一种具有缓速制动功能的电液复合制动系统的制作方法

文档序号:8506126阅读:302来源:国知局
一种具有缓速制动功能的电液复合制动系统的制作方法
【技术领域】
[0001]本发明涉及新能源汽车线控制动领域,一种具有缓速制动功能的电液复合制动系统及其控制方法。
【背景技术】
[0002]电动汽车具有节能环保等优点,已成为汽车工业未来重要的发展方向。电动汽车与传统汽车的区别在于驱动系统电气化和制动系统中引入再生制动,比传统汽车提高了60%的能量利用效率,且很大一部分能量来自于再生制动系统。再生制动与液压制动共同组成电动汽车的电液复合制动系统,通过驱动电机制动进行制动能量回收,提供再生制动力,以达到增加续驶里程、节能环保等目的。
[0003]目前,传统的电液复合制动系统存在的主要问题是:1.电机制动提供的制动强度较低且不能制动停车,其不能满足驾驶员的全部制动需求,液压制动在电动汽车上仍广泛使用;2.当动力电池S0C、温度超过其允许运行范围,此时不能使用电机制动,同时电机制动时,其放电电流不能过大和放电时间也不能过长;3.当汽车行驶在交通拥挤的城市道路上时,当液压制动需要频繁地进行不同强度下的制动,制动衬片在制动过程中的磨损会产生有害粉尘颗粒和尖锐的制动噪声。

【发明内容】

[0004]本发明的目的是解决传统的电液复合制动系统中电机制动输出制动力矩小且制动能力受到限制,而导致仍需要频繁地使用液压制动的问题,提供了一种具有缓速制动功能的电液复合制动系统及其控制方法,该电液复合制动系统集成电机制动、缓速制动及液压制动三种制动形式,具有制动噪声和粉尘少、制动舒适性高、安装方便的优点。
[0005]本发明的具有缓速制动功能的电液复合制动系统采用的技术方案是:
该具有缓速制动功能的电液复合制动系统包括液压制动子系统、电机制动子系统及控制子系统。液压制动子系统由液压调节器37、电子制动踏板38、制动管路39和双盘盘式制动器44组成。电机制动子系统由动力电池34、DC/AC变换器35、电源线41和电机42组成;控制子系统包括电子控制单元36和信号线40。
[0006]油箱I通过单向阀2与高压泵4的进液口连接,高压泵4的出液口通过单向阀2与高压蓄能器6的出液口连接,高功率电机3的输出轴与高压泵4的输入轴连接,压力传感器5的压力检测接口与高压蓄能器6的出液口连接。高功率电机3带动高压泵4旋转,高压泵4将制动液从油箱I中吸出,转变成高压制动液储存在高压蓄能器6中,压力传感器5用以检测高压蓄能器6中的制动液压力,油箱I用于储存制动液。
[0007]油箱I通过单向阀11与低压泵10的进液口连接,低压泵10的出液口通过单向阀11与低压蓄能器7的出液口连接,低功率电机9的输出轴与低压泵10的输入轴连接,压力传感器8的压力检测接口与低压蓄能器7的出液口连接。低功率电机9带动低压泵10旋转,低压泵10将制动液从油箱I中吸出,转变成低压制动液储存在低压蓄能器7中,压力传感器8用以检测低压蓄能器7中的制动液压力。
[0008]高速电磁阀14和15为常开阀,连接汽车前轴制动轮缸的液压接头18 (FR、FL)与高速电磁阀14的出液口连接,连接汽车后轴制动轮缸的液压接头18 (RR、RL)与高速电磁阀15的出液口相连。压力传感器13的压力测试接口连接在高速电磁阀14和15的出液口。高速电磁阀16和17为常闭阀,高速电磁阀16和17的出液口均与油箱I连接,连接汽车前轴制动轮缸的液压接头18 (FR、FL)与高速电磁阀16的进液口相连,连接汽车后轴制动轮缸的液压接头18 (RR、RL)与高速电磁阀17的进液口相连。换向阀12为三位三通阀,换向阀12的左进液口连接在高压蓄能器6的出液口,换向阀12的右进液口连接在低压蓄能器7的出液口,换向阀12的出液口与高速电磁阀14和高速电磁阀15的进液口连接。
[0009]电机42由电机机壳19、定子绕组20、外转子外侧绕组21,外转子内侧绕组22、轴承23、轴承24、外转子28和内转子29组成。电机机壳19上安装三相对称的定子绕组20,外转子28安装上有外转子内侧绕组22与外转子外侧绕组21,其中外转子内侧绕组22与外转子外侧绕组21是反相序联结。内转子29上安装有与外转子内侧绕组22对应的永磁铁。外转子28通过轴承24支撑在内转子29上,同时外转子28与电机机壳19之间也通过轴承23连接。
[0010]双盘盘式制动器44由内转子制动盘25、外转子制动盘27、制动钳30、摩擦片31、活塞32、导向销33组成。外转子制动盘27通过螺栓26与外转子28固定连接,内转子制动盘25通过螺栓26与内转子29固定连接。双盘盘式制动器有三块摩擦片31,外转子制动盘27安装在左摩擦片和中摩擦片之间,内转子制动盘25安装在右摩擦片与中摩擦片之间,左摩擦片和中摩擦片均安装在制动钳30上,而右摩擦片固定在活塞32上。活塞32安装在制动钳内30,制动钳30通过导向销33与汽车连接。
[0011]电机42的外转子28与车轮43同轴固定连接。电机42通过电源线41与DC/AC变换器35连接,动力电池34与DC/AC变换器35之间通过电源线41连接。电子控制单元36通过信号线40与DC/AC变换器35、液压调节器37和电子制动踏板38连接,液压调节器37的液压接头18通过制动管路39与双盘盘式制动器44的制动钳30连接。
[0012]具有缓速制动功能的电液复合制动系统可以提供三种制动方式:电机制动、缓速制动、液压制动。
[0013]电机制动:车轮43带动外转子28旋转,而内转子29自由转动,将内转子29视为励磁转子,外转子内侧绕组22视为定子,构成一个同步发电机,同时定子绕组20也在不断切割磁场,定子绕组20中将产生感应电流和感应电压,电机42通过DC/AC变换器35和电源线41将电能回收到动力电池34中。
[0014]缓速制动:使换向阀12处于右位,低压蓄能器7中的低压制动液通过换向阀12、高速电磁阀14和15、液压接头18、制动管路39进入制动钳30 ;制动液推动活塞32移动,活塞32向左移动使右摩擦片和中摩擦片压紧内转子制动盘25,使内转子29静止。内转子29作为定子,外转子28作为转子,构成永磁缓速器,外转子28将受到缓速制动力矩,使得车轮43减速。
[0015]液压制动:使得换向阀12处于左位,高压制动液通过换向阀12、高速电磁阀14和15、液压接头18、制动管路39进入制动钳30,制动液推动活塞32移动,活塞32向继续左移动使左摩擦片和中摩擦片压紧外转子制动盘27,产生制动力作用在外转子制动盘27上,使得车轮43减速,施加在外转子制动盘27上的制动力通过高速电磁阀14和15调节。
[0016]本发明涉及的具有缓速制动功能的电液复合制动系统的控制方法采用的技术方案是包括如下步骤:
1)当电机制动提供的最大制动力矩大于驾驶员的需求制动力矩时,仅使用电机制动。电机42通过DC/AC变换器35和电源线41将制动能量回收到动力电池34中;
2)当电机制动提供的最大制动力矩小于驾驶员的需求制动力矩且缓速制动提供的最大制动力矩大于驾驶员的需求制动力矩时,仅使用缓速制动。电子控制单元36控制换向阀12处于左位,控制高速电磁阀14和15,使内转子制动盘25静止;
3)当缓速制动提供的最大制动力矩小于驾驶员的需求制动力矩,同时使用缓速制动和液压制动。电子控制单元36控制换向阀12处于右位,控制高速电磁阀14和15的开启时间,内转子制动盘25固定不动,控制施加在外转子制动盘27上的制动力。
[001
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1