复合翼型件的制造方法

文档序号:4433179阅读:134来源:国知局

专利名称::复合翼型件的制造方法复合翼型件的制造方法
技术领域
本发明通常涉及涡轮机械。具体地,本发明涉及制造具有由不同材料形成的构件的涡轮机械翼型件(airfoil)。
背景技术
:涡轮机可采用多种形式或用于各种用途。这些形式和用途可包括用于发电的蒸气涡轮机、用于发电的燃气涡轮机、用于飞机推进的燃气涡轮机以及用于发电的风力涡轮机。在燃气涡轮机中,典型地有许多旋转叶片和固定导叶(vane)。叶片和导叶布置成交互圆周排列,该排列沿涡轮才几纵向地隔开。各叶片和导叶包括附连到安装部分上的翼型件部分。传统的燃气或蒸气涡轮机叶片或导叶设计典型地使其翼型件部分完全由例如钛、铝或不锈钢等金属的合金制成。传统的燃气或蒸汽涡轮机压缩器叶片或导叶设计也可完全由如纤维增强塑性材料的复合材料制成。全金属叶片在重量上相对重一些,这导致低的燃烧效率并需要坚硬的安装部分。在燃气涡轮机应用中,更轻的全复合材料叶片容易受外来物体侵入造成的损坏和磨损的影响。已知的混合叶片包括复合翼型件部分,其具有金属前缘以保护翼型件免受外来物体侵入造成的磨损和影响。燃气涡轮机第一级叶片典型地为最大最重的叶片,并且通常首先受到外来物体^f曼入的影响。复合材料叶片典型地在重量为首要考虑因素的涡轮机应用中使用。在典型的燃气涡轮机翼型件中,整体的几何形状在结构和空气动力学需要之间折衷。承受由于外来物体侵入造成的损坏的结构需要和性能与对空气动力学性能进行优化的翼型件几何形状直接抵触。例如,空气动力学需要的翼型件相对薄且具有相对尖锐的前缘。然而,结构需要的翼型件相对厚且具有相对坚硬的前缘。最终设计典型地是相对立的结构和空气动力学需要之间的折衷,且两方面都不是最优的。当前的全金属翼型件制造方法需要对翼型件进行研磨和手工抛光来获得需要的几何形状。抛光操作是为了获得苛刻的尺寸规格和表面精整的劳动力密集型操作。这需要使用易于加工和抛光的材料来使成本最小。这典型地限制了材料的选择并增加了制造的成本。在燃气涡轮发电机的工作过程中,尘土和碎屑在翼型件表面上积聚导致:没计性能的损失。典型地用水冲洗来除去这些积聚的尘土和碎屑。此类沖洗可腐蚀并侵蚀翼型件的金属材料。压缩机末梢间隙典型地没有对预先排除转子叶片末梢在外壳上摩擦或定子叶片末梢在转子上摩擦的机率而进行优化。因此,燃气涡轮机叶片需要改进的涡轮机翼型件,其重量轻于全金属翼型件,具有所需的结构和空气动力学性能,能承受外来物体侵入,成本合理,而且能抵抗腐蚀和侵蚀。
发明内容根据本发明的一个方面制造复合翼型件的方法包括提供由金属或陶瓷材料制成的芯部的步骤。塑性翼型件部分模制成包围该芯部的至少一部分。本发明的另一个方面是制造复合翼型件的方法。该方法包括提供由金属或陶瓷材料制成的芯部的步骤。该芯部具有前缘。塑性翼型件部分模制成至少包围该芯部的前缘。本发明的另一个方面是制造复合翼型件的方法。该方法包括通过压力铸造、熔模铸造或锻造来形成金属芯部的步骤。塑性翼型件部分被注模成型成包围至少一部分芯部。本发明的这些和其它特征、方面和优点在参照附图阅读下列说明时将更好理解,其中图l为根据本发明的一个方面的复合翼型件的立体图,且内部构件由虚线表示;图2为图1中所示的复合翼型件的分解3见图3为大约沿图1的线3-3所取的图1的复合翼型件截面视图。图4为根据本发明的另一个方面的模具部分的立体图;图5为具有容纳在其中的复合翼型件的另一个模具部分的立体图;以及图6为图4和5中所示围绕复合翼型件的模具部分的立体图。<table>tableseeoriginaldocumentpage5</column></row><table><table>tableseeoriginaldocumentpage6</column></row><table>具体实施方式根据本发明的一个方面,图1中所示的复合翼型件20为在发电应用中使用的燃气涡轮机的叶片10的一部分。应当理解的是叶片10的复合翼型件20在本发明的各个方面中可为压缩机叶片、导叶或涡轮机叶片的形式并可用于蒸气涡轮机、燃气涡轮机或风力涡轮机应用中。根据一个方面,叶片10的复合翼型件20包括芯部22和完全包围并封装芯部的塑性翼型件部分24。复合翼型件20由至少两种不同材料以一种独特的方式制成。如本文使用的"复合"定义为使塑性材料形成定位在芯部22的相对坚硬的结构材料(例如,金属或陶瓷)上的抛光的翼型件部分24。用语"塑性"定义为在相对低于芯部22的材料熔点的温度下能够熔化,因此其可以流动并容易地才莫制成最终需要的形状。根部26附连到芯部22上并用于将叶片安装到涡轮机结构用于运行。通过将芯部和根部一体地形成为整体的子构件而可根部26附连到芯部上,例如通过锻造或机加工例如金属或陶瓷的单件原材料。备选地芯部22和根部26可分别制造且芯部可紧固、焊接或以其它方式附连到根部上。末梢40位于远离根部26的复合翼型件20的轴向相反端。轴线A沿乂人根部26到末梢40的复合翼型件20的长度方向延伸。本文使用的"轴线"A指的是参考轴线而不是叶片10或复合翼型件20的实体部分。才艮据本发明的一个方面,叶片10和复合翼型件20设计在涡轮压缩机的前几级将暴露于其中的典型温度下运行。在用于发电的燃气涡轮机应用中,"设计运行温度"为一般运行过程中叶片10和翼型件部分24在压缩机前几级中预期经受的最高温度。在前几级中典型的燃气涡轮机设计运行温度的示例非限制地一般在18。C到200°C的范围内。图3中媒介方向箭头M指示了一般的流向。在燃气涡轮机应用中媒介M典型地包括空气。典型地,燃气发电涡轮机应用中的媒介M是受控的。具体地,媒介M是过滤以去除很多外来物体的入口空气,其可被冷却或加热到需要的温度范围并引导穿过结构来去除水分和盐。在燃气涡^^机的压缩机叶片应用中,对于复合翼型件20,根部26典型地包括燕尾榫部分42(图l-2)来将叶片IO安装到转子盘(未示出)上。翼型件部分24具有前缘44(图3)和后缘46。4某介M流的方向一般为/人前缘44到后缘46。复合翼型件20的翼型件部分24也具有压力侧表面62和吸入侧表面64。翼型件部分24为由沿轴线A隔开的部分上的一系列点所限定的非常复杂的表面。根据本发明的一个方面,前缘44和后缘46典型地为由相对小的半径限定的圆表面。复杂表面、前缘44和后缘46相对难以制造。出于空气动力学原因,通常需要使前缘44具有尽可能小的半径,例如之前不可行的0.010英寸。还需要具有非常光滑且精确的翼型件部分24的最终形状,其不需要机械抛光或涂覆,这在之前也是不可行的。能够将塑性翼型件部分24注模成型为最终形状或接近最终形状克服了之前的缺点。翼型件部分优选地完全包围芯部22。在本发明的一个方面中,复合翼型件20是塑性翼型件部分24包围着至少一部分金属或陶瓷芯部22。然而显而易见地,4艮才居本发明的另一个方面,芯部22不是必须完全由翼型件部分24包围且芯部可被部分地覆盖。塑性翼型件部分24不需要纤维加强成型,而是优选地注模成型到至少一部分芯部22上。注模成型方法能够形成精密且准确的翼型件部分24的部分,例如压力侧表面62、吸入侧表面64、前缘44和后缘46。利用多件式设计,芯部22形式的叶片IO的内部几何形状可对频率调节和结构需要进行优化。外表面可以注^^成型塑性翼型件部分24的形式对空气动力学性能进^f亍调整。在示例性方面中,芯部22在翼型件部分24的压力侧表面62和吸入侧表面64之间具有多个穿过芯部22延伸的开口82。开口82定位于不需要连续的实心结构以用于强度和功能的芯部22的区域中。开口82为更轻的旋转质量而减轻了芯部22的质量,更轻的旋转质量通常是需要的特征。开口82在注模成型方法中容纳翼型件部分24的塑性材料的部分84,从而将翼型件部分相对于芯部22保持就位。开口82不是必须完全穿过芯部22延伸,而是具有足够的深度来容纳塑性材料的部分84。该塑性材料的部分84不是必须完全填满开口,而是延伸足够的距离进入开口,从而将翼型件部分24相对于芯部22保持就位。芯部22具有末梢部分IOO(图2)。芯部22具有前缘102(图2和3)和后纟彖104。翼型件部分的末梢28包围芯部22的末梢部分100。翼型件部分24至少包围芯部22的前缘102,并且优选地包围包括后缘104的芯部的整个外表面。翼型件部分24在离开口82隔开的位置上具有厚度t(图3),该厚度t例如在0.020到O.IOO英寸的范围内,在此该翼型件部分24覆盖离开开口82的芯部22。该厚度不是必须是一致的。厚度t可/人一个或两个边缘44,46向叶片IO的中间逐渐增加。开口82的深度优选地大于覆盖芯部22的翼型件部分24的厚度t。通过从塑性材料形成翼型件部分24,可结合空气动力学性能需要的最终翼型件形状,且优选地不需要机加工、抛光或涂覆。因为翼型件部分24与芯部22的内部承重结构分离,所以也有可能有更能承受吸入碎片的损害的设计。芯部22的承重结构与翼型件部分24分开,并且还增加了用以制造芯部来最大化结构特征并最小化重量的可选择材料的数量。通过使叶片IO设计的结构和空气动力学构件分离,出现了许多节约成本的机会。对内部承重结构不再要求严格的制造公差,这现在允许对芯部22使用镍或陶瓷材料。具有更高模量的材料可以更小的质量提供类似的强度从而减少叶片10的总体重量。这也开启了以有限的机加工熔模铸造、压力铸造或锻造芯部22的可能。为提供最终空气动力学形状而注模成型塑性翼型件部分24可免去之前全金属叶片构造的全部手工抛光操作。注模成型塑性翼型件部分24也产生了非常一致的具有良好表面抛光的翼型件形状,免去了抛光之后任何表面处理的需要。从注模成型产生塑性翼型件部分24的光滑表面将减少碎片在叶片IO上积累。这减少如频繁水洗的需要。用于塑性翼型件部分24的材料具有固有的防腐蚀性。另外,可向翼型件部分24引入例如PTFE的添加剂,以进一步增强对在翼型件部分上碎片积累的排斥。通过注模成型塑性翼型件部分24的末梢28,相对于其它涡轮机构件的间隙可保持得更紧密。在塑性摩擦其它涡轮机构件的事件中,此为良性事件并且不会危及叶片10或涡轮机的结构构件。在复合翼型件20压缩机间隙可保持得更紧密的情况下,对于提高的性能无需耐磨表面或5}入耐摩擦涂层。本发明有多种技术优势。复合翼型件20提供了制造更耐损且优化的翼型件部分24和结构上优化的芯部22的机会。此外优化翼型件部分24的空气动力学几何形状的机会导致燃气涡轮机的性能提高。减少翼型件部分24压缩机污垢降低了性能降低的水平。还有相当大的机会降低制造成本。因此,叶片10的复合翼型件20利用注射成型塑性翼型件部分24提供了优化的空气动力学形状,并利用芯部22提供了需要的结构特点。翼型件部分24的塑性材料可为任意适合的塑性材料。塑性材料选择为能够承受该材料被选择在其中运行的涡轮机的特定级的设计运行温度。例如,燃气涡轮机压缩机的第一级在环境空气温度中,并且与压缩机的其它后几级相比在相对低的压力下运行。根据本发明的另一个方面可制造叶片10。叶片IO由复合翼型件20通过首先由熔模铸造、压力铸造或锻造形成金属芯部22而制成。芯部22也可由陶瓷材料铸造成最终形状来制成。芯部22在其最终构造中形成有才艮部26和燕尾冲隼部分42。然后将芯部22支撑在注模成型装置(未示出)的模具120中(图4)。注模成型装置的模具120具有一半翼型件所需的形状,该翼型件形成在模具中,并具有用于收缩和扭曲的容差。如图5所示,将芯部22在模具内支撑在预定位置。模具120中的定位销140辅助将芯部22适当地定位在相对于翼型件形状的预定位置中。排气口122从模具的内部延伸至外面。根部26可定位在才莫具120的外面并具有表面,该表面与模具接合,从而相对于模具使芯部22轴向地定位。提供了第二模具126(图6)。注模成型装置的第二模具126具有另一半翼型件所需的形状,该翼型件形成在模具中,并具有用于收缩和扭曲的容差。排气口122从第二模具126的内部延伸至外面。第二模具126移动以接合模具120并封装芯部22。提供管道124来将熔融的材料引入由模具120、126形成的空穴。然后翼型件部分24注模成型成包围芯部22的至少一部分。翼型件部分24由塑性材料制成。塑性材料熔化在注模成型装置中。熔融的塑性材料被经过管道124挤入模具120,126中,然后塑性材料冷却并变硬来围绕芯部22形成由模具120,126的空穴形成的所需的形状。芯部22具有多个形成在芯部上的孔隙或开口82。在注模成型方法过程中,开口82由翼型件部分24熔融的塑性材料填充。这将翼型件部分24保持在相对于芯部22的位置。贯穿说明书使用了具体用语。这些具体用语仅意图为代表性及描述的而不用做限制目的。本发明按照至少一个方面描述。本发明不限于所公开的方面。修改和其它方面均意图包括在所附权利要求的范围之内。权利要求1.一种制造复合翼型件的方法,所述方法包括如下步骤提供由金属或陶瓷材料制成的芯部(22);以及将塑性翼型件部分(24)模制成包围所述芯部的至少一部分。2.根据权利要求1所述的方法,其特征在于,所述方法还包括在所迷芯部(22)中提供至少一个开口(82)的步骤,并且所述模制步骤包括用所述翼型件部分(24)的塑性材料填充所述至少一个开口,以将所述翼型件部分保持在相对于所述芯部的位置。3.根据权利要求1所述的方法,其特征在于,所述芯部(22)具有前缘(102),并且所述模制步骤包括将所述翼型件部分(24)注模成型成包围所述芯部的所述前缘。4.根据权利要求1所述的方法,其特征在于,所述^f莫制步骤包括将所述翼型件部分(24)注模成型成完全地包围所述芯部(22)。5.根据权利要求4所述的方法,其特征在于,所述注模成型步骤包括为所述翼型件部分(24)提供最终形状并抛光的步骤。6.根据权利要求1所述的方法,其特征在于,提供步骤包括由选自压力铸造、熔模铸造和锻造的方法提供金属芯部(22)。全文摘要本发明设计复合翼型件的制造方法,具体而言,制造复合翼型件的方法包括提供由金属或陶瓷材料制成的芯部(22)的步骤。塑性翼型件部分(24)模制成包围芯部(22)的至少一部分。文档编号B29C45/14GK101392661SQ20081014909公开日2009年3月25日申请日期2008年9月19日优先权日2007年9月20日发明者J·L·莫罗索,T·R·蒂普顿申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1