罐的制造方法与流程

文档序号:13750938阅读:393来源:国知局
罐的制造方法与流程

技术领域

本发明涉及罐的制造方法。



背景技术:

作为使用于天然气汽车或燃料电池汽车等的贮藏燃料的高压罐的制造方法,已知有纤维缠绕法(以下,称为“FW法”)。在基于FW法的罐的制造方法中,将浸渍有环氧树脂等热固性树脂的强化纤维卷缠于内衬的外周,对该热固性树脂进行加热而使其固化来形成加强层。例如,在JP2010-265931A公开的技术中,利用FW法通过螺旋卷绕在内衬上卷绕纤维束,并从其上方卷绕片状的纤维(以下,称为片纤维)来形成加强层。

在此,为了抑制片纤维的挠曲,若在片纤维的卷绕时对于片纤维施加大的张力,则由于该张力超过内衬的刚性,而内衬可能会变形。因此,要求在使用了片纤维的情况下能够高精度地形成罐的技术。



技术实现要素:

本发明为了解决上述的课题而完成,可以作为以下的方式来实现。

(1)根据本发明的一方式,提供具备内衬的罐的制造方法。该制造方法包括:(A)在刚性比所述内衬高的心轴上卷绕浸渍有树脂的片状的纤维而加热固化来形成片层的工序;(B)从所述片层拔出所述心轴的工序;以及(C)在所述工序(B)之后将所述内衬嵌入所述片层内的工序。若是这样的方式的制造方法,则在刚性比内衬高的心轴上卷绕片状的纤维,因此与将片状的纤维卷绕于内衬的情况相比,能够以大的张力卷绕片状的纤维。因此,能够抑制在片层产生挠曲,能够高精度地形成罐。

(2)在上述方式的制造方法中,可以的是,所述内衬具有圆筒状的直线部和在所述直线部的端部设置的曲面状的圆顶部,所述制造方法包括:(D)在所述工序(A)之后将所述片层的端部加工成沿着所述圆顶部的外表面形状的形状的工序。若是这样的方式的制造方法,则将片层的端部加工成沿着圆顶部的外表面形状的形状,因此能够提高罐的形状精度。

(3)上述方式的制造方法可以包括(E):在所述工序(C)之后向所述内衬内施加压力并将纤维束卷绕于所述内衬上的工序。若为这样的方式的制造方法,则在卷绕纤维束时能够从内衬的内侧利用压力支承内衬,因此能够提高罐的形状精度。

本发明并不局限于上述的作为罐的制造方法的方式,能够以各种方式实现。例如,能够以罐本身或罐的制造装置等方式实现。

附图说明

图1是表示罐的概略结构的截面图。

图2是表示罐的制造方法的工序图。

图3是片层形成工序的说明图。

图4是表示施加于片纤维的张力的图。

图5是拔出心轴后的片层的截面图。

图6是端部加工工序后的片层的截面图。

图7是表示向片层内嵌入内衬后的情况的示意图。

图8是表示形成螺旋层后的情况的示意图。

标号说明

10…罐

13、14…接口

15…贯通孔

20…内衬

21…直线部

22、23…圆顶部

30…加强层

32…片层

34…螺旋层

36、37…端部

40…心轴

50…片纤维

具体实施方式

A.实施方式:

图1是表示通过本发明的一实施方式的制造方法制造的罐10的概略结构的截面图。在本实施方式的罐10中贮藏例如70MPa左右的高压的氢气。罐10具备内衬20和加强层30。

内衬20是树脂制的中空内衬。内衬20由例如聚乙烯、尼龙、聚丙烯、聚酯等热塑性树脂形成。内衬20具备直线部21、圆顶部22、23和接口(mouthpieces)13、14。直线部21具有圆筒形状。圆顶部22、23设置在直线部21的两端,形成为朝向内衬20的外侧凸出的曲面状。在圆顶部22、23的顶点分别设有由铝或不锈钢等金属形成的接口13、14。一方的接口13具备贯通孔15,使用于气体从罐10内的取出或气体向罐10内的补充。另一方的接口14为了内衬20的加强或加强层形成时的内衬的旋转而使用。接口14也可以省略。

加强层30是将内衬20的周围覆盖的层,是用于对内衬20进行加强的层。加强层30具备片层32和螺旋层34。也可以将片层32称为内层,将螺旋层34称为外层。

片层32通过在内衬20的直线部21的外表面上多次卷绕并层叠片纤维而构成。本实施方式的片纤维是通过在方向对齐于一方向的玻璃纤维或碳纤维中浸渍环氧等热固性树脂而形成的片状的纤维。在本实施方式中,片纤维中的纤维的方向与片纤维的卷绕方向即直线部21的周方向一致。需要说明的是,片纤维也可以包括朝向与片纤维的卷绕方向交叉的方向的纤维。“片层”也可以称为“环箍层”。

螺旋层34通过在片层32及圆顶部22、23上螺旋卷绕纤维束而构成。本实施方式的纤维束通过将玻璃纤维或碳纤维捆束10000~40000根左右并浸渍环氧等热固性树脂而形成。

片层32的厚度和螺旋层34的厚度分别根据对罐10要求的耐压性能和强度来适当设定。

图2是表示罐10的制造方法的工序图。在本实施方式的制造方法中,首先,进行在刚性比内衬20高的心轴(心棒)上卷绕片纤维来形成片层32的工序(工序P10)。工序P10也称为片层形成工序。

图3是片层形成工序的说明图。在片层形成工序中,首先,准备作为片层32的模具的心轴40。心轴40具有由不锈钢或铁、铜等金属形成的圆柱状的形状。心轴40的外径比内衬20的直线部21的外径稍大(例如,0.5mm左右)。而且,心轴40的沿着轴AX的长度比内衬20的直线部21的长度长。在本实施方式中,心轴40的刚性比内衬20的刚性高。更具体而言,通过杨氏模量比树脂制的内衬20大的金属构成心轴40,由此使心轴40的刚性比内衬20高。此外,通过使心轴40的构造为实心等使心轴40的截面积比内衬20的截面积大,也能够使心轴40的刚性相比内衬20提高。这种情况下,即使内衬20和心轴40的原材料相同,也能够使心轴40的刚性相比内衬20提高。

准备心轴40后,接下来,沿着心轴40的周方向通过片缠绕法(sheet winding method;以下称为“SW法”)来卷绕片纤维50。在本实施方式中,片纤维50的宽度与内衬20的直线部21的轴AX方向上的长度相同。而且,片纤维50的厚度为约0.4mm。在本实施方式中,通过将该片纤维50在心轴40上卷绕30次来形成具有约12mm的厚度的片层32。

图4是表示在片纤维50的卷绕时施加于片纤维50的张力的图。在本实施方式中,在SW法中,施加于片纤维50的每单位宽度的张力为在通常的FW法中施加于纤维束的张力的2倍左右。此外,在本实施方式中,以越为片层32的外层,张力越降低的方式卷绕片纤维50。即,以片纤维50的卷绕开始的张力最高且卷绕结束的张力最低的方式卷绕片纤维50。

在片层形成工序中,将片纤维50卷绕于心轴40之后,使片纤维50加热固化,由此片层32完成。

在片层32完成后,接下来,进行从片层32拔出心轴40的工序(图2的工序P20)。该工序P20也称为拉拔工序。

图5是通过拉拔工序拔出心轴40后的片层32的截面图。如图5所示,拉拔出心轴40后的片层32成为圆筒状。

在拉拔工序后,进行将片层32的端部36、37加工成沿着内衬20的圆顶部22、23的外表面形状的形状的工序(图2的工序P30)。该工序P30也称为端部加工工序。

图6是端部加工工序后的片层32的截面图。在端部加工工序中,将圆筒状的片层32的两端(端部36、37)加工成沿着内衬20的圆顶部22、23的外表面的形状。该加工例如通过切削加工或磨削加工进行。片层32的端部36、37的加工面只要是大致沿着圆顶部22、23的外表面的形状即可,可以不是曲率与圆顶部22、23的曲率准确地一致那样的精度。加工面也可以是例如斜面状。

在对片层32实施了端部加工之后,进行将内衬20嵌入片层32内的工序(图2的工序P40)。该工序P40也称为嵌入工序。

图7是表示通过嵌入工序将内衬20嵌入片层32内后的情况的示意图。在本实施方式中,使用外径比内衬20的直线部21的外径稍大的心轴40来形成片层32,因此能够将内衬20容易地嵌入片层32内。需要说明的是,例如,在内衬20的直线部21的外径和片层32的内径为相同程度的情况下,可以预先对内衬20进行冷却而使其收缩,然后向片层32插入。

在嵌入工序后,进行通过接口13对内衬20的内部进行加压而使内衬20的直线部21的外表面与片层32的内表面紧贴的工序(图2的工序P50)。该工序P50也称为加压工序。

在加压工序后,进行在对内衬20的内部进行了加压后的状态下直接在内衬20上卷绕纤维束的工序(工序P60)。该工序P60也称为螺旋层形成工序。在螺旋层形成工序中,通过FW法在内衬20上利用螺旋卷绕来卷绕纤维束而形成螺旋层34。在该螺旋卷绕中,纤维束以相对于罐10的轴AX为0~30度的卷绕角度卷绕在包括圆顶部22、23及片层32的范围。即,在该螺旋层形成工序中,在片层32上和内衬20中的圆顶部22、23上卷绕纤维束。

图8是表示通过螺旋层形成工序形成了螺旋层34后的情况的示意图。图8示出了罐10的一部分的截面。在本实施方式中,通过上述端部加工工序将片层32的端部36、37加工成沿着圆顶部22、23的外表面的形状,因此在片层32与内衬20的边界处无阶梯地卷绕纤维束。

在进行了螺旋层形成工序之后,进行用于使片层32及螺旋层34一体地加热固化的热固化处理(图2的工序P70)。在进行了热固化处理之后,解除对内衬20的加压(工序P80)。通过以上说明的一连串的工序,罐10完成。

在以上说明的本实施方式的罐10的制造方法中,在刚性比树脂制的内衬20高的金属制的心轴40上卷绕片纤维50,因此与在内衬20上卷绕片纤维50的情况相比,能够一边施加较大的张力一边形成片层32。因此,抑制片纤维50产生挠曲。其结果是,能够提高罐10的形状精度,也能够提高罐10的强度。

而且,在本实施方式中,使用片纤维50来形成加强层30的内表面,因此能够抑制在加强层30的内表面产生凹凸。因此,能够抑制罐10的容积产生波动。

而且,在本实施方式中,每当加强层30的形成时,首先,通过片纤维50形成片层32,因此能够平滑地形成供螺旋层34接触的面(即,片层32的外表面)。因此,在螺旋层34的形成时,能够抑制纤维束蜿蜒前行。其结果是,对于圆顶部22、23也能够高精度地卷绕纤维束,能够提高包括圆顶部22、23在内的罐10整体的强度。

此外,在本实施方式中,在片纤维50的卷绕时,向片纤维50施加的张力越靠外层越变弱,因此能够抑制在片层32的内层侧产生褶皱。因此,能够提高罐10的形状精度。

而且,在本实施方式中,将片层32的端部36、37加工成沿着内衬20的圆顶部22、23的外表面形状的形状,因此能够在片层32与内衬20的边界处无阶梯地卷绕纤维束。因此,能够提高罐10的形状精度。

而且,在本实施方式中,将片层32的端部36、37加工成沿着内衬20的圆顶部22、23的外表面形状的形状,因此能够抑制在螺旋卷绕纤维束时应力集中于片层32与内衬20的边界部分。因此,能够提高罐10整体的强度。

而且,在本实施方式中,在形成了片层32之后,向片层32内插入内衬20而向内衬20施加内压。因此,在螺旋层34的形成时,能够从内侧通过压力来支承内衬20,能够进一步提高罐10的形状精度。

而且,在本实施方式中,通过片纤维50来形成加强层30的一部分,因此与利用FW法形成加强层30的全部相比,能够大幅缩短加强层30的形成时间。例如,若利用FW法形成与片层32相当的厚度的层(环箍层)花费1小时,则使用片纤维50形成片层32只要2分钟左右。因此,能够大幅提高罐10的制造效率。

而且,在本实施方式中,片层32使用片纤维50来形成,因此在片层32内不会出现纤维束间产生间隙的情况或纤维束彼此产生不必要的重叠的情况。因此,能够提高罐10的强度。

B.变形例:

在上述实施方式中,对于片层32的端部加工工序(图2的工序P30)也可以省略。例如,通过将片纤维50形成为梯形形状并将其卷绕,也能够使片层32的端部36、37倾斜。

在上述实施方式中,从片层32拉拔出心轴40之后进行端部加工工序,但也可以在从片层32拉拔心轴40之前进行端部加工工序。

在上述实施方式中,作为内衬20,使用了树脂制的内衬20,但也可以使用铝或铁等金属制的内衬20。

在上述实施方式中,形成了螺旋层34,但是根据对罐10要求的强度或内衬20的强度,也可以仅形成片层32而省略螺旋层34的形成。这种情况下,可以使内衬20的直线部21的外径和片层32的内径为相同程度,预先对内衬20进行冷却而使其收缩,然后插入片层32。而且,也可以始终向内衬20内施加压力,在内衬20与片层32紧贴的状态下使用罐。

在上述实施方式中,在向片层32插入了内衬20之后,向内衬20施加内压并形成螺旋层34,但是根据内衬20的强度,也可以不施加内压而形成螺旋层34。

在上述实施方式中,加强层30具备片层32和螺旋层34,但是在螺旋层34的外层侧可以还具备片层或环箍层。而且,例如,也可以在心轴40上利用FW法形成环箍层或螺旋层之后,在其上通过SW法形成片层。

在上述实施方式中,在螺旋层形成工序中,从片层32和圆顶部22、23的上方卷绕纤维束,但也可以仅在片层32上卷绕纤维束。

本发明并不局限于上述的实施方式、变形例,在不脱离其主旨的范围内能够以各种结构实现。例如,发明内容一栏记载的各方式中的技术特征所对应的实施方式或变形例中的技术特征为了解决上述的课题的一部分或全部,或者为了实现上述的效果的一部分或全部,可以适当地进行更换、组合。而且,该技术特征在本说明书中只要不是作为必须的特征进行说明,就可以适当删除。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1