脉冲气化和热气净化装置和方法

文档序号:4561544阅读:545来源:国知局
专利名称:脉冲气化和热气净化装置和方法
相关申请本申请是以2002年5月22日申请的临时专利申请60/382302为基础的,并要求该申请的优先权。
背景技术
在直接燃烧的常规能量产生系统和其它方法中,对某些燃料利用的主要关注是燃料燃烧产生的微粒。这些微粒残留在燃烧气流中。因为运行这样系统的气流可对设备的寿命产生不利的影响,所以气流中应该基本上没有这些微粒物质。尽管常规微粒去除装置(particulate removal device)可用于从燃烧气流去除一些较大的固体微粒物质,但是这些装置通常不能从气流中去除较小的微粒。类似的问题也存在于多种气流中,这些气流中微粒悬浮物质并非来源于燃烧。
Mansour等人的美国专利5353721和Mansour等人的5197399描述了脉冲燃烧装置(pulsed combustion apparatus)和方法,在此为所有目的,将其引入作为参考;该脉冲燃烧装置和方法用于声附集(acoustically agglomerating)燃料燃烧产生的微粒,以便从燃烧流出气流中去除微粒。当从燃烧流出气流去除颗粒后,那么气流可用于各种工艺和系统中。例如,在一个实施方案中,使用流出气流旋转涡轮机来产生能量。
已经以该方式在工艺发展单元(process development unit,PDU)中使用粉状烟煤和用于硫俘获(sulfur capture)的四种不同吸附剂进行了试验,试验结果如下(1)燃烧效率超过99%;(2)硫俘获高至98%;(3)NOx排放在0.3-0.6lb/MMBtu范围内;以及(4)在旋风分离器出口废气处固体载量(solidsloading)(类似于涡轮机入口固体载量)低至23ppmw。固体载量结果极大地低于100-150ppmw的起初目标,以及足够好从而满足发电厂微粒排放的新资源性能标准(New Source Performance Standard,NSPS)(<0.03lb/MMBtu)。
然而,尽管燃烧或贫燃方式中的操作提供了令人满意和鼓舞人心的结果,但是该工艺在热力学上受到限制,并且呈现出与排放控制相关的各种问题。具体地,下述限制变得显而易见●在氧化或贫燃条件下,硫保持量(sulfur retention)或钙利用随着操作温度升高而降低。例如,在高至约1000℃(1832°F)的温度下,要求95%硫俘获的Ca/S摩尔进料比是十分有利的,但是随着进一步升高温度而急剧上升。这限制了燃气涡轮机入口温度,以及反过来限制循环或电厂效率。
●尽管脉冲燃烧器是固有的低NOx装置,但是操作的氧化方式、富燃氮气(fuel bound nitrogen)的存在以及高温全都有利于NOx形成。因此,需要进一步减少NOx,特别是在提高燃气涡轮机入口温度的要求的情况下。
●附集室中更高的温度(>1000℃或1832°F)有利于声附集,但不利于硫俘获。这易于限制旋风分离器出口废气中固体载量的减小程度。
因此,目前存在改进附集装置和方法的需要。

发明内容
根据本发明的一个实施方案,描述了用于气化原料(例如,煤、焦炭、其它固体燃料、重质液态烃、浆料等)的装置和方法,该装置和方法用原地热气净化产生清洁的中质(medium)气体。在一个特定的实施方案中,该方法使用结合了一个或两个气化阶段的脉冲气化装置。该方法促进微粒的声附集,从而有助于使用常规分离装置进行的微粒收集;以及便于合适吸附剂的利用,以在声波增强的环境中俘获气体污染物。该装置可用于各种不同的构造中,例如改变用于能量产生的燃料电池、燃气涡轮机和蒸汽涡轮机的组合而形成的联合循环构造,以及用于产生结合的热和电能、用于制氢、生产液体燃料的或直接还原铁的联合生产构造(cogeneration configuration)中。
在一个实施方案中,例如,气化器(gasfier)系统包括用于第一阶段气化的脉冲燃烧装置、用于除渣(slag)的U管布置、用于第二阶段气化的垂直夹带流动部分(vertical entrained flow section)、以及用于微粒俘获的主旋风分离器和副旋风分离器。氧气和蒸汽可用作气化剂,以提高产物气体热值以及反过来促进火焰稳定性和消除(turndown)部分氧化。例如,部分氧化可发生在第一阶段,而起支配作用的蒸汽重整过程可发生在第二阶段。
在第二阶段中,将吸附剂颗粒注入强声场作用下的气流中。声场通过提高气膜和颗粒内的传质速率而起到改进吸附剂煅烧的作用。此外,吸附剂颗粒起到动态过滤中心(filter foci)的作用,从而提供了高密度的停滞附集中心,该停滞附集中心用于捕获更细的夹带飞灰部分。再生吸附剂可用于原地硫俘获,以及可包括硫回收单元来产生含硫副产物。该副产物可为,例如硫酸铵或者硫酸。
在一个特定的实施方案,本发明的系统用于产生具有燃料或热值(heatvalue)的气流。该系统可包括流体通道(fluid channel),该流体通道包括第一阶段部分(stage section)和第二阶段部分。流体通道可包括将第一阶段部分过渡(transition)至第二阶段部分的U形部分。脉冲燃烧装置包括与至少一个共振管(resonance tube)连接的脉冲燃烧器,脉冲燃烧装置可放置成与流体通道的第一阶段部分相通。脉冲燃烧装置可构造成燃烧固体或液体燃料,以及产生脉动燃烧气流(pulsating combustion stream)和声压波(acousticpressure wave)。流体通道可成形为将声压波从第一阶段部分传送至第二阶段部分。
该系统可进一步包括硫俘获剂注入口(sulfur capturing agent injectionport),该硫俘获剂注入口用于将硫俘获剂注入流体通道的第二阶段部分。硫俘获剂可构造成从脉动燃烧气流中去除含硫气体,以及与脉动燃烧气流中含有的任何颗粒进行声附集。微粒去除装置,例如低速旋风分离器以及高速旋风分离器,可从流体通道中接受燃烧气流。微粒去除装置可用于从气流中去除微粒。当从气流中去除微粒后,气流可用于各种过程中。例如,在一个实施方案中,气流可用于给燃气或蒸汽涡轮机提供动力或者可用于给燃料电池提供动力。
除了产生气体的系统之外,本发明也涉及用于产生具有燃料或热值的气流的各种方法。在一个实施方案中,例如,该方法可包括在脉冲燃烧装置内燃烧固体或液体燃料以及产生脉动燃烧气流和声压波的步骤。可在亚化学计量(sub-stoichiometric)条件下操作脉冲燃烧装置。如此处所使用的,亚化学计量条件是指氧气的量不足以完全燃烧燃料源的燃烧条件。在本发明中,例如,脉冲燃烧装置可操作在约30%至约60%的化学计量程度上。此外,不仅连同氧气源而且连同蒸汽一起可将固体或液体燃料供应至脉冲燃烧装置。该蒸汽可用于控制化学计量程度、控制温度以及以供蒸汽重整。
在形成脉动燃烧气流和声压波后,可经过流体通道引导它们。流体通道的至少一部分可在还原条件(reducing condition)下运行,以促进蒸汽气化(steam gasification)。在蒸汽气化过程中,发生吸热反应,在吸热反应中烃化合物裂解,并生成氢气。氢气和较低分子量烃气体是有用的能源。
根据本发明的方法,可将硫俘获剂注入流体通道中。硫俘获剂可俘获脉动燃烧气流含有的硫。硫俘获剂也与脉动燃烧气流中含有的颗粒声附集。
然后,使用任何合适的微粒去除装置,从流体通道中过滤含有氢气和附集的颗粒的燃烧气流。例如,在一个实施方案中,可使用双旋风分离器去除附集的颗粒。然后可以根据各种工艺的需要,使用生成的产物气流。
在一个实施方案中,可将从燃烧气流中去除的附集的颗粒供应至加热过的流化床。流化床中的流化介质可含有致使流化床中发生放热反应的氧气。例如,在一个实施方案中,可将附集的颗粒中含有的硫化物转化成硫酸盐。在可选择的实施方案中,当硫俘获剂是二氧化铈时,可将附集的颗粒放置在流化床中,以再生二氧化铈和产生二氧化硫。然后,可处理在流化床内产生的气流,以去除二氧化硫。
在一个实施方案中,流体通道可包括第一阶段部分和第二阶段部分。第一阶段部分可维持在小于约4000°F的温度,以及可包括第一出口温度。另一方面,第二阶段部分可包括第二出口温度。该第二出口温度可小于第一出口温度,以及可不高于约1900°F,例如小于约1700°F。
可维持流体通道的第一阶段部分内的条件,以便允许部分氧化、蒸汽气化和造渣。当形成渣时,可以周期性地从流体通道中去除渣。
然而,在流体通道的第二阶段部分内,可以存在还原条件,以促进蒸汽气化(也称为蒸汽重整),蒸汽气化促进氢和其它较低分子量烃的生产。
以下将更详细地描述本发明其它特征和方面。


本发明完整和有效的公开包括本发明的最佳实施方式,以及旨在指导本领域的技术人员,在说明书的以下部分将参考下述附图,更加具体地说明本发明。
图1是本发明脉冲气化系统的一个实施方案的示意方框图;图2显示本发明脉冲气化器的一个实施方案的正视图;
图3是本发明脉冲气化器的一个实施方案的剖面图;图4是可在本发明的系统和方法中使用的脉冲燃烧装置的一个实施方案的横截面图;图5是根据本发明的一个实施方案,在还原条件下%硫俘获和绝热气体温度之间的关系图;图6根据本发明的一个实施方案,硫保持量(以CaS或CaSO4的形式)和温度之间的关系图;图7是根据本发明用于煤的脉冲气化器联合循环的实施方案示意图;以及图8是根据本发明一个实施方案,净电厂效率(net plant efficiency)和供应至脉冲气化器的煤原料之间的关系图。
在说明书和附图中对附图标记的重复使用旨在表示本发明中相同或相似的特征或元件。
具体实施例方式
本领域的普通技术人员应当理解,该讨论仅仅是对示例性实施方案的描述,而非旨在限制本发明的更宽方面,更宽的方面体现在示例性的解释中。
本发明主要涉及创新的脉冲气化系统,该系统克服了现有的脉冲气化系统中多种限制,并可构造成遵守规定的新排放目标,即NSPS的十分之一。例如,在一个实施方案中,本发明的系统和方法可构造成排放小于约0.12lb/MMBtu的二氧化硫、小于约0.06lb/MMBtu的氮氧化物(NOx),和/或小于约0.003lb/MMBtu的微粒。
在一个实施方案中,脉冲气化器系统包括用于第一阶段气化的脉冲单元、用于除渣的U管布置,也可包括用于第二阶段气化的垂直夹带流动部分和用于微粒俘获的主旋风分离器和副旋风分离器。原料可为煤、焦炭、生物质、重质液态烃等,以及可为固体、重质液体、浆料等形式。氧气和蒸汽可用作气化剂,以提高产物气体热值,以及促进火焰稳定性和关闭(turndown)。在联合循环构造的情况下,这也有助于提高燃气涡轮机入口温度和电厂效率。空气可用作气化剂,尽管在一些情况下,它也可以降低由于稀释氮气而产生的气体的热值。压缩空气可用于将固体燃料从配量箱(meteringbin)中气动传输至脉冲气化器中。过热蒸汽也可用作传输/载体流体。在一些实施方案中,过热蒸汽是优选的干固体原料的载体。
脉冲气化器包括一个或两个气化阶段,以促进良好的碳转化、用于声附集的高声压程度以及良好的原地(in situ)硫俘获。在两阶段的情况下,第一阶段可以在造渣方式和在亚化学计量条件下运行。在氧气和蒸汽存在下,除去原料中易挥发性物质,并使其部分氧化,释放热量以使蒸汽/原料气化反应进行。高操作温度(例如,2500°F-3400°F)可保证高的碳转化以及帮助灰烬熔化和渣流动。
在常规的造渣气化器中,渣区域对应于气固混合、燃烧和出渣的主动区域(active zone),以上全部发生在炉底板(hearth plate)上。保持出渣工艺起作用的设计和能力有时是重要的。本领域是将固体保留在气化器内,以及仍然使液态渣以所需速率经过出渣口排出。在本发明的脉冲气化器中,渣区域可对应于主动和被动区域。在主动区域中,可发生部分氧化、蒸汽气化和造渣,同时从被动区域排出渣。因此,除渣工艺/硬件设计是比较简单的,而本质上唯一的要求是不允许出渣口冻结关闭。
在两阶段构造中,可在第一和第二阶段之间提供U管连接布置,以保证熔渣可被有效地收集,以及从U管底部的端口排出。期望渣主要沿着U形弯曲的前半部分的底部流进出渣口,然后进入渣骤冷槽中。此外,该构造迫使从排气管出来的退出射流(exit jets)撞击凹陷部分并且旋转。这增强了室内的混合,以及提高了碳的停留时间,以最佳化碳的转化效率。可以采用或不采用第二阶段。这将取决于由原料的反应性所确定的第一阶段的操作温度,以及灰烬的渣化温度(例如,生物质和褐煤是不耐火的(refractory)且具有较低的灰烬渣化温度)。在其它实施方案中,所选择的原料可能不能产生渣或者系统可能构造成防止造渣。
在两阶段系统的情况下,第二阶段可包括垂直的耐火衬底部分(refractory-lined section),在耐火衬底部分中将附加的原料注入以和来自第一阶段的热气反应,以提高产物气体热值;以及将产物气体冷却至原地硫俘获的阈值(threshold)。附加的端口可直接提供在第二阶段中的立管(riser)的正下方,以俘获沉降下来的任何吸附剂-灰烬附集物。氧气和蒸汽可用来流态化附集物俘获部分中的介质。例如,可以利用氧气来增加炭化转化以及蒸汽可用来调节第二阶段中的温度。在可选择的实施方案中,只将蒸汽注入第二阶段中,以促进蒸汽气化过程中发生的吸热反应。
第二阶段中平均气体温度可在约1000°F至约2500°F之间。在还原条件下的平衡状态时,检查硫俘获对温度的依赖性表明,如图5-6所示,为使用钙类吸附剂获得90%以上的硫俘获效率,该气体温度是在适宜的温度范围(例如,从约1400°F至约2400°F)。在动态(非平衡)的情况下的硫俘获效率取决于颗粒的温度,而非气体的温度。
由于吸热煅烧,石灰石或白云石吸附剂通常要求时间以到达气体温度。这种策略有时采用在第二阶段中,以使在接近温度最高的底部处,注入吸附剂,以辅助煅烧。如果使用可再生的吸附剂,例如二氧化铈,则可在U形弯曲的较远的下游或者在第二阶段的中间区域注入吸附剂。如果需要,第二阶段中吸附剂的停留时间可通过优化吸附剂注入口的位置而得以控制。因此,在该实施方案中,远在热力学对硫俘获施加限制之前,吸附剂颗粒流进第二阶段的中间部分(温度维持在约2000°F)。这样的策略可保证对规定的吸附剂颗粒停留时间而言,有最大的硫俘获。如果必要,粉状碱吸气物质(gettering material),例如酸性白土、锂蒙脱石或高岭土,也可注入第二阶段中,以辅助碱蒸汽俘获。
在第二阶段中灰烬的附集可具有显著的益处。例如,在一些情况下,这种附集可促进一种或多种常规微粒俘获装置(例如,热旋风分离器)的利用,以将气流中的微粒降低至可接受的程度而无需借助较昂贵的烛式过滤(candle filtration)或者有问题的渣筛。在这种情况下,第二阶段有效地起到动态过滤器的作用;在动态过滤器中,由于微细颗粒和吸附剂附集中心之间的碰撞的原因,来自煤细粉的飞灰与较大的吸附剂颗粒附集在一起。
声附集是预处理的工艺,其增加了夹带颗粒的平均尺寸,从而使得通过使用热旋风分离器获得高收集效率成为可能。使用两个旋风分离器通常是所需的,其中主旋风分离器是俘获附集物而破裂最少的低速旋风分离器,且副旋风分离器是俘获细粉的高速、高效的旋风分离器。从副旋风分离器出来的相对清洁的产物气体可用于能量产生、或蒸汽生产、或用作工艺燃料、或用于氢气生产、或者用于直接还原铁、或用于燃料生产和其它合成气体应用。来自热旋风分离器固体俘获物既包含废吸附剂,也包含一些未转化的碳。可控制未转化的碳程度以及该程度一般取决于工艺目标和性能要求。
在一个实施方案中,在第二阶段中,将吸附剂颗粒注入强声场作用下的气流中。声场通过提高气膜和颗粒的传质速率而起到提高硫俘获效率的作用。此外,吸附剂颗粒起到动态过滤中心(filter foci)的作用,从而提供了高密度的停滞附集中心,该停滞附集中心用于捕获更细的夹带(在振动流场中)飞灰部分。飞灰部分的粒度通常为约20微米或更小,以及在一些实施方案中,为约1-20微米。因此,通过引入主要以20-150微米的尺寸范围为中心的吸附剂颗粒,就创建了双峰式分布。双峰式分布提供了一些优点。首先,通过增加大停滞俘获中心(stagnant trap center)的密度(在气体中),可获得快速的附集速率。再次,与只含有更微细的飞灰部分的单峰分布相比,可以在显著低的声频下有效地进行附集。
在一些情况下,低频下粒子附集的效率可能是重要的。附集速率受到声强程度(acoustic intensity level)的极大影响。因为低频的衰减通常小于高频的衰减,所以较低频率操作通常更有效。此外,低频不影响涡轮机叶片的性能,而在千赫兹范围的频率可耦合至系统的固有频率,并且导致叶片疲劳破坏。最后,50%夹带的截断(cut-off)颗粒直径随频率的降低而增加,因而较低频率的操作导致较大部分给定颗粒物料尺寸分布的夹带,以及对颗粒生长的上限的限制更少。
认为高温(例如,1800°F-3400°F)第一阶段内的一些化学反应如下燃烧部分氧化用CO2气化用H2O气化H2的氧化S的氧化硫的还原灰烬转化 灰烬=卤化物、硫化物、氧化物对两阶段构造而言,从第一阶段出来的热燃料气体可与注入第二阶段入口的燃料反应(需要时)。在此,除去附加的燃料中易挥发的物质,并气化。进一步地,在下游煅烧注入的吸附剂,如果适用,进行硫化。第二阶段内的温度从入口(约2500°F)至出口(约1700°F)降低。认为在该区一些化学反应如下
燃烧部分氧化用CO2气化用H2O气化气体替换气化NH3的形成H2的氧化S的氧化S的转化
灰烬转化灰烬=卤化物、硫化物、氧化物煅烧硫化
(或)
如果燃料含有不止痕量(~10ppm)的卤素(Cl、F、Br、I),则可俘获有时由卤素形成的酸性气体(acid gas)(HCl、HF等)和灰烬卤化物(NaCl、KCl等)以及产生清洁的燃料气体。然而,有效俘获这些物种的温度范围通常较低,且可在约1000°F至约1400°F之间。通过物理吸附和化学反应的结合,钠类吸收剂(碳酸钠钙石、天然小苏打等)优选地用于吸收酸性气体(HCl、HF等),以及碱性吸气剂(alkali getter)(高岭土、酸性白土、硅藻土、矾土等)优选地用于俘获碱(NaCl、KCl等)。相应的反应如下卤素转化
酸性气体去除
碱去除式中,括号()中的字母表示物质的相态,即字母“s”表示固体;“g”表示气体;“v”表示蒸汽。
如上所述,通常将燃料气体冷却至约1200°F的温度,以去除酸性气体和碱性蒸汽。如果原料中存在卤素,第二阶段出口温度(例如,约1200°F)可低于没有卤素时的温度(例如,从约1700°F至约1900°F)。这可以通过使用燃料气体冷却来实现,燃料气体冷却可以外部或内部方式来进行。例如,在出口的上游处围绕着第二阶段柱部分的水套可提供外部冷却。由于待冷却的介质主要是气体或者气固混合物,所以要求用于燃料气体冷却的传热表面积通常相当大,这可能导致第二阶段相当高。此外,燃料气体的腐蚀本性可能要求仔细选择热交换器的材料,这可能增加了单元的成本。因此,在一些实施方案中,可通过雾化喷头(atomizer spray head)将水直接喷洒至燃料气体中,以进行冷却。由于显热和潜热的贡献,相对于燃料气体质量,水质量的添加通常小。例如,水注入速率通常不超过燃料气体流量的约5%(以质量计)。生成的燃料气体的热值略低。可选择地,燃料气体可在旋风分离器的下游冷却,以及通过吸附剂颗粒床以去除酸性气体,通过硫抛光机(sulfur polisher)以进一步减少硫含量,以及通过热气阻挡吸收滤片(barrier filter)以去除任何夹带的微粒物质。
通常,使50-100%燃料经过第一阶段气化,以及可将剩余的(0-50%)注入第二阶段的入口。在第一阶段和第二阶段之间的实际燃料裂解(fuel split)将取决于应用、燃料性质和单元大小。化学计量也取决于应用、燃料性质和单元大小。例如,第一阶段化学计量可在30-60%的范围之间,以及整个化学计量可在25-50%界限之间。
计算机模拟显示如果燃料中没有卤素,则在脉冲气化器中产生的清洁燃料气体应当具有275Btu/scf数量级的热值(以湿重计)。如果燃料中有卤素,则热值将较低,取决于燃料中卤素的浓度,热值在250-275Btu/scf之间。
如果需要,脉冲气化器可以使用在改变用于产生能量的燃料电池、燃气涡轮机和蒸汽涡轮机的组合而形成的联合循环构造,以及用于产生结合的热和电能的、产生氢气的、产生液体燃料的、直接还原铁或其它合成气体应用的联合生产构造中。以下将描述一个产生能量的实施方案。通过结合脉冲气化器和如燃料电池、燃气涡轮机、用于制氢的变压吸附装置(pressure swing absorber)、用于产生燃料的液化反应器等部件,可形成不同应用的其它实施方案。
参考图1,图1显示了本发明工艺的一个实施方案的方框图。然而,应当理解图1仅提供为示例性目的,并非旨在以任何方式限制本发明。
现在参考图7,图7显示了本发明更详细系统的一个实施方案。特别地,图7描述了根据本发明制备的脉冲气化联合循环的一个实施方案。
如图所示,脉冲气化联合循环(“PGCC”)包括下述●煤处理和供应系统(CHFS);●吸附剂处理和供应系统(SHFS);●碱性和酸性气体吸气剂处理和供应系统(AGHFS);●脉冲气化器、热旋风分离器和拔顶燃烧器(topping burner);●燃气涡轮机发电机组;●大气流化床硫酸化器(sulfater)/燃烧器(AFBSC);●热回收蒸汽发生器(HRSG);●蒸汽涡轮机发电机组和蒸汽循环组件;●集尘室(Baghouse);●灰烬、废吸附剂和渣处理和存储系统;和●空气分离设备。
以下将介绍图7所示的系统和方法的详情。应当理解图7仅提供为示例性目的,并非旨在限制本发明的任何方面和特征。例如,图7中所示的蒸汽没有一个可以解释为对本发明来说是必须的或关键的。此外,图7中说明的和所述的特征和方面可用于本发明的其它实施方案中。
在图7所示的实施方案中,联合循环具有开放式气体循环和封闭式蒸汽循环。该实施方案产生燃料气体,其热值相当于氧气吹制(oxygen-blown)IGCC中产生的燃料气体的热值。该实施方案足够灵活,可适应Greenfield应用和改造(retrofit)应用。
如图7所示,该系统包括主要的脉冲气化器10,其实施方案也示于图2和3中。脉冲气化器10包括含在流体通道14内的脉冲燃烧装置12。参考图4,图4显示了脉冲燃烧装置12的一个实施方案。脉冲燃烧装置12包括与共振管20相通的燃烧室18。燃烧室18可连接至单独的共振管(如图所示)或者入口分别与脉冲燃烧室相通的多个平行的管。通过燃料管线22和空气输送系统24,将燃料、氧气源和/或蒸汽输送至燃烧室18。脉冲燃烧装置12可燃烧气态的、液体或固体燃料。对多数应用而言,例如,气态燃料可用于开始启动。一旦运行后,然后可将液体或固体燃料供应至燃烧室。
为了调节供应至燃烧室18的燃料和气体的量,脉冲燃烧装置12可包括至少一个阀26。阀26可为气动阀,然而也可以使用机械阀等。
在操作脉冲燃烧装置12的过程中,使合适的燃料、氧气源和蒸汽混合物经过阀26进入燃烧室18并引爆。在启动过程中,可提供辅助点火设备,例如火花塞或引燃器。燃料混合物的爆炸导致体积急剧增加以及使燃烧室加压的燃烧产物的进展。由于热气膨胀,以显著动量获得共振管20方向上的优先流动。由于共振管20内气体的惯性,就在燃烧室18内产生真空。然后,在逸出共振管气体的平衡作用下,只允许一小部分废气返回至燃烧室。因为燃烧室18的压力低于大气压力,所以更多燃料和气体进入燃烧室18内,以及发生自动点火。此外,阀26因而限制了反向流动,以及开始了新的一轮循环。第一次循环开始后,其后的操作是自维持的。
脉冲燃烧装置12产生燃烧产物的脉动流和声压波。在一个实施方案中,脉冲燃烧装置产生压力摆动或波动,其峰与峰之间的范围在约1psi和约40psi之间,以及更具体地在约1psi至约25psi之间。这些波动基本上是正弦的。压力波动程度在声压范围或强度的水平上,从约150dB至约194dB,或更大。声压波的频率可在约20Hz至约1500Hz之间。然而,对多数应用而言,低频是优选的。例如,频率可在约25Hz至约250Hz之间。
尽管可在图7所示的实施方案的脉冲燃烧装置12中燃烧任何合适的碳质燃料,使用煤作为燃料来源。如图所示,系统包括煤处理和供应系统28。粉碎煤,并结合载气,然后供应至燃烧装置12中。载气可为图7所示的压缩空气。在该特定的实施方案中,压缩空气是从压缩机30中获得的,图示的压缩机30通常与燃气涡轮机32连接。
除了煤之外,氧气源和/或蒸汽也被供应至脉冲燃烧装置12中。在该实施方案,例如,基本上纯净的氧气与蒸汽结合,并供应至脉冲燃烧装置12中。氧气获自空气分离设备34,空气分离设备34从压缩机30中接收压缩空气。
对多数应用而言,在亚化学剂量条件下操作脉冲燃烧装置12。特别地,将不足以完全燃烧燃料来源的量的氧气供应至脉冲燃烧装置。例如,在一个实施方案中,将约30%至约60%化学计量水平(以摩尔计)的氧气供应至燃烧装置中。
如上所述,可将氧气连同蒸汽一起供应至脉冲燃烧装置12中。可加入足够量的蒸汽,以调节脉动燃烧产物的温度和促进流体通道14内蒸汽重整。例如,当存在蒸汽时,经过吸热反应,重整一些燃料。吸热反应从系统中带走热量,从而调节所得脉动燃烧气流的温度。通常,可存在足够量的蒸汽,以将燃烧产物的温度维持低于约4000°F,例如低于约3400°F。例如,在一个实施方案中,可将温度维持在约1800°F至约3400°F,例如在约2500°F至约3400°F之间。
如图所示,流体通道14具有U形部分。在一些实施方案中,流体通道14可保持为单个阶段系统。然而,在其它实施方案中,可将流体通道分成含有脉冲燃烧装置12的第一阶段36和下游的第二阶段38。通常,当在工艺中形成渣时,可需要两阶段系统。例如,当使用难熔的原料,如石油焦炭或图7所示的原煤(raw coal)时,可形成渣。又例如,当使用煤作为原料时,当温度升高至约2000°F上时,可形成渣。
因此,在本发明的一个实施方案中,多个工艺可发生在流体通道14的第一阶段36内。例如,不仅在第一阶段内形成脉动燃烧气流和声压波,也在第一阶段内发生燃料来源的部分氧化、燃料来源的蒸汽气化和造渣。在特定优点中,因为流体通道14具有U形部分,所以一旦形成渣后,就直接将渣引入至端口,并通过渣处理系统40收集。U形部分也增强了从脉冲燃烧装置12出来的脉动燃烧气流的混合。
在流体通道14的第二阶段38中,脉动燃烧气流的温度通常较低,并且可往气流中加入各种添加剂。对多数应用而言,可在第二阶段38内维持还原条件,以促进蒸汽重整和相关的吸热反应。
在一个任选的实施方案中,例如,将来自煤处理和供应系统28的部分煤粉注入第二阶段38。将燃料注入流体通道的第二阶段后,燃料进行蒸汽气化。如果必要,如图7所示,可将更多量的蒸汽注入流体通道14的第二阶段38中。第二阶段中可存在较少量的氧气。然而,对多数应用而言,氧化不应当是主要的驱动力。
如图7所示,将硫俘获剂从吸附剂处理和供应系统42中注入第二阶段38。硫俘获剂起到两个作用。第一,硫俘获剂从脉动燃烧气流中脱硫。第二,硫俘获剂也有助于脉动燃烧气流内含有的飞灰或其它小微粒的附集。
在一个实施方案中,硫俘获剂可为石灰石、白云石或者它们的混合物。这些硫俘获剂通过吸热反应俘获硫。因此,在所需反应发生之前,可能需要加热石灰石和白云石。因此,可向流体通道的U形部分中注入较多的这些试剂。
然而,在可选择的实施方案中,二氧化铈可用作硫俘获剂。通常可在第二阶段38的长度方向上任何地方,加入二氧化铈。
如上所述,由于存在声压波,硫俘获剂与脉动燃烧气流内含有的微粒附集。一些附集物将继续随着脉动燃烧气流前进。然而,其它的附集物可在第二阶段38内坠落。端口(未显示)可提供在第二阶段的立管的正下方,以起到俘获任何这种附集物的作用。
当脉动燃烧气流中存在卤素时,在一些实施方案中,也将碱性吸气剂注入流体通道14的第二阶段38中可能是必须的。例如,也可通过碱性和酸性气体吸气剂处理和供应系统44将碱性吸气剂注入到第二阶段中。
当除去卤素时,可要求较低温度。在这点上,该系统也可包括排水口(water port)46,其设计为将水注入或喷射至第二阶段38中以及冷却脉动燃烧气流。
第二阶段38的入口温度可在约1800°F至约3000°F之间变化。同样的,第二阶段的出口温度也可变化。例如,在一些实施方案中,出口温度可为低于约1900°F,例如低于约1700°F。然而,当存在卤素时,出口温度可低于约1400°F,例如在约1000°F至约1200°F之间。
取决于特定的应用,流体通道14内的压力可以是变化的。例如,流体通道内的压力可在大气压力至约20倍大气压力之间变化。例如,在一个实施方案中,该压力可在约10倍大气压力至约20倍大气压力之间。
通常,脉冲气化器10可转化燃料来源中含有的约90%~约96%的碳。通过脉冲气化器形成的气体可含有相对大量的氢气以及其它气体。其它气体可包括,例如二氧化碳、一氧化碳和较轻质烃。
在脉冲气化器中生成的清洁气体的热值在250Btu/scf的数量级上(以湿重计)。该值相当于在氧气吹制IGCC中产生的气体的热值,但高于在空气吹制IGCC和二次产生PFBC(second-generation PFBC)中产生的气体的热值。
如图7所示,将从脉冲气化器10出来的产物气流供应至一对级联的(tandem)旋风分离器48和50中。在特定优点中,由于在脉冲气化器内发生的有效附集,可使用低能旋风分离器48和50,以除去附集的微粒。在一个实施方案中,旋风分离器48可为除去较大微粒的低速旋风分离器。例如,旋风分离器48中的气体流速可在约30英尺/秒至约75英尺/秒之间。
另一方面,第二旋风分离器50可为高速、高效旋风分离器,其良好地设计为除去较小的微粒,例如细粉。旋风分离器50中的气体流速可为,例如在约50英尺/秒至约200英尺/秒之间。
当使用旋风分离器48和50从产物气流中去除微粒物质后,产物气体可以用在几乎没有限制的各种工艺中。例如,在一个实施方案中,如图7所示,产物气流可用于发电。例如,如图7所示,将从旋风分离器50出来的产物气流供应至拔顶燃烧器52。拔顶燃烧器52包括燃烧器,该燃烧器燃烧产物流以及升高气体温度。例如,在一个实施方案中,可将气体温度升高至约2300°F至约2600°F之间。为燃烧产物气流,如果需要,拔顶燃烧器可结合产物气流和氧气源,例如空气。
拔顶燃烧器内含有的燃烧器可为任何合适的燃烧装置。例如,在一个实施方案中,拔顶燃烧器内含有的燃烧器可为脉冲燃烧器或低Btu燃料气体燃烧器。低Btu燃料气体燃烧器的实例已经被GE Environmental Services,Inc.和Siemens Westinghouse Electric Corporation开发。
如图7所示,拔顶燃烧器产生烟道气流(flue gas stream),然后将该烟道气流供应至燃气涡轮机32中。特别地,使用烟道气流以旋转涡轮机54以及产生电能。也如图7所示,在一个实施方案中,将自涡轮机出来的烟道气流供应至热回收蒸汽发生器56,热回收蒸汽发生器56用于从原料水中产生蒸汽。然后烟道气流出热回收蒸汽发生器56,并通过烟囱(stack)58释放至大气中。
在可选择的实施方案中,并非如图7所示将产物气流供应至燃气涡轮机,而是可将产物气流供应至燃料电池。在该实施方案中,并不需要拔顶燃烧器52。相反,可将各种气体调节和抛光系统结合到该系统中,以在将气体供应至燃料电池之气将其净化。特别地,气体调节和抛光系统可用来浓缩产物气体中含有的氢气的量,以用于燃料电池中。
如上所述,在本发明的工艺中,从脉动燃烧气流中俘获硫。硫被含在硫俘获剂中。收集流体通道14内和旋风分离器48和50内的硫俘获剂。在一些实施方案中,需要进一步处理附集的颗粒。在这点上,如图7所示,该系统进一步包括大气流化床硫酸化器60。例如,在一个实施方案中,硫俘获剂可为石灰或石灰石。在还原环境下,正如可在流体通道14中发生,通过吸附剂俘获的硫主要是通过形成硫化物。不幸的是,硫化钙与水反应,释放出硫化氢。因此,安全处理废吸附剂要求将其转化至更稳定的硫酸盐形式。在本发明的过程中,这种转化可在硫酸化器60中容易发生。
具体地,将从图7所示的脉冲气化器10和旋风分离器48和50中收集的固体供应至压降装置(pressure letdown)62,以及进入硫酸化器60。旋风分离器俘获的固体中含有废吸附剂和未转化的碳。实际上未转化的碳是所需的特征,这是因为它可用于产生能量,以将硫酸化器维持在用于硫化物转化的所需的温度。
通过石灰/石灰石的硫俘获是复杂的工艺,其包括下述反应(1)(2)取决于温度和气体条件,也可发生下述反应(3)(4)(5)(6)在第二阶段中有利的操作条件下,期待发生反应(2)。然而,在AFBSC60中,可发生反应(3-6)。反应(6)是所需的。但是,反应(3)和(5)经常不是所需的,这是因为它们导致了释放俘获的硫。考虑到Ca-O2-S相图,表明在还原条件和较高温度下反应(5)最有可能发生。
因此,通常在低于约2200°F和氧化条件下操作硫酸化器,以形成CaSO4并维持其稳定性。保持有这些要求的硫酸化器可构造成在约1550°F温度下操作的流化床。使用对应于超化学计量操作的空气来流态化该床,这可保证氧化反应得到过量氧气以及在流化床内维持氧化条件。在硫酸化器60中,燃烧来自第二阶段的未转化的碳,以将流化床的温度维持在所需的程度。检查在碳燃烧产物存在下,Ca-O2-S系统的相平衡数据表明,CO的存在将对硫酸盐的形成产生不理的影响。硫酸化器中有过量氧气物料将确保CO2占支配地位。也可将附加的新鲜吸附剂提供至流化床,以保证可将如果形成的硫氧化物俘获在流化床中。
如图7所示,在一个实施方案中,也可将原煤供应至硫酸化器中,如果碳的含量太低的话。然而,对多数系统而言,向硫酸化器60中进一步加入燃料来源可能是不必要的。
当将硫酸化器60结合到本发明的系统中时,可发生各种能量累计步骤(energy integration step),以进一步提高整个工艺的效率。例如,如图7所示,在一个实施方案中,可通过硫酸化器60的流化床供应来自压缩机30的压缩空气并预热。然后,可将预热的压缩空气供应至拔顶燃烧器52中,以和产物气流一起燃烧。为提高输入至气体循环的热量,可完成此过程。此外,流化床也可结合设计为产生蒸汽的管组。此外,可将从硫酸化器60的流化床出来的所得烟道气体供应至热回收蒸汽发生器64,热回收蒸汽发生器64也可产生蒸汽。可将来自流化床的蒸汽、来自热回收蒸汽发生器64的蒸汽和来自热回收蒸汽发生器56的蒸汽全部供应至蒸汽涡轮机66,以产生更多电能。可选择地,如所希望的,可将形成的蒸汽供应至脉冲气化器10。
如图所示,当由硫酸化器60产生的烟道气流从热回收蒸汽发生器64出来后,将该气体供应至集尘室68并过滤。将集尘室俘获的任何微粒输送至灰烬存贮器70。另一方面,将过滤过的气体供应至烟囱58并释放至大气中。
并非如上所示使用石灰石作为硫俘获剂,在可选择的实施方案中,可使用二氧化铈俘获硫。如果使用如二氧化铈的吸附剂来俘获硫,则可在空气或氧气富有的环境中再生废吸附剂。该反应对应如下
例如,可在图7所示的更像流化床的硫酸化器60中发生上述反应。
通过直接硫还原方法或克劳斯脱硫法(Claus process),可减少产生的SO2,以产生元素硫或者产生硫酸或硫酸铵。
第一次近似法估计(first-order estimate)在脉冲气化器和AFBSC之间的不同燃料裂解物的联合循环(如图7所示)的循环效率。图8显示了净电厂效率(以HHV计)与至脉冲气化器的煤原料分数的关系。对该分数而言,1对应于供应至脉冲气化器中的全部煤,以及0对应于供应至AFBSC的全部煤。Greenfield应用将要求煤原料分数接近1,而改造应用将对应于该分数的低值(一般在0.1和0.5之间)。净电厂效率曲线显示了两种情况(1)2100°F燃气涡轮机入口温度和1450psia/1000°F/1000°F蒸汽循环,和(2)2300°F燃气涡轮机入口温度和2400psia/1000°F/1000°F蒸汽循环。情况1是典型的改造应用以及情况2更适合于Greenfield应用。净电厂效率随着供应至脉冲气化器的煤原料分数的增大而增加,如由于温度增加的更高,气体循环能量产生的效率更高所预测的。在与Greenfield应用相关的高级循环条件下,净电厂效率接近45%。用脉冲气化器中产生的蒸汽代替压缩空气,可期待蒸汽冷却的燃气涡轮机叶片的效率进一步提高。对典型的改造应用而言,净电厂效率设计在33%和37%之间。当然,在所有情况中,其它益处也可以从满足NSPS十分之一的排放目标的能力得出,更简单的燃烧器岛(combustor island)构造而无需阻挡吸收滤片和无需外来的吸附剂。
根据初步估计,脉冲气体联合循环(“PGCC”)与高级能源产生技术之间的比较的优势列于表1中。在具有较少组件的情况下,PGCC提供了可比较的性能,并且显示了显著的资本成本节省的潜能。
表1

此外,PGCC系统可提供以下一些或全部益处●由于声波增强灰烬附集的原因,消除了用于热气微粒净化的一级或多级阻挡吸收滤片。这增强了可靠性、电厂有效性,减少了资本和操作和维持成本以及要求较少的不动产。
●在声波增强方式中的有效原位硫俘获以及吸附剂再生和硫回收提高了性能,减少了浪费,提高了收入和提高了经济效益。
●热气净化提高了工艺效率和降低了净热耗(net heat rate)。
●可替代的燃料和/或生物质可在系统中共燃烧。
●与目前的IGCC系统相比,资本成本节省在200美元和300美元/kW之间。
●提供了模块性(modularity)并且适合于车间制造。
●该系统可提供为小尺寸(25MWe等同或者更大)以及该系统可用于涉及如石油焦炭、沥青等原料的小生境应用(niche application)。
●适合用于再产生能源以及Greenfield应用。
●操作的阶段性的气化方式有助于NOx排放控制和灵活性,以在燃气涡轮机进展的作用下逐渐增加涡轮机入口温度(最终至2600°F)。
●燃烧器岛可以以100%煤为燃料,以及需要辅助燃料,例如天然气或燃料油仅用于起动。
●可将脉冲气化器系统作为附加物或拔顶装置而改造成AFBC,以组成联合循环应用。
●显示了获得更高循环效率(~45%)、较低排放(~NSPS的1/10)和更低成本的电能的前景。
●没有液体流出物从电厂中流出。
●提供了模块性并且适合于车间制造。
●允许阶段化或逐步构造。
●没有外部或未经证实的构造材料。
●该系统可构造成结合的热和能量(CHP)的应用,用于制氢、用于直接还原铁或用于生产液体燃料。
在不背离本发明的精神和范围的情况下,本领域的技术人员可实施本发明的这些和其它修改和变化。此外,应当理解的是,各种实施方案的方面可整体或部分相互交换。此外,本领域的技术人员将理解上述描述仅为了示例,而并非旨在限制本发明,其是通过权利要求进一步描述的。
权利要求
1.用于产生具有燃料或热值的气流的系统,其包括包括第一阶段部分和第二阶段部分的流体通道,该流体通道包括将第一阶段部分过渡至第二阶段部分的U形部分;与流体通道的第一阶段部分相通的脉冲燃烧装置,该脉冲燃烧装置包括与至少一个共振管连接的脉冲燃烧器,脉冲燃烧装置构造成燃烧固体或液体燃料以及产生脉动燃烧气流和声压波,流体通道成形为将声压波从第一阶段部分传送至第二阶段部分;用于将硫俘获剂注入流体通道的第二阶段部分中的硫俘获剂注入口,硫俘获剂构造成从脉动燃烧气流中去除含硫气体,以及与脉动燃烧气流中含有的任何颗粒进行声附集;以及与流体通道相通的微粒去除装置,其用于接受燃烧气流且去除气流中含有的微粒。
2.权利要求1所定义的系统,进一步包括固体或液体燃料注入口,布置该固体或液体燃料注入口,以便将固体或液体燃料注入流体通道的第二阶段部分中。
3.权利要求1所定义的系统,其中硫俘获剂注入口是在U形部分上或附近布置的。
4.权利要求1所定义的系统,其中硫俘获剂注入口是沿着第二阶段部分的中间区域布置的。
5.权利要求1所定义的系统,进一步包括喷嘴,该喷嘴用于将水注入流体通道的第二阶段部分中。
6.权利要求1所定义的系统,进一步包括用于将蒸汽和氧气注入脉冲燃烧装置中的蒸汽端口和氧气端口。
7.权利要求1所定义的系统,进一步包括除渣端口,该除渣端口是沿着流体通道的U形部分布置的。
8.权利要求1所定义的系统,其中脉冲燃烧装置构造成产生频率在约20至约250赫兹的声压波。
9.权利要求1所定义的系统,其中微粒去除装置包括第一旋风分离器和第二旋风分离器,第一旋风分离器包括用于去除附集物的低速旋风分离器,第二旋风分离器包括用于去除细粉的高效旋风分离器。
10.权利要求1所定义的系统,其中构造与脉冲燃烧装置连接的流体通道,以使流体通道的第一阶段部分在第一出口温度下运行以及第二阶段部分在第二出口温度下运行,第一出口温度大于第二出口温度,第二出口温度低于约1700°F。
11.权利要求1所定义的系统,进一步包括拔顶燃烧器,布置该拔顶燃烧器以接受从微粒去除装置流出的燃烧气流,拔顶燃烧器包括用于燃烧燃烧气流的燃烧器。
12.权利要求1所定义的系统,进一步包括硫酸化器,该硫酸化器接受由微粒去除装置收集的微粒,硫酸化器包括与气体端口相通的加热流化床,该气体端口构造成将流态化气体注入流化床中,流态化气体包括氧气,硫酸化器构造成硫酸化被硫俘获剂俘获的任何硫。
13.权利要求12所定义的系统,其中该系统进一步包括拔顶燃烧器,布置该拔顶燃烧器,以接受来自微粒去除装置的燃烧气流,拔顶燃烧器包括构造成燃烧燃烧气流的燃烧器,以及其中硫酸化器预热供应至拔顶燃烧器的燃烧器的空气气流。
14.权利要求1所定义的系统,进一步包括用于产生电能的发电装置,其构造成接受从微粒去除装置流出的燃烧气流。
15.权利要求14所定义的系统,其中发电装置包括燃气涡轮机或蒸汽涡轮机。
16.权利要求14所定义的系统,其中发电装置包括燃料电池。
17.用于产生具有燃料或热值的气流的系统,其包括包括第一阶段部分和第二阶段部分的流体通道;与流体通道的第一阶段部分相通的脉冲燃烧装置,脉冲燃烧装置包括与至少一个共振管相连的脉冲燃烧器,脉冲燃烧装置构造成燃烧固体或液体燃料以及产生脉动燃烧气流和声压波,流体通道成形为将声压波从第一阶段部分传送至第二阶段部分;用于将硫俘获剂注入流体通道的第二阶段部分中的硫俘获剂注入口,硫俘获剂构造成从脉动燃烧气流中去除含硫气体,以及与脉动燃烧气流中含有的任何颗粒进行声附集;与流体通道相通的微粒去除装置,其用于接受燃烧气流且去除气流中含有的微粒;与微粒去除装置相通的拔顶燃烧器,其用于接受燃烧气流,拔顶燃烧器包括构造成燃烧燃烧气流的燃烧器;以及硫酸化器,该硫酸化器用于接受由微粒去除装置收集的微粒,硫酸化器包括与流化气体端口相通的加热流化床,通过该气体端口将含有氧气的流态化气体注入流化床中,硫酸化器构造成硫酸化被硫俘获剂俘获的任何硫。
18.权利要求17所定义的系统,进一步包括发电装置,其用于接受来自拔顶燃烧器的加热过的燃烧气流以及产生电能。
19.权利要求17所定义的系统,其中发电装置包括燃气涡轮机或蒸汽涡轮机。
20.权利要求17所定义的系统,进一步包括固体或液体燃料注入口,布置该固体或液体燃料注入口,以便将固体或液体燃料注入流体通道的第二阶段部分中。
21.权利要求17所定义的系统,进一步包括喷嘴,该喷嘴用于将水注入流体通道的第二阶段部分中。
22.权利要求17所定义的系统,进一步包括用于将蒸汽和氧气注入脉冲燃烧装置的蒸汽端口和氧气端口。
23.权利要求17所定义的系统,其中脉冲燃烧装置构造成产生频率在约20至约250赫兹之间的声压波。
24.权利要求17所定义的系统,其中微粒去除装置包括第一旋风分离器和第二旋风分离器,第一旋风分离器包括用于去除附集物的低速旋风分离器,第二旋风分离器包括用于去除细粉的高效旋风分离器。
25.权利要求17所定义的系统,其中构造与脉冲燃烧装置连接的流体通道,以使流体通道的第一阶段部分在第一出口温度下运行以及第二阶段部分在第二出口温度下运行,第一出口温度大于第二出口温度,第二出口温度低于约1700°F。
26.用于产生具有燃料或热值的气流的方法,其包括在脉冲燃烧装置中燃烧固体或液体燃料,且产生脉动燃烧气流和声压波,脉冲燃烧装置在亚化学计量条件下操作;通过流体通道,传递脉动燃烧气流和声压波,流体通道含有蒸汽并且至少一部分流体通道维持在还原条件下,其中使燃烧气流中含有的有机成分进行吸热反应,以形成氢气;将硫俘获剂注入流体通道中,硫俘获剂俘获脉动燃烧气流中含有的硫,硫俘获剂也与脉动燃烧气流中含有的颗粒声附集;以及过滤燃烧气流,以去除附集的颗粒。
27.权利要求26所定义的方法,其中流体通道包括第一阶段部分和第二阶段部分,还原条件维持在第二阶段部分中,第一阶段部分具有第一出口温度以及第二阶段部分具有第二出口温度,第一出口温度高于第二出口温度,第二出口温度低于约1900°F。
28.权利要求27所定义的方法,其中第一出口温度在约2500°F至约3400°F之间。
29.权利要求26所定义的方法,其中蒸汽是通过脉冲燃烧装置供应的,以产生亚化学计量条件,蒸汽进一步起到控制脉动燃烧气流的温度的作用。
30.权利要求26所定义的方法,其中将固体或液体燃料注入流体通道中,在流体通道中固体或液体燃料进行形成氢气的吸热反应。
31.权利要求27所定义的方法,其中第一阶段部分含有氧气且处于足以产生渣的温度下,以及其中该方法进一步包括从流体通道中周期性除渣的步骤。
32.权利要求31所定义的方法,其中部分氧化、蒸汽气化和造渣全都发生在流体通道的第一阶段部分中。
33.权利要求32所定义的方法,其中只有蒸汽气化发生在流体通道的第二阶段部分中。
34.权利要求33所定义的方法,其中该方法进一步包括将蒸汽注入流体通道的第二阶段部分中的步骤。
35.权利要求26所定义的方法,其中硫俘获剂具有至少20微米的中值粒度。
36.权利要求26所定义的方法,其中硫俘获剂包括石灰石、白云石或它们的混合物。
37.权利要求26所定义的方法,其中硫俘获剂包括二氧化铈。
38.权利要求37所定义的方法,进一步包括将过滤的附集颗粒加热到足以再生二氧化铈的温度的步骤。
39.权利要求26所定义的方法,进一步包括将碱性吸气剂注入流体通道并与脉动燃烧气流接触的步骤。
40.权利要求26所定义的方法,其中声压波的频率在约20赫兹至约250赫兹之间,声压波的强度至少为约150dB。
41.权利要求27所定义的方法,进一步包括将水喷射至第二阶段部分中以冷却脉动燃烧气流的步骤。
42.权利要求41所定义的方法,其中加入至第二阶段部分的水的量为燃烧气流的质量流量的高达约5%。
43.权利要求26所定义的方法,其中燃烧气流是通过第一旋风分离器和第二旋风分离器过滤的,第一旋风分离器包括低速旋风分离器,第二旋风分离器包括高速旋风分离器。
44.权利要求26所定义的方法,其中从燃烧气流中过滤出来的附集颗粒含有硫化物,并且其中该方法进一步包括硫酸化硫化物的步骤。
45.权利要求44所定义的方法,其中附集的颗粒是被供应至氧化条件下的流化床而硫酸化的,流化床处在低于约2200°F的温度下。
46.权利要求26所定义的方法,进一步包括将过滤的燃烧气流供应至拔顶燃烧器的步骤,拔顶燃烧器燃烧燃烧气流,以形成燃料气流,将燃料气流供应至产生电能的发电装置中。
47.权利要求46所定义的方法,其中发电装置包括燃气涡轮机或蒸汽涡轮机。
48.权利要求26所定义的方法,其中将过滤的燃烧气流供应至产生电能的燃料电池中。
49.用于产生具有燃料或热值的气流的方法,其包括在脉冲燃烧装置中燃烧固体或液体燃料,且产生脉动燃烧气流和声压波,其中声压波的频率在约25赫兹至约250赫兹之间,在亚化学计量条件下操作脉冲燃烧装置;将脉动燃烧气流引导通过流体通道,流体通道包括第一阶段部分和第二阶段部分,第一阶段部分具有第一出口温度以及第二阶段部分具有第二出口温度,第一出口温度高于第二出口温度;将蒸汽与固体或液体燃料一起供应至脉冲燃烧装置中,存在于脉冲燃烧装置中的蒸汽量足以将流体通道的第一阶段部分内的温度维持在低于约3500°F,部分氧化、蒸汽气化和造渣全都发生在流体通道的第一阶段部分中;从流体通道中周期性除渣;将硫俘获剂注入流体通道的第二阶段部分中,硫俘获剂俘获脉动燃烧气流含有的硫,硫俘获剂也与脉动燃烧气流中含有的颗粒声附集;维持流体通道的第二阶段部分中的还原条件,蒸汽气化发生在第二阶段部分中,从而形成氢气;以及过滤留在流体通道的第二阶段部分中的燃烧气流,以去除附集的颗粒。
50.权利要求49所定义的方法,其中将过滤的燃烧气流供应至产生电能的涡轮机中。
51.权利要求49所定义的方法,其中将过滤的燃烧气流供应至产生电能的燃料电池中。
52.权利要求49所定义的方法,其中将蒸汽供应至流体通道的第二阶段部分中,以维持还原条件。
全文摘要
气化器系统和方法包括与流体通道相通的脉冲燃烧装置,用于产生具有热值或燃料值的气流。在亚化学计量条件下操作脉冲燃烧装置,以使燃烧和蒸汽重整全都发生在流体通道中。脉冲燃烧装置也产生脉动燃烧产物流和声压波。声压波起到使燃烧气流中含有的颗粒附集,以容易去除的作用。在一个实施方案中,将硫俘获剂注入流体通道中,不仅用于从燃烧产物流中去除硫,也有助于粒子附集。最终,产生含有氢气的气流,该气流可用在各种工艺中,例如产生电能。
文档编号F23J11/00GK1685035SQ03817220
公开日2005年10月19日 申请日期2003年5月22日 优先权日2002年5月22日
发明者拉维·钱德兰, 莫姆塔兹·N·曼索 申请人:制造及技术转化国际公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1