行驶模式。
[0081]
[另一实施方式(动力传动系统结构)]
[0082]
图15(a)~(c)是表示另一实施方式的车辆用控制装置具备的动力传动系统80~82的图。在图15(a)~(c)中,对与图1及图2所示的零件共同的零件,标注相同的符号并省略其说明。
[0083]
图1所示的例子中,在初级带轮14的输入侧设置有输入离合器24,但不限于此,也可以如图15(a)所示,采用从初级带轮14的输入侧减去输入离合器24的动力传动系统80。另外,图1所示的例子中,在发动机12的输出侧设置有发动机离合器20,但不限于此,也可以如图15(b)所示,采用从发动机12的输出侧减去发动机离合器20的动力传动系统81。
[0084]
另外,图1所示的例子中,在输出路径35上连接有电动发电机mg2,但不限于此,也可以从无级变速器16的输出路径35切离电动发电机mg2。即,也可以如图15(c)所示,采用将无级变速器16的输出路径35连接于前轮(车轮)83,且将电动发电机mg2连接于后轮(车轮)84的动力传动系统82。此外,也可以将无级变速器16的输出路径35连接于后轮84,将电动发
电机mg2连接于前轮83。
[0085]
本发明不限定于上述实施方式,当然可以在不脱离其宗旨的范围内进行各种变更。上述的说明中,作为第一模式示例有“p2模式”及“p2+p4模式”,作为第二模式示例有“p4模式”,但不限于这些,也可以采用其它行驶模式作为第一模式或第二模式。另外,上述的说明中,在动力传动系统13中设置有变矩器22,但不限于此,也可以从动力传动系统13减去变矩器22。另外,上述的说明中,将电动发电机mg2连接于输出轴32,但不限于此,也可以向差速器机构33中装入电动发电机mg2,也可以在车轴34连接电动发电机mg2。
[0086]
上述的说明中,经由链条机构26将电动发电机mg1连接于输入轴21,但不限于此,也可以经由齿轮组将电动发电机mg1连接于输入轴21,也可以对于输入轴21直接连结电动发电机mg1的转子。另外,上述的说明中,使主控制器55作为行驶控制部发挥作用,但不限于此,也可以使发动机控制器50、马达控制器52、及任务控制器51等作为行驶控制部发挥作用。
[0087]
符号说明
[0088]
10车辆用控制装置
[0089]
11混合动力车辆
[0090]
12发动机
[0091]
16无级变速器
[0092]
18输入路径
[0093]
31输出离合器(离合器机构)
[0094]
35输出路径
[0095]
36车轮
[0096]
55主控制器(行驶控制部)
[0097]
83前轮(车轮)
[0098]
84后轮(车轮)
[0099]
mg1电动发电机(第一马达)
[0100]
mg2电动发电机(第二马达)
[0101]
h最小变速比
[0102]
l最大变速比。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1