柔性金属包覆层合板的制造方法与流程

文档序号:16635962发布日期:2019-01-16 07:01阅读:364来源:国知局
柔性金属包覆层合板的制造方法与流程

本发明涉及柔性金属包覆层合板的制造方法。



背景技术:

以往,在电子材料领域中,使用下述覆盖层、柔性金属包覆层压板等柔性印刷布线板(fpc)用材料,所述覆盖层、柔性金属包覆层压板是将具有电绝缘性的聚酰亚胺膜、聚酰胺膜等树脂层、以环氧树脂或聚酰亚胺树脂作为主要成分的粘接剂层、具有导电性的铜箔、银箔、铝箔等金属箔层等适当组合而成的。作为柔性金属包覆层合板,主要已知的是由金属层和聚酰亚胺树脂层形成的双层柔性金属包覆层合板、和由金属层、聚酰亚胺树脂层和粘接层形成的三层柔性金属层合板。

近年来,为了达成电子设备的进一步小型化、轻质化,设置于基板的布线的微细化不断发展,就要安装的部件而言,也已开始搭载经小型化、高密度化的部件。因此,若在形成微细的布线后发生较大的尺寸变化,则部件的搭载位置会从设计阶段的位置偏移,产生无法将部件与基板良好地连接的问题。迄今为止,作为抑制尺寸变化的尝试,进行了对层压压力的控制、或对粘接膜的张力的控制等。然而,虽然通过这些手段可一定程度地改善尺寸变化,但仍然是不充分的,需要进一步抑制尺寸变化。

作为解决上述问题点的手段,专利文献1中公开了通过将在层压后保护材料与柔性金属包覆层合板进行了密合的层合体在沿md方向施加了特定张力的状态下运送从而能够抑制尺寸变化。

另外,专利文献2中公开了通过将在玻璃化转变区观察到的吸热峰的热量调节为特定范围从而能够减小由于柔性金属箔层合体的热收缩而导致的尺寸变化率及其偏差,并记载了这样的层合体可通过于比树脂的玻璃化转变点tg低5~50℃的温度热处理8小时以上而得到。

现有技术文献

专利文献

专利文献1:日本特开2015-51636号公报

专利文献2:日本特开2005-119178号公报



技术实现要素:

发明所要解决的课题

然而,专利文献1的柔性金属包覆层合板虽然可抑制在某一特定区域中的尺寸变化,但尺寸变化率存在偏差,不能说尺寸变化在层压板整体范围内得到了均匀抑制。

另外,专利文献2的柔性印刷金属箔层合体需要进行8小时以上的长时间热处理,生产率差。另外,假如为了缩短热处理的时间而于更高的温度进行热处理的情况下,层合体中包含的空气膨胀而在表面产生鼓起,从而产生外观差的问题。

鉴于上述情况,本发明的目的在于,提供能够高效地生产在层合体整体范围内均匀地抑制尺寸变化、并且表面没有鼓起的柔性金属包覆层合板的、柔性金属包覆层合板的制造方法。

用于解决课题的手段

本申请发明人为了解决上述课题而进行了潜心研究,结果发现,通过下述方式能够解决上述课题,从而完成了本发明,所述方式为:将在非热塑性聚酰亚胺层的至少一面设置有含有热塑性聚酰亚胺的粘接层而成的聚酰亚胺树脂膜与金属箔贴合后,在非活性气体气氛中,并且在0.20~0.98mpa的压力下,于所述热塑性聚酰亚胺的tg-20℃~tg+50℃的温度对得到的层合体进行热处理。

即,本发明如下所述。

[1]

柔性金属包覆层合板的制造方法,其包括下述工序:

工序(a),通过将聚酰亚胺树脂膜与金属箔贴合从而得到层合体,所述聚酰亚胺树脂膜包含非热塑性聚酰亚胺层和含有热塑性聚酰亚胺的粘接层,在所述非热塑性聚酰亚胺层的至少一面设置有所述粘接层;和

工序(b),在非活性气体气氛中,并且在0.20~0.98mpa的压力下,于所述热塑性聚酰亚胺的tg-20℃~tg+50℃的温度对所述工序(a)中得到的层合体进行热处理。

[2]

如上述[1]所述的制造方法,其中,所述工序(a)中,通过层压将聚酰亚胺树脂膜与金属箔贴合。

[3]

如上述[1]或[2]所述的制造方法,其中,所述工序(b)中,于所述热塑性聚酰亚胺的tg-10℃~tg+30℃的温度进行热处理。

[4]

如上述[1]~[3]中任一项所述的制造方法,其中,所述工序(b)中的热处理时间为60~420分钟。

[5]

如上述[1]~[4]中任一项所述的制造方法,其中,所述工序(b)中,层合体为卷状。

[6]

如上述[1]~[5]中任一项所述的制造方法,其中,在高压釜内实施所述工序(b)。

[7]

如上述[1]~[6]中任一项所述的制造方法,其中,所述热塑性聚酰亚胺的tg为240~290℃。

[8]

如上述[1]~[7]中任一项所述的制造方法,其中,所述柔性金属包覆层合板为单面金属包覆层合板。

[9]

如上述[1]~[7]中任一项所述的制造方法,其中,所述柔性金属包覆层合板为双面金属包覆层合板。

发明效果

根据本发明的制造方法,能够在短时间内高效地生产在层合体整体范围内均匀地抑制尺寸变化、并且表面没有鼓起的柔性金属包覆层合板。

附图说明

[图1]表示用于测定尺寸变化率的试样的示意图。

具体实施方式

以下,对实施本发明的方式(以下称为“实施方式”)进行详细记载。需要说明的是,本发明不限于以下的实施方式,可以在其主旨的范围内进行各种变型。

本实施方式中的柔性金属包覆层合板的制造方法包括下述工序:

工序(a),通过将聚酰亚胺树脂膜与金属箔贴合从而得到层合体,所述聚酰亚胺树脂膜由非热塑性聚酰亚胺层和含有热塑性聚酰亚胺的粘接层形成,在所述非热塑性聚酰亚胺层的至少一面设置有所述粘接层;和

工序(b),在非活性气体气氛中,并且在0.20~0.98mpa的压力下,于所述热塑性聚酰亚胺的tg-20℃~tg+50℃的温度对所述工序(a)中得到的层合体进行热处理。

以下,将上述工序(a)及工序(b)分别称为“层压工序”及“热处理工序”。

[工序(a)]

本实施方式的制造方法中的工序(a)是通过将聚酰亚胺树脂膜与金属箔贴合从而得到层合体的工序,所述聚酰亚胺树脂膜包含非热塑性聚酰亚胺层和含有热塑性聚酰亚胺的粘接层,在所述非热塑性聚酰亚胺层的至少一面设置有所述粘接层。

非热塑性聚酰亚胺层中使用的非热塑性聚酰亚胺可通过例如将酸二酐与二胺共聚而得到。作为酸二酐及二胺,可以使用脂肪族化合物、脂环式化合物、芳香族化合物中的任何,从耐热性的观点考虑,作为酸二酐,优选芳香族四羧酸二酐,作为二胺,优选芳香族二胺。

作为构成非热塑性聚酰亚胺的酸二酐,可举出例如选自由均苯四甲酸二酐、2,3,6,7-萘四甲酸二酐、3,3’,4,4’-联苯四甲酸二酐、1,2,5,6-萘四甲酸二酐、2,2’,3,3’-联苯四甲酸二酐、3,3’,4,4’-二苯甲酮四甲酸二酐、4,4’-氧双邻苯二甲酸酐、2,2-双(3,4-二羧基苯基)丙烷二酐、3,4,9,10-苝四甲酸二酐、双(3,4-二羧基苯基)丙烷二酐、1,1-双(2,3-二羧基苯基)乙烷二酐、1,1-双(3,4-二羧基苯基)乙烷二酐、双(2,3-二羧基苯基)甲烷二酐、双(3,4-二羧基苯基)乙烷二酐、双(3,4-二羧基苯基)砜二酐、对亚苯基双(偏苯三酸单酯酸酐)、亚乙基双(偏苯三酸单酯酸酐)、双酚a双(偏苯三酸单酯酸酐)组成的组中的至少1种酸二酐,上述中,从耐热性、尺寸稳定性的观点考虑,优选选自由均苯四甲酸二酐、2,3,6,7-萘四甲酸二酐、2,2’,3,3’-联苯四甲酸二酐、3,3’,4,4’-联苯四甲酸二酐、3,3’,4,4’-二苯甲酮四甲酸二酐组成的组中的至少1种酸二酐。

作为构成非热塑性聚酰亚胺的二胺,可举出例如选自由4,4’-二氨基二苯基丙烷、4,4’-二氨基二苯基甲烷、联苯胺、3,3’-二氯联苯胺、3,3’-二甲基联苯胺、2,2’-二甲基联苯胺、3,3’-二甲氧基联苯胺、2,2’-二甲氧基联苯胺、4,4’-二氨基二苯基硫醚、3,3’-二氨基二苯砜、4,4’-二氨基二苯砜、4,4’-二氨基二苯醚、3,3’-二氨基二苯醚、3,4’-二氨基二苯醚、1,5-二氨基萘、2,6-二氨基萘、4,4’-二氨基二苯基二乙基硅烷、4,4’-二氨基二苯基硅烷、4,4’-二氨基二苯基乙基氧化膦、4,4’-二氨基二苯基n-甲胺、4,4’-二氨基二苯基n-苯基胺、1,4-二氨基苯(对亚苯基二胺)、1,3-二氨基苯、1,2-二氨基苯、双{4-(4-氨基苯氧基)苯基}砜、双{4-(3-氨基苯氧基)苯基}砜、4,4’-双(4-氨基苯氧基)联苯、4,4’-双(3-氨基苯氧基)联苯、1,3-双(3-氨基苯氧基}苯、1,3-双(4-氨基苯氧基}苯、1,4-双(4-氨基苯氧基}苯、3,3’-二氨基二苯甲酮、4,4’-二氨基二苯甲酮、2,2-双[4-(4-氨基苯氧基)苯基)]丙烷组成的组中的至少1种二胺,上述中,从耐热性、尺寸稳定性的观点考虑,优选包含选自由3,3’-二甲基联苯胺、2,2’-二甲基联苯胺、3,3’-二甲氧基联苯胺、2,2’-二甲氧基联苯胺、1,5-二氨基萘、1,4-二氨基苯(对亚苯基二胺)组成的组中的至少1种二胺。

非热塑性聚酰亚胺的玻璃化转变温度(tg)取决于柔性金属包覆层合板的用途,因此没有特别限定,优选为290℃以上,更优选为320℃以上,进一步优选为340℃以上。非热塑性聚酰亚胺的tg为290℃以上时,存在耐热性变得良好的趋势。

需要说明的是,本说明书中,玻璃化转变温度(tg)可以由利用动态粘弹性测定装置(dma)测得的储能模量的拐点的值求出,具体而言,可以按照后述的实施例的方法测定。

本实施方式中的粘接层是设置于非热塑性聚酰亚胺层的至少一面、且含有热塑性聚酰亚胺的层。作为粘接层中使用的热塑性聚酰亚胺,可举出热塑性聚酰亚胺、热塑性聚酰胺酰亚胺、热塑性聚醚酰亚胺、热塑性聚酯酰亚胺等。其中,从低吸湿特性的观点考虑,优选热塑性聚酯酰亚胺。热塑性聚酰亚胺可通过例如将酸二酐与二胺共聚而得到。

作为构成热塑性聚酰亚胺的酸二酐,可举出例如选自由均苯四甲酸二酐、2,3,6,7-萘四甲酸二酐、3,3’,4,4’-联苯四甲酸二酐、1,2,5,6-萘四甲酸二酐、2,2’,3,3’-联苯四甲酸二酐、3,3’,4,4’-二苯甲酮四甲酸二酐、4,4’-氧双邻苯二甲酸酐、2,2-双(3,4-二羧基苯基)丙烷二酐、3,4,9,10-苝四甲酸二酐、2,2-双(3,4-二羧基苯基)丙烷二酐、1,1-双(2,3-二羧基苯基)乙烷二酐、1,1-双(3,4-二羧基苯基)乙烷二酐、双(2,3-二羧基苯基)甲烷二酐、1,2-双(3,4-二羧基苯基)乙烷二酐、双(3,4-二羧基苯基)砜二酐、对亚苯基双(偏苯三酸单酯酸酐)、亚乙基双(偏苯三酸单酯酸酐)、双酚a双(偏苯三酸单酯酸酐)组成的组中的至少1种,上述中,从粘接性、获得容易性的观点考虑,优选选自由2,2’,3,3’-联苯四甲酸二酐、3,3’,4,4’-联苯四甲酸二酐、3,3’,4,4’-二苯甲酮四甲酸二酐、4,4’-氧双邻苯二甲酸酐组成的组中的至少1种。

作为构成热塑性聚酰亚胺的二胺,可举出例如选自由4,4’-二氨基二苯基丙烷、4,4’-二氨基二苯基甲烷、联苯胺、3,3’-二氯联苯胺、3,3’-二甲基联苯胺、2,2’-二甲基联苯胺、3,3’-二甲氧基联苯胺、2,2’-二甲氧基联苯胺、4,4’-二氨基二苯基硫醚、3,3’-二氨基二苯砜、4,4’-二氨基二苯砜、4,4’-二氨基二苯醚、3,3’-二氨基二苯醚、3,4’-二氨基二苯醚、1,5-二氨基萘、2,6-二氨基萘、4,4’-二氨基二苯基二乙基硅烷、4,4’-二氨基二苯基硅烷、4,4’-二氨基二苯基乙基氧化膦、4,4’-二氨基二苯基n-甲胺、4,4’-二氨基二苯基n-苯基胺、1,4-二氨基苯(对亚苯基二胺)、1,3-二氨基苯、1,2-二氨基苯、双{4-(4-氨基苯氧基)苯基}砜、双{4-(3-氨基苯氧基)苯基}砜、4,4’-双(4-氨基苯氧基)联苯、4,4’-双(3-氨基苯氧基)联苯、1,3-双(3-氨基苯氧基}苯、1,3-双(4-氨基苯氧基}苯、1,4-双(4-氨基苯氧基}苯、1,3-双(3-氨基苯氧基}苯、3,3’-二氨基二苯甲酮、4,4’-二氨基二苯甲酮、2,2-双[4-(4-氨基苯氧基)苯基]丙烷组成的组中的至少1种,上述中,从粘接性、获得容易性的观点考虑,优选选自由2,2-双-[4-(4-氨基苯氧基)苯基]丙烷、4,4’-二氨基二苯醚、4,4’-二氨基二苯基甲烷、1,3-双(3-氨基苯氧基}苯、1,3-双(4-氨基苯氧基}苯组成的组中的至少1种。

热塑性聚酰亚胺的tg取决于柔性金属包覆层合板的用途,因此没有特别限定,优选为240~290℃,更优选为260~290℃,进一步优选为280~290℃。热塑性聚酰亚胺的tg为240℃以上时,存在耐热性变得良好的趋势,为290℃以下时,存在与金属箔的贴合变得容易的趋势。

包含非热塑性聚酰亚胺层、和含有热塑性聚酰亚胺的粘接层的聚酰亚胺树脂膜的厚度取决于柔性金属包覆层合板的用途,因此没有特别限定,优选为12.5~50μm,更优选为12.5~25μm。聚酰亚胺树脂膜的厚度小于12.5μm时,存在绝缘性差的趋势,并且存在撕裂·破裂等机械特性降低的趋势。另一方面,聚酰亚胺树脂膜的厚度大于50μm时,存在热处理时容易发生发泡、或柔软性受损的趋势。

作为聚酰亚胺树脂膜,可使用市售品,可举出例如kanekacorporation制商品名“pixeofrs”系列、“pixeofc”系列、宇部兴产公司制商品名“upilexnvt”系列等作为优选的市售品。

作为本实施方式中的金属箔,没有特别限定,可举出电解铜箔、轧制铜箔、铝箔、不锈钢箔等,其中,从导电性、电路加工性的观点考虑,优选电解铜箔、轧制铜箔。金属箔的厚度取决于柔性金属包覆层合板的用途,因此没有特别限定,优选为1~35μm,更优选为9~18μm。金属箔的厚度小于1μm时,存在制作电路基板时容易由针孔、破裂等引起电路缺损的趋势,大于35μm时,存在与聚酰亚胺树脂膜贴合的温度升高、生产率降低的趋势。另外,可对金属箔的表面施以基于镀锌、镀铬等的无机表面处理、基于硅烷偶联剂等的有机表面处理。

作为金属箔,可使用市售品,可举出例如jx金属公司制商品名“轧制铜箔bhy”、福田金属公司制商品名“轧制铜箔rofl”等作为优选的市售品。

层合工序中,经由含有热塑性聚酰亚胺的粘接层而将金属箔贴合于非热塑性聚酰亚胺层的一面或两个面。作为贴合的步骤,例如可举出:(i)在非热塑性聚酰亚胺层的至少一面上形成粘接层从而得到聚酰亚胺树脂膜,然后与金属箔贴合的方法;(ii)将粘接层成型为片状,将其贴合于非热塑性聚酰亚胺层从而得到聚酰亚胺树脂膜,然后与金属箔贴合的方法;(iii)将粘接层成型为片状,将其夹持于金属箔与非热塑性聚酰亚胺层之间而进行贴合的方法;等等。

上述(i)的方法的情况下,聚酰亚胺树脂膜可通过例如将作为热塑性聚酰亚胺前体的聚酰胺酸溶液涂布于非热塑性聚酰亚胺层的至少一面上、经加热、干燥并进行酰亚胺化而得到。

对于非热塑性聚酰亚胺层,可根据需要在设置粘接层前施以电晕处理、等离子体处理、偶联处理等各种表面处理。另外,非热塑性聚酰亚胺层及粘接层中可包含1种以上的有机或无机填料等其他成分。

层合工序中,作为将聚酰亚胺树脂膜与金属箔贴合的方法,可以使用加压、层压等,从成卷、生产率的观点考虑,优选使用层压。层压可利用例如具有一对以上金属辊的热辊层压装置、双带压力机(dbp)进行,其中,热辊层压装置具有构成简单、在维护成本方面有利的优点。此处所谓“具有一对以上金属辊的热辊层压装置”,只要是具有用于对材料进行加热加压的金属辊的装置即可,其具体的装置构成没有特别限定。

另外,可以在层合工序前设置送出被层合材料的送出装置,也可以在层合工序后设置卷绕被层合材料的卷绕装置。通过设置这些装置,能够进一步提高柔性金属包覆层合板的生产率。送出装置及卷绕装置的具体构成没有特别限定,可举出例如能够卷绕聚酰亚胺树脂膜、金属箔、或得到的层合体的已知的辊状卷绕机等。

通过层压来实施层合工序时的层压温度优选为热塑性聚酰亚胺树脂的tg+50℃以上的温度,更优选为tg+70℃以上。温度为tg+50℃以上的情况下,存在聚酰亚胺树脂膜与金属箔的粘接性变得良好的趋势,温度为tg+70℃以上的情况下,存在能够使层压速度上升、从而进一步提高其生产率的趋势。作为层压温度的上限没有特别限定,但过高时存在树脂分解的可能性。

层压时的层压速度优选为0.5m/分钟以上,更优选为1.0m/分钟以上。为0.5m/分钟以上的情况下,存在粘接性变得良好的趋势,为1.0m/分钟以上的情况下,存在生产率进一步提高的趋势。

虽然有层压压力越高则越能降低层压温度并且加快层压速度的优点,但通常层压压力过高时,存在得到的金属包覆层合板的尺寸变化恶化的趋势。另外,相反地,层压压力过低时,存在得到的层合板的粘接性差的趋势。因此,层压压力优选为500kg/m~5000kg/m的范围内,更优选为1000kg/m~3000kg/m的范围内。此处,所谓层压压力表示金属辊向材料施加的压力。

层压时的聚酰亚胺树脂膜张力优选为0.1~20kg/m,更优选为0.2~15kg/m,进一步优选为0.5~10kg/m。张力小于0.1kg/m时,存在难以得到外观良好的柔性金属包覆层合板的趋势,大于20kg/m时,存在尺寸稳定性差的趋势。此处,所谓聚酰亚胺树脂膜张力,是指向层压前的聚酰亚胺树脂膜施加的张力。

[工序(b)]

本实施方式中的工序(b)是在非活性气体气氛中,并且在0.20~0.98mpa的压力下,于所述热塑性聚酰亚胺的tg-20℃~tg+50℃的温度对上述工序(a)中得到的层合体进行热处理的工序。

工序(b)中的热处理在非活性气体气氛中并且在0.20~0.98mpa的压力下实施。以往,在氮气等非活性气体气氛下对将铜箔与作为基材的树脂层合而成的铜包覆层合板进行热处理是已知的,但于高于树脂的tg附近的温度进行热处理的情况下,层合体中包含的空气膨胀,在表面产生鼓起,另外,有树脂发生热分解的风险。因此,例如,如专利文献2中所记载的,必须以低于树脂的tg的温度长时间进行热处理,柔性金属包覆层合板的生产率不能说是良好的。

本申请发明人发现,通过在金属箔与基材树脂之间设置含有热塑性聚酰亚胺的粘接层,在非活性气体气氛中并且在0.20~0.98mpa的压力下对得到的层合体进行热处理,能够以高于以往的温度实施热处理,并且能够显著提高品质优异的柔性金属包覆层合板的生产率。

本实施方式中的热处理工序在非活性气体气氛下实施。在大气中实施热处理工序的情况下,会产生金属箔在高温下的热处理时发生氧化的问题,在真空中实施的情况下,层合体中包含的空气膨胀、在表面产生鼓起。作为非活性气体,没有特别限定,可举出例如氮气、氩气等,其中,从获得性·经济性的观点考虑,优选氮气。

热处理工序中的压力为0.20~0.98mpa,优选为0.50~0.98mpa,更优选为0.70~0.98mpa,进一步优选为0.90~0.98mpa。热处理工序中的压力小于0.20mpa时,于高温实施热处理的情况下,在层合板表面产生鼓起,另一方面,压力大于0.98mpa时,存在设备结构变得复杂的问题。

热处理工序中的压力可以利用常规的压力计进行测定。

热处理工序中的热处理温度为热塑性聚酰亚胺的tg-20℃~tg+50℃,优选为tg-20℃~tg+30℃,更优选为tg-10℃~tg+30℃。热处理温度小于tg-20℃时,柔性金属包覆层合板的生产率恶化,大于tg+50℃时,发生鼓起、树脂发生分解的风险升高。

热处理工序中的热处理时间取决于热塑性聚酰亚胺的种类、柔性金属包覆层合板的用途,因此没有特别限定,通常为60~420分钟,优选为90~300分钟,更优选为120~240分钟。热处理时间为60分以上时,存在尺寸变化在柔性金属层合板整体范围内均匀地得到抑制的趋势,为420分钟以下时,存在柔性金属层合板的生产率提高的趋势。

施以热处理的层合体可以是经由卷绕装置卷绕后的卷状层合体,也可以是将卷解开后的平坦的片状层合体,从生产率的观点考虑,优选对卷状的层合体施以热处理。

热处理工序尤其优选在高压釜内实施。通过使用高压釜,容易以在非活性气体气氛中并且在0.20~0.98mpa的压力下这样的条件实施热处理,存在柔性金属包覆层合板的生产率进一步提高的趋势。

通过本发明的制造方法得到的柔性金属层合板的尺寸变化在层合体整体范围内均匀地得到抑制,而通过考虑各材料的线性膨胀系数,从而该效果变得更为显著。具体而言,非热塑性聚酰亚胺的线性膨胀系数通常与金属箔的线性膨胀系数等同或为其以下,热塑性聚酰亚胺的线性膨胀系数大于金属箔。因此,尤其通过将线性膨胀系数大的热塑性聚酰亚胺和线性膨胀系数小的非热塑性聚酰亚胺组合来制作聚酰亚胺树脂膜,由此使得与金属箔(其与所述聚酰亚胺树脂膜贴合)的线性膨胀系数之差变小,结果,存在进一步降低尺寸变化的偏差的趋势。

热塑性聚酰亚胺的线性膨胀系数优选为20~100ppm,更优选为30~70ppm,进一步优选为40~60ppm。另外,非热塑性聚酰亚胺的线性膨胀系数优选为20ppm以下,更优选为18ppm以下,进一步优选为16ppm以下。

此处,线性膨胀系数可利用tma(例如,(株)岛津制作所公司制商品名“tma-60”)进行测定,并由升温速度为10℃/分钟、于100℃至150℃的范围得到的测定值求出。

本实施方式的制造方法中,在非热塑性聚酰亚胺层的至少一面上设置含有热塑性聚酰亚胺的粘接层。此处,在非热塑性聚酰亚胺层的仅一面设置粘接层的情况下,得到的柔性金属包覆层合板成为具有非热塑性聚酰亚胺层-粘接层-金属箔的3层结构的单面金属包覆层合板,在非热塑性聚酰亚胺层的两个面设置粘接层的情况下,成为具有金属箔-粘接层-非热塑性聚酰亚胺层-粘接层-金属箔的两面3层(5层)结构的双面金属包覆层合板。需要说明的是,具有粘接层-非热塑性聚酰亚胺层-粘接层-金属箔的4层结构的层合板也被包括于单面金属包覆层合板中。

可利用用于覆盖金属箔电路的覆盖层覆盖将本实施方式中的柔性金属包覆层合板的金属层蚀刻为规定形状而得到的蚀刻面,从而得到柔性印刷布线板。作为覆盖层,只要是覆盖金属箔电路的覆盖层则没有特别限定,可使用将粘接剂涂布于聚酰亚胺等的膜而得到的覆盖层、液状抗蚀剂、干膜抗蚀剂等。柔性印刷布线板可良好地用作例如用于安装ic芯片的所谓芯片连接(chip-on)柔性印刷布线板。

需要说明的是,只要没有明确记载,则本说明书中的各物性可按照以下的实施例中记载的方法进行测定。

实施例

以下,通过实施例及比较例更具体地说明本发明,但本发明不仅限于这些实施例。

实施例及比较例中使用的各成分·材料如下。

(聚酰亚胺树脂膜)

(1)聚酰亚胺树脂膜a

kanekacorporation制商品名“frs-142#sw”厚度为25μm

热塑性聚酰亚胺的tg=290℃

(2)聚酰亚胺树脂膜b

kanekacorporation制商品名“fc-142”厚度为25μm

热塑性聚酰亚胺的tg=240℃

(铜箔)

jx金属公司制商品名“轧制铜箔bhy”厚度为12μm

各评价方法及测定方法如下。

[玻璃化转变温度(tg)]

tg的测定中,利用蚀刻除去柔性铜包覆层合板的铜箔部分并进行干燥,将由此得到的物体作为试样。使用tainstruments公司制商品名“rsa-g2”作为测定装置,以升温速度10℃/分钟进行测定,将得到的tanδ的峰作为tg(℃)。

[尺寸变化率]

按照jisc6471的9.6项进行测定。具体如以下这样进行测定。

从宽度为500mm的柔性金属包覆层合板沿宽度方向切出2片试样,如图1所示的那样,测定md-l1、l2、l3、l4的长度(初始长度)。铜箔蚀刻后,在标准状态下放置12小时以上,然后再次测定md-l1、l2、l3、l4的长度(蚀刻后长度)。按照下式算出md-l1、l2、l3、l4的尺寸变化率。

尺寸变化率(%)=(蚀刻后长度-初始长度)/初始长度×100

接着,求出md-l1、l2、l3、l4的尺寸变化率的最大值与最小值之差,将该差为0.05%以内的情况评价为“○”,将大于0.05%的情况评价为“×”。

[外观(鼓起)]

通过目视观察柔性金属包覆层合板的表面,将鼓起的个数在热处理前后没有变化的情况评价为“○”,将热处理后鼓起的个数增加的情况评价为“×”。

[判定]

将尺寸变化率、外观的评价均为“○”的试样评价为“○”,将其中一者、或二者的评价为“×”的试样评价为“×”。

[实施例1]

利用具有一对金属辊的热层压装置(yurirollco.,ltd制商品名“柔性印刷基板用高温层压机”),将在两个面上具有粘接层的聚酰亚胺树脂膜a与铜箔贴合。将得到的层合体置入氮气气氛的高压釜内,于温度270℃、压力0.9mpa的条件下进行120分钟热处理,由此得到具有5层结构的柔性双面铜包覆层合板。

使用得到的柔性铜包覆层合板评价尺寸变化率、外观,结果示于表1。

[实施例2~6及比较例1~5]

除了变更热处理温度及压力以外,通过与实施例1同样的方法得到柔性铜包覆层合板,评价尺寸变化率、外观。结果示于表1。

[实施例7~10、比较例6~8]

使用聚酰亚胺树脂膜b代替聚酰亚胺树脂膜a,并变更热处理温度、压力,除此以外,通过与实施例1同样的方法得到双面柔性铜包覆层合板,评价尺寸变化率、外观。结果示于表2。

由表1及表2所示的结果可知,通过在非活性气体气氛中、并且在特定的温度及压力下对将聚酰亚胺树脂膜(其设置有含有热塑性聚酰亚胺的粘接层)与金属箔贴合而得到的层合体进行热处理,从而能够在短时间内高效地生产在层合体整体范围内均匀地抑制尺寸变化、并且表面没有鼓起的柔性金属包覆层合板。

本申请基于2016年6月3日向日本专利局提出的日本专利申请(日本特愿2016-111447号),其内容作为参考而并入本文。

产业上的可利用性

通过本发明的制造方法得到的金属包覆层合板可在产业中作为用于柔性印刷布线板的部件使用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1