双层排水收集系统的制作方法

文档序号:4518998阅读:321来源:国知局
专利名称:双层排水收集系统的制作方法
本申请是本人于1993年12月3日向美国专利局提出的正在审查中的流水号为NO08/161069题为“拉挤成型冷却塔结构”(PULTRUDED COOLING TOWERCONSTRUCTION)的部分结构的后续申请。
本发明一般地涉及冷却塔,特别是涉及,但不限定于,直流强制通风的逆流式冷却塔的改进的排水收集系统。
工业用冷却塔的一种通用型式是逆流式塔,在其中水向下通过充填层,同时冷却空气则向上运动通过充填材料,所谓“逆流”是指热水与冷却空气是沿相反方向运动的。
逆流式冷却塔在传统上分为三种型式,即诱导式通风自然通风与强制通风。
诱导通风逆流式冷却塔在塔顶部有一风扇,用以把空气吸向上方使之通过充填材料,当靠近冷却塔沿地面横向流动的气流到达塔下时,就会在向塔内吸气的塔顶风扇的引导下转向90°向上流动通过充填材料。在授给Curtis的美国专利US4,267,130与4,301,097中可以看到这种诱导通风逆流冷却塔的例子。
授与Lefevre的US4,521,350专利是一种自然通风逆流式冷却塔,示于

图1中。自然通风冷却塔不用风扇来促进空气流动,而是借助于暖空气的向上流动的趋势。US4,521,350所示出的自然通风冷却塔是一种通常的所谓双曲线自然通风冷却塔,Lefevre专利中示出了在自然通风逆流式冷却塔的充填材料下面使用了排水收集系统。
授与Jacir的专利US2,606,750与2,915,302中示出了强制通风逆流水冷却塔。强制通风塔的典型结构是在塔侧设置风扇,用风扇把空气吹入塔底侧的充气室中。在商业应用中,术语“强制通风”被理解为是像Jacir专利的那种系统,它在塔的侧面有风扇以向底部充气室鼓风,这样要把空气吹向塔的上方就必须使其再转90°角。
冷却塔的第2种通用型式是横流式塔。横流式冷却塔是使热水下降通过充填材料,同时在与水下降通路约成90°地水平吸入冷却气。这些横流式冷却塔是典型的诱导式通风塔,它设有充气室和吸入空气使之通向塔顶的位于塔顶的风扇。
现有技术中还包括另一种横流式冷却塔,它的位于塔下的风扇迫使空气向上进入中央充气室,并使空气再转90°水平地流出通过绕塔的周边布置的充填材料。这种系统已由Marley cooling Tower Company投入市场。在这种系统中风扇的上方没有充填材料,而其充填材料全部布置在围绕风扇的周围,风扇紧上方的区域限定了风扇朝其吹风的充气室。
现有技术中还包含许多排水收集系统的建议,它们由一系列倾斜的收集板构成,沿板的下缘设有流槽,这种系统已在上面所引用的Lafevre的4,521,350号专利中以举例方式示出了。
工业用冷却塔通常是非常大的结构物,其横向尺寸可达20至100英尺,高度可达20至30英尺。这种结构是建立在工地上的。从订货到工业冷却塔的完工之间通常要延迟一年。这种塔的建造是一个巨大的任务。
虽然已然造出了可以运送到工地的尺寸相对较小的塔,例如用于办公楼等建筑的机械系统中的屋顶冷却塔,但是至今尚未出现一种成功的典型的冷却塔系统,从而使其尺寸易于运输的工业组件可在工厂中制造,然后容易地在工地上组装而提供许多工业水冷却工程所需的大容量。这种模式的系统目前已由本发明的代理人引入并示出与描述在Curtis的US5,227,095号之中了,在此引用结合了其各种细节。Curtis的’095号专利中具有迫使气流向上通过充填材料的位于充填材料下面的风扇,可以认为它是一种直流强制通风的逆流式冷却塔。申请人已知其结构基本与Curtis的已在本申请之前一年前进行销售的’095号专利的结构类似,于是,curtis的’095号专利中所描述的主题就成为本申请的现有技术。
本发明提供了对于类似于在Curtis的US5,227,095号专利中所示的直流强制通风逆流式冷却塔结构的某些紧密相关的改进。
改进的第1方面包括把拉挤成型玻璃纤维型材用于冷却塔的结构,从而可避免大多数的手工敷层操作,大大降低塔的结构成本。
结构件的组合提供了一种组合的结构支架与蓄水槽。相连的拉挤成型壁板与角柱跟支架件组装在一起。
第2,改进的排水收集系统包括双层排水收集板、可有效地防止水喷溅到位于其下面的风扇上,从而消除了在冬季结冰等类问题。各板的下面一层最好是中空的板,它们可接受来自上层板的排放液而使其进入下层板的内部。该液体将下层板加温,故有助于防止寒冷天气的结冰问题。
第3,新设计的支架与排水收集系统相当紧凑,足以装上5英尺的充填材料,还能维持该组件的总高度不超过11英尺,故可以容易地用适宜的卡车进行运输。
此外,为了防止空气向下回流通过多风扇塔中与之配合工作的风扇还设置了分隔装置。
冷却塔包括综合水槽和有4个空心外梁的支架组合。各梁在其端部上结构相连以形成4边的矩形支架。各梁均有封闭的内部空间。各内部空间彼此相通而形成液体收集水槽。该组合至少有一个确定在其内的水槽入口。在各梁之间确定出一个基本为矩形的充气空间,该空间在横向上被4根梁所包围。
4个壁从4根梁上垂直地向上伸出,并支持于其上,各壁最好是由拉挤成型件构成。
支架组合最好包括至少一个中间梁,它把充气空间分为第1与第2充气空间部。
两个供气管向上延伸,部分地进入每个充气空间部中。各供气管有在其底部上的入气口与向充气空间排气的排气口,4个垂直轴线的风扇安置在各供气管中。
4根外梁与中间的第5梁各有在其顶部的上、下沟槽。上槽位于下槽的横向朝外的位置上。
双层排水收集系统支持在支架上。平行的长收集板的上层支持在各梁的上沟槽上。平行的长收集板的下层支持在各梁的下沟槽上。
最好是至少有5英尺厚的充填料体直接安置并支承在排水收集板上层之上。
液体分配系统位于充填料体之上。漂移消除器安置在液体分配系统的上面。
整个组件的高度,从水槽底部到各壁顶部不大于11英尺,所以能容易地用适当的卡车运输。
本领域熟练技术人员在阅读了下面的参照附图的说明后,将容易看清本发明的各种目标、特征与优点。
图1是用4条支腿安装于工地上的单个冷却塔组件局部示意表示的正剖视图。
图2与图1类似,但转了90°。
图3是图2中左侧的放大图,略去了组件下方的支持构架。
图4是上部挤压成形壁板的放大剖面图。
图5是中间挤压成形壁板的放大剖面图。
图6是4根外梁之一的纵剖视图。
图7是中间的第5梁的纵剖视图。
图8是一个气管的等角投影图。
图9是水槽出口集液池的剖视图。
图10是用于组装壁板与角柱的壁插件的视图。
图11是图10中的壁插件沿图10中线11-11的剖视图。
图12是沿图2中线12-12剖开的组装成的水槽支持构架的俯剖视图。
图13是类似于图1中所示的双层排水收集系统的一部分的放大视图。
图14是连接两相邻外梁端部的角部连接模件的顶视图。
图15是图14中角部连接模件的视图。
图16是图14中角部连接模件的底视图。
图17是本发明的有一个以上中间梁的另外实施例的与图12有些类似的示意平面图。
图18是与图13类似的表示另外的双层排水收集系统的一部分的放大视图,其中底层收集板是空心板。
图19~24是和图18的排水收集系统的中空下层一起使用的两端盖的一组附图。下面对各附图描述中所指的左、右方向是参照如图25中所见的这些部件与排水收集系统的组装图而定的。
图19是如图25中所见的右侧端盖的右侧视图。
图20是如图25中所见的右侧端盖的后视图。
图21是如图25中所见的右侧端盖的左侧视图。
图22是图25中的左端盖的左侧视图。
图23是图25中的左端盖的后侧视图。
图24是图25中的左端盖的右侧视图。
图25是带有图6与图7的箱式支持梁的排水收集系统的组装视图。
现在,参见各附图特别是图1与图2,其中示出了冷却塔,并冠以序号10。
冷却塔10包括组合水槽和支持框架组合12,其总体布置在图12中看得最清楚。
组合12包括4个中空的外梁14、16、18和20,它们以其端部结构上相互连接而形成有4边的大体为矩形的支架,在图12中清楚可见,组合12最好还包括一个中间的第5中空梁22,它横跨于梁16、20的中点之间,其指向大体平行于梁14、18。
4根外梁14、16、18与20确定出横向由它们包围的大体为矩形的充气空间24。第5梁22把充气空间24分为第1与第2充气空间部26和28。
沿图12中线6-6与7-7剖开的图6与图7的剖视图很好地示出了梁14~22的结构。图6示出了外梁14~20的典型的截面,图7则示出了中间的第5梁22的截面。
每个梁14~22都是挤压成型玻璃纤维结构件。于是,各梁沿其长度有基本一致的截面形状。4根外梁14~20都有如图6中所见的基本相同的截面形状。第5梁22则具有图7中所示的不同的截面形状。
各外梁14~20都含有一个基本封闭的内腔30,它由梁内壁32、梁的外壁34和底板36所确定。封闭内腔30的顶部被上沟槽38与下沟槽40所封闭。沟槽38、40分别由梁的外壁与内壁34、32的一部分形成。中间梁壁42和沟槽底部44、46也是挤压出截面的一部分,用于完全确定出沟槽38、40。沟槽38、40可以合起来作为它们各自梁的沟槽装置。
许多水槽入口孔48沿上沟槽38的底板44间隔配置。类似地,在下沟槽40上也确定出许多水槽入口孔50使之与内腔30相通。
第5梁元件22包括由第1、第2梁壁54、56,梁的底部58和顶部60确定出的中空内腔52。垂直的凸缘62、64从梁顶部60向上延伸而确定出第1、第2中间下沟槽66、68。在凸缘62与64之间确定出组合中间上沟槽70。
沟槽66、68和70通过诸如72、74、76各开孔把水排入中空内腔52中。
当如图12所示地把梁14~22连续在一起时,内腔30与52相通而确定了水槽78。水槽78基本是一个流通导管。液体在其中停留时间很短、因而基本没有固体物质从液体中沉淀出来,而且水槽不是暴露的不致弄脏,也不会像通常的顶部开口水槽那样地吹入垃圾等废物。
在图12中清晰可见,外梁的端部是用4个角连接模件80、82、84、86连接在一起的,第1角连接模件80的细节示于图14、15与16中。其它角连接模件则与之相同。
图14是角连接模件80的顶视图,图15是图14中的模件的前视图、图16是图14中模件的底视图。
模件80决定了两个大体水平的平面88、90,梁14与16的端部就安置在其上。为边壁92靠近模件80的外周边向上延伸,它包括92A、92B与92C等3个壁段、唇93在外壁92之下横向伸出。
模件80的内侧向上伸出壁94是角状壁,并包括壁部94A、94B。
中间的空心凸脊96从水平面88、90的高度上向上突出,在凸脊96与外壁92之间确定出一个三角形槽98。三角形槽98可以描述为它有3个沟槽部分98A、98B与98C。
如图12中所见,槽98把3边的垂直角部支架元件100容纳在其中。支架元件100沿冷却塔壁200~204的整个高度垂直向上延伸,如在图1与2中所见的那样。支架元件100用多个伸入壁段92A、92C上的螺钉孔(未示出)的螺钉(未示出)螺接在3边形壁92上。
在图12中可见,垂直延伸的角形内角件102被容纳在内角形壁94内。外梁14、16的端部紧靠地纳入内角形件102与3边角形支架件100之间。如图3所示,螺钉103与间隔件105则用于把整个角部组合螺接在一起。
在平面88、90上形成多个灰浆槽104。如图14所示,槽104也向上延伸进入壁92、94中。进而,在水平面88、90上还有许多向上伸出的凸起或鼓包106。图中只示出了一些这样的凸起。而一般地说,在所有的与角部连接模件80相配的不同结构件的连接之间都要设置这种凸起或其它间隙装置。在不同构件之间提供空间的目的是在其间提供密封灰浆空间。这种密封灰浆对于在这些不同构件间的液密连接是必须的。一种最佳的灰浆是尿烷密封剂,其商品名是Vulkem921密封剂,可从俄亥俄,克利夫兰,Mameco International Inc。购得。
在图15、16中清晰可见,角部连接模件80上有带3个壁部108A、108B、108C的向下延伸的3边形壁108,它们从确定出水平表面88、90的底板向下延伸。壁108位于唇93内部,于是就确定了一个在其内接纳3边角部支柱328(见图2)的3边沟槽110。诸如328的三边角柱的尺寸与构造是与可直接装在其上的例如100的各三边角支架元件相同的。
用穿入例如112的螺钉孔中的多个螺钉(未示出)把角支部328螺接到角连接件80上。
相间成三角形的加强板114、116与118分别从壁部108A、B、C向上延伸到确定了水平表面88、90的底板底面120。
参见图12,中间梁22用诸如362的角状角件连接到外梁16、18的中点上,角件与之螺接,其间用适当的密封材料捻缝。梁的开口,例如364、366将中间梁22的内腔与外梁16、20连通。
在图1、2中清晰可见,从支承梁14、16、18与20分别向上延伸有4个壁200、202、204与206。图3中示出壁200的放大图。壁200由拉挤成型玻璃纤维中间壁板208与挤压的玻璃纤维的上壁板210构成,其细节已分别在图5与图4中清楚地示出。中间板208上有在其下缘的带槽端部212,它容纳外梁壁34的上缘与之形成插舌榫槽式连接。
上部板210有沿其下缘确定出的槽214,它容纳中间板208的上缘或榫舌216以在中间板208和上部板210之间形成第2个榫舌沟槽连接。壁200~206的横向边缘用例如已在前参照图12加以描述的100的三边角柱连接在一起。角柱100上端由上部角盖模件218完成最后的工序。
如在图4与图5中所清楚地表明的,壁板208与210具有略微折皱的形状,以增强其结构刚度并使之具有合乎美学的外观。向外折皱215并不与角柱100的内侧持平。在这些间隙中插入图10与11中所示的插板217。螺钉219装配在孔221中。略微突出的凸起223有助于保持如前所述的捻缝材料在位,直至其完成角柱100与插板217之间的密封。
在图6与7中清楚可见,外梁14~20与第5梁22上分别有导管支承凸缘220与222。这些导管支承凸缘支持着如在图8中所示的导管224的4个供气管。其图1与2中可以看到其中的三根管,并表示为224A、B、C。每根导管存在其底部的矩形吸气口226和在其上部的圆形空气排出口228及进入充气空间24中的开口。在图1中可看清,导管224只是部分地伸入充气空间24中并且最好是伸到第1距离230处。该距离不大于第2距离232的一半,第2距离是由空气吸入口226到总体用序号236表示的排水收集系统的底部边缘234的距离。
4个轴线垂直的风扇238配置于供气管224中。在图1与2中可以看到3个风扇,它们由序号238A、B、C表示。
每个风扇238都有电机240,其电机轴242朝向下,轴上装有风扇叶,电机240安装在由框架12支承的支架(未示出)。风扇把周围的空气吸入吸气口226,并使空气通过排气口228进入充气室24,使向上流动的空气散开通过排水收集系统236,然后以基本均匀的强度通过充填材料体244,如果供气管224是一直向上延伸到排水收集系统236的底部边缘上的则可以提供更加均匀一致的强度。后一种安排会在导管的正上方造成更强的气流,而使环形排放出口之间的间隙空间中强度较弱。
排水收集系统236清楚地示于图13中,它包括上部的第1层排水收集板246与下部的第2层排水收集板248。
上部第1层246包括许多相互平行的长收集板250。图13中示出6个这种板。从图1中可知,整个层236中包含更多的这种板。
在图2中可见,上、下层246与248各分为两半,它们带有许多排水板用以把水排放到外梁14、18的上面水槽38和中间的第5梁的综合上部水槽70中。上层246的两半用246A与246B表示,下层248的两半则用248A与248B表示。
每个收集板250具有如图2中所示的长度。各收集板,如图1与13中所示,是倾斜的并在横截该长度的方向上重叠配置。
各板250包括上垂直凸缘252,倾斜部254,与下垂直凸缘256。从倾斜部254向上伸出许多垂直肋258,这样就确定出许多沿着板250长度走向的水平渠槽。向外伸出的凸缘确定了板250的最下面的渠槽。可以看出,每个板250的最下面渠槽259是位于相邻板250的上凸缘252的下面的,这样就可使从充填材料244落下的全部液体都会落在其中的一个板250上。上部凸缘252包括唇部261,它可以防止水附着在斜板部分254的背面并顺其流下。凸缘259的外缘和肋258上端对齐,从而可在每个斜板部254背面与相邻板250的上侧肋之间形成对气流的最小限制。
凸缘259略有弯曲而且外缘上翻,这样可以尽量减小其对周围气流的阻断作用。
从充填材料244体流下液体的绝大部分将被第1层246的收集板250所收集,然后,沿这些板的长度的横截方向流动并排入外梁14、16的上部水槽38与第5梁22的组合上水槽70中,这已在图2中清楚地示出了。任何未落入第1层板的泼出或喷溅出的液体都会落在并由收集板的第2层所收集。
第2层248包含许多收集板260。每个板260都包括垂直的上凸缘262,倾斜部264和垂直的下凸缘266。下凸缘266有上卷的渠槽267,用来收集沿倾斜部264的背面流下的所有的水。在倾斜部264上的许多垂直上伸的肋268用于水并将水导向板260的外端部。
应该强调的是肋268总体上垂直高度比肋258短。这样做有两个目的,第1,应该认识到由于上部板250收集绝大部分的水,故这些上部板250应具有比下部板260更大的蓄导更多体积的水的能力。于是就需要较深的槽以提供所需要的较大的流量。反过来,上部板250或下部板260的肋的高度都不希望高于所需值,因为它们会极大地阻碍气流向上通过排水收集系统236。这样,由于下部板260运载的水很少,它们不应有短得多的肋268以减少对上升气流通过收集板下层248时的阻力。
在图2中清楚可见,板260的外端是位于梁14或18的梁壁32的上缘之与中间梁22的壁54或56的上缘之上的,因而它们可以分别向下部沟槽40和下部沟槽66或68中进行排放。然后,水排入水槽入口,例如48与50,进入水槽78,到达沟槽38、40的水也下落入在角支架元件100和内部的支持角构架元件102(见图12)之间的大致为三角形的开口角部空间并落入水槽78中。
图13表示排水收集系统236的组装状态。它只由四种不同的构件组面,即上部板250,下部板260,阳螺纹连接件268和阴螺纹连接件270。连接件268与270可以整体地视为是连接板的支架268、270。
每个阳螺纹连接件268都包括在其一端有阳螺纹伸出部274的主体272和在其另一端的无螺纹的盲孔276。主体272的上表面有一个凹窿部278,它与延伸到底面282的排水孔280连通。
每个阴螺纹连接件270包括在其一端的有阴螺纹孔286的主体284,和从其另一端伸出的无螺纹的光销288。主体284的上表面有一浅凹窿290,它与相邻的阳螺纹连接件268上的凹窿278互补并向其排放水。
从图2可知,下层248的板260的长度是短于上层246的板250的长度的。
从图1与13中可见,第2层248的收集板260是与上层246的收集板250相对地倾斜的。如图13中所见到的,可以说上板250有正向斜度,而下板260有负斜度。
上层246收集板250的每一个下缘,当其由下垂直凸缘256所确定时是与由上垂直凸缘262所确定的下层248的每个收集板260的上缘对准并且重叠的。在凸缘256与262上有相互对准的孔,阳螺纹连接件268中的一个带螺纹销274伸入其中。然后该螺纹销274与相邻的阴连接件270的螺纹孔286组装在一起。
类似地,在图13中亦可见,阳连接件268与阴连接件270是通过在上部板250的上垂直凸缘252上及下部板260的下垂直凸缘266上的螺钉孔组装在一起的。
由图13所示可知,该排水收集系统236可以描述为由许多人字形区段构成的,每个区段都包括带有三对阳与阴连接件268、270的一个上收集板250和一个下收集板260。这样就提供了一种区段,它在左侧有无螺纹的阳销288,在右侧有无螺纹的盲孔276,于是只要把销288推入相邻的人字形区段的孔276中就能很容易地把它们装配在一起。这样,排水收集系统236的收集板的整体布置就可以说是形成一种人字形的构形。可以说,该人字形区段是一种易于装、拆的可拆卸的推压而成的装配体。
应该强调的是,在图13的结构中,落在板250中某一个的上表面上的与飞溅出的所有液体都将到达如图13中所见的位于其左侧的下部板260的渠槽中。
已经被肯定的是,使用上、下层收集板的人字形布置能提供极优异的水收集能力,它基本上可以防止任何水汽落到在其下面的风扇上。而且也已发现其工作优于其它的可能的双层板的布置。此种布局提供了优异的水收集能力并对向上运动流过其中的空气提供了可接受的低流动阻力,这两方面对于能有效地正常工作的冷却塔来说是至关重要的。
设置凹窿或凹面278与290以及排水孔280的目的是使任何落在连接件268与270的顶部的水汽都能通过排水孔280被收集在横置于下面的收集板中,值得赞赏的是连接下层收集板260的下凸缘266的连接件下排的排水孔实际上是不起作用的,因为再也不会有液体达到这些元件上。使这些下部连接件上也形成排水孔只是为了不必模制出两种以上的不同的连接件而已。
从图1中可见,在排水收集系统236与壁202、206之间还确定出外侧的气体流动空间292与294,它们可使来自充气室24的气体流过这些空间292与294。这样就消除了靠近壁202与206处的气泡。
图1中所见的梁16、20的沟槽38与40并不直接收集来自排水收集系统的水,而是收集沿壁202、206流下的水及通过周边气流空间292与294落下的水。
充填料体244最好由5层295、296、298、300与302构成。充填材料是可从商业上购得的波纹塑料的充填材料,它最好是一英尺宽、一英尺厚的带状物,其宽度应使每个带条能合适地配合在各壁202和206之间。
液体分配系统304配置在充填材料体244的正上方。分配系统304包括横跨于并支持在壁202与206上的主集水管306。集水管306在其一端有具有螺接的入口法兰308,而在另一端则为螺接的盲口法兰310。从集水管306上延伸出四根横管,例312、314与316。四根这样的横管各带有在下面可转动的喷嘴318,图中示出了其中三个,用318A、B、C表示。
喷嘴318的从喷嘴到充填材料244顶面的液体喷洒自由落高321只有几英寸高。在任何情况下,为了使组件10获得所希望的紧凑性,应使喷嘴具有这种大体上小于1英尺的自由落高。喷嘴318的结构最好是按照Curtis的US5,143,657专利“FLUID DISTRIBUTOR,和Curtis的US5,152,148”“AUTOMATICALLYADJUSTABLE FLUID DISTRIBUTOR”的教导构成,其各种细节已在此引入作为参考。
漂移消除器320位于液体分配系统之上,最好是支持在中央集水管306与在四壁的上壁区段210上形成的内伸凸缘322(见图4)上。
按照本发明构成的冷却塔的从水槽底部到各壁顶部的总高度324(见图2)可以小于11英尺,但它仍能设置5层厚度满1英尺的充填材料,并设置双层收集板。这样,就能提供一种具有极高性能的设备,它非常有效地利用紧凑的空间,其所具有的高度324使其可用易得到的有着标准高度的卡车系统上进行运输。
如图1与2中所见,组件10是由四条腿或角柱支持的,例如位于框架12角部的326、328、330。如前所述,各角柱有三个边。角柱用角形结构的系统杆332支撑在横跨其间的外梁上。
工作时,待冷却液体用液体分配系统304分配到整个充填材料体244上。液体滴入充填材料的各波纹层,然后主要由收集板的上层246所收集,而且任何溅出液体都会被收集板的下层248收集起来。然后,该液体通过沟槽38、40、66、68与70排入水槽78。必须要克服的一个主要问题是在使用位于充填材料下面的风扇时,应完全消除水溅到风扇上的可能性。另外的问题是在冬季工作条件下会产生严重的结冰。这一问题通过使用双层排水收集系统236得到解决。
第5梁上连接有水槽出口贮水池334,在图9中看得最清楚。水槽出口336有安装于其上的凸缘338,这样可把出口管用螺钉连接在其上。贮水池334通过诸如368与370的开口与中间梁322的内腔连通。
液体高度控制器340(见图1)位于水槽78内,用以监测其中液面高度。控制器340可与适宜的阀、泵等相连,以控制通过冷却塔组件10的液流。由控制器340把液面高度控制在低于沟槽底部46的水平上。
最后应该强调的是本发明冷却塔的结构是可以像如图12中所示的基本为矩形那样地,用于如图17中所示的长方形结构的。例如,若图12中所示的组件所具有的基本正方形的外廓尺寸大致为12英尺×12英尺,则该结构可以改变为12英尺×18英尺或12英尺×24英尺的组件。图7中示意地描述出12英尺×18英尺组件的组合支架与水槽的组合340。组件340有四根外梁342、344、346与348,它们全有如图6中所示的截面形状。支架2340包括两根中间梁350和352,它们具有如图7所示的截面形状。相邻的外梁之间的连接与外梁和中间梁之间的连接是和以前参照附图12所描述的连接相同的。图17所示的支架决定了一个充气室354,可以说它是由三个充气室部分356、358和360构成的。在每个充气空间部分356、358和360中有两个通气管和两个风扇。
使用12×18的组件或12×24的组件,与由多个较小组件提供相同能力的组合型塔相比,可以降低建造与安装费用。在外梁较长时临近各中间梁的端部将安置附加的工字钢支柱。
如图13中所示的双层排水收集系统的开发工作已经表明,在极少的情况下其环境条件会使得落在排水收集系统下层上的少量液体结冰,使下层板冻结并破坏该冷却塔的工作。
为了消除这种问题,已经设计出如图18所示的改进型双层排水收集系统,它设置了被加热的排水收集板的下层,利用向下流过冷却塔的热液中的热量通过中空的内腔而给排水收集板的下层加热,以阻止流落在排水收集板下层的上表面上的液体冻结。
图18中的双层排水收集系统总体用序号400表示。它有由许多平行的长收集板404构成的上层402。还包括有许多平行的长收集板408的下层。
下层406的各收集板408都是中空的、有上壁410与下壁412的双壁板。两壁410与412之间确定出空腔414。
下板408上有与内腔414相通的上开口416。
每个上板404有下缘418,它与下板408的上壁410的上缘420重叠。每个上边404的下缘418把来自上板404的液体通过开口416排放到双壁下板408的内腔414中。
各下收集板408的上开口416可以说成是沿着板408的长度延伸的长开口,由上、下壁410与412之间的空间422所确定。空间422从向开口416排水的上板404的下缘418作横向延伸,以有效地增加上板404的相邻之一间的重叠度并极大地减少从一上板404喷溅到相邻的下板408上的喷洒量。
例如,参见图18,上板404已分别用404A、404B与404C代表,而下板408则类似地用408A、408B与408C代表以易于区分。落在上板404A上的水基本被收集并沿板404A的宽度横向流动并进入下板408A的上开口416中。从上板408A上表面溅出的水在它落到下一个相邻的下板408B的上表面之前都必须会向右飞溅通过整个开口416并越过板408A下壁412的上唇部424。如图18中所见,下板408A开口的宽度422可以来增大上板404A的横向宽度,这样就可以有效地增大相邻各上板404之间的重合度,从而能大大地降低飞溅到下板408中的任何一个例如410的上壁上表面的喷溅量。
为了保证在寒冷的冬季条件下能对下板408进行适当的加温,在下层406的每个收集板408上设置排出口,其尺寸应使得对于通过冷却塔的液体设计流量而言,能保持其液面高度在近于426的高度上,从而使内腔414基本充满热液以对下板408的上壁410进行加温而阻止落在其上的液体冻结。
实际上有两个这样的排出口,在下板408的每端各一个。这些排出口在图25中可见,由428与430表示。
在图18中可见,各下收集板408各有一加大了的大体为圆柱形的下部432。
三个垂直凸缘434、436与438从上壁410的上表面向上延伸。第4个上伸的凸缘440延伸到上缘420。凸缘440与上板404的下部重叠,两者用水泥或其它方法粘结在一起。
在凸缘434、436、438与440之间确定出许多渠槽442、444与446。这些渠槽收集落在上壁410上的任何飞溅液体并沿下板408的长度方向纵向地排入如图25中所见的沟槽40与66中。
靠近下板408的下缘有一唇部448,它确出一个渠槽450,用来收集凝结在下壁412的背面上的并沿下壁412流下的水。
下壁412有垂直延伸部,其端头终止于前面所定出的上缘424,还有一从其上水平地外伸支持凸缘452。T形支柱454有U形的下端456,用以接纳凸缘434,还有一横向件458,它容置于支持凸缘452的下表面上所定出的槽460的下端。
支柱454在图18中是以截面形式示出的,通常它有进入图18的绘图纸面的平面约为2英寸左右的宽度,从图18中可知,有许多这样的支柱,用于把上层与下层402、406组合在一起。
每个上板都有在其上的第1与第2短的上伸肋462与464。在其上缘处,每个上板404都有向下开口的槽466。
另一T形支柱454延伸于各肋464与位于其正上方的槽466之间。
这样,整个排水收集系统400就由三种不同的PVC塑料挤压成形部件组装而成,它们是上板404,下板408与T形支柱454。
图25说明了下板408的内腔414中所收集的液体是如何进入梁14、22的内腔30与52中的。
如图25所示,内腔414的右端与左端是被右与左端盖468、470所封闭的。右端盖468的详细结构示于图19~21中,左端盖470的详细结构则示于图22~24中。
图19是表示右端盖468的左侧的立面图,如在图25中所见,它是在下收集板408的右端滑动的表面。在图19中可见,右端盖468有边唇472,当不同的凸缘已适宜地进行修整使端盖可以滑入时,它在其上运动并在上、下壁410、412的外周缘上与下壁408的下圆筒部432上滑动。第2或右侧排出口430就通过右端盖468确定。
图20是右端盖468的后视图,可以看到它有一个吊挂唇部474,它与中间梁22凸缘62的上缘相配合。
一个短圆柱形突出部476,开口430通过它而确定,如图25所见地向右延伸,而在图20中所见到的是向左伸出。从图25可知,突出部476通过在中间梁54的壁62上的开孔478而伸出,把水排入区域70中,并通过孔76进入箱式梁22的内部区域52中。
类似地,左端盖470上也有与图25中所见壁42的上缘相配的吊挂唇部480。在左端盖470上有螺纹孔482。在图25中可见,有排出口428的螺丝堵484通过壁42上的孔486延伸并拧入螺孔482中而确定了下面的双壁收集板408的排出口。
在图18中清楚可见,上板404的上伸肋462与464是非常浅的并不能收集大量的水。设置这些肋的目的是为了与T形支柱454进行连结,并用于阻断沿图18中板404的宽度横向流动的水流以减慢水的这种流动。在图18中清楚可见,落在上板404的上表面上的大部分液体是横向流动的,即向图18的右方向下通过板404的宽度的,于是就流入位于下面的双壁下板408的内腔414中。落在上板404的水中相当小的部沿上板404纵向流动,即在图25中从右向左或者从左向右流入沟槽40与66中。
图18还出了两个极佳的特点,它们可应用在双层收集系统400或图13中的双层收集系统236中。
此两个附加特点均有助于消除空气通过不工作的风扇回流或向下流动的问题。值得称赞的是在例如图1与图2中所示的多风扇装置中,如果四个风扇都工作,就会有均匀的上升气流通过它们。然而,如果有一个或更多的风扇不工作,这或许是由于要求负载较低所致,于是有时就会有空气通过这些不工作的风扇向下流动或回流的问题。为了消除这种现象,必须隔离冷却塔的位于四个风扇的每个风扇上方的这些区域。有三个区域必须考虑隔离或分隔,第1个区域在充填材料层中,第2个区域在排冰收集系统中。第3个区域在充气室中,各风扇在安装在其中的。
向上通过填料层的气流可以通过适当地安排构成填料体的“木材”(“Log”)而加以控制,从而防止在这些填料的四个象限之间产生横向气流。正如本领域熟练技术人员所了解的那样、填料通常是设置在“木材”上的,它们可以有例如1英尺×1英尺×6英尺的尺寸。这些木材纵向安置,而每根木材则构成给定填料层的一个象限的一部分。同样也了解,可以安排构成填料“木材”的波纹材料的方向使空流在特定的方向上通过这种木材。通过适宜地堆积这种木材。可以基本上消除填料体中的横向气流。
本发明的目的是控制横向气流,从而控制双层收集系统与充气室中的向下气流。
图18示出了一种位于相邻的下板408B与408C之间的挡板装置486,它可以在位于这些板下面的风扇不工作时阻止气流向下流动。挡板486为示于图18中端部的板状结构。它借助于短钢琴铰链488连接到一些T形支柱454上。
在图18中可以看出,挡板486相对于铰链488的右侧部分宽于在铰链488之左的挡板486的部分。挡板486的重量使得在无气流通过时,在铰链488右方的挡板486部分的重量大于其铰链488的左方部分,于是挡板就会落向如图18中实线所示的封闭位置上。在封闭位置上,挡板封住凸缘436和相邻的下板408C、408B的下壁412的下表面之间的空间。
当位于挡板486正下方的风扇启动时,向上的气流对挡板486较宽部分的推力大于对挡板486左方的推力,就导致挡板486向上转动而到达图18中虚线所示的开启位置。借助于在相邻的下层406的收集板408中的多个上设置这种挡板486,而提供了一种可自动启闭在相邻的下板408之间的气道的装置,当风扇不工作时自动关闭气道,当风扇工作时则自动打开这些气道。
挡板装置486除了可阻断向下气流外,还可以防止飞溅液向下流动通过下收集板408而落在不工作的风扇上的任何可能性。这样就消除了在寒冷的冬季的条件下不工作风扇结冰的可能性。
图18还描示出分隔壁490的使用。这是为了防止空气在图1中所见的第1充气空间部分26中产生横流而设置的。分隔壁490只是一个垂直壁,它从下板408B的下壁432向下延伸至大体上为该充气空间的全高232(见图1)上,从而将其中的两风扇隔开。分隔壁490可以说成是位于风扇之间以及位于在各风扇之上的排水收集系统的相应各部之间的分隔装置490,用于当上述风扇之一不工作时防止空气回流下降通过该风扇。
同样地,如在图25中所见,借助于垂挂于中间壁22的沟槽空间70之中使其深度浸没在空间70中所含液体中的长T形分隔板492可以防止两充气室部分26、28之间的两排水收集系统的分隔部之间产生横流。
图18的双层排水收集系统中有中空的下板,其中充满热液以防止结冰,与图13中的实施例相比还有一些另外的优点。
优点之一是,与图13的排水收集系统对照,通过图18的排冰收集系统的上升气流的压降较小。这是因为已在收集板的上层上取消了相对较高的上肋,从而增大了各相邻上板404之间的流通空间的宽度。在图13中的排水收集系统中,在各相邻下板408之间与各相邻上板404之间所张开的有效宽度均为3英寸左右。
另外的优点是,由于中空的下板有宽的横向张开距离422而增大了相邻上板404之间的重合度,与图13中的设计相对照,它能使极小的飞溅液落在下板408的上壁410外表面上。
最后,由图18中的排水收集系统400所收集的液体的大部是收容在下板的封闭的内部空间414中的,并且是在可控的条件下通过排出口428、430而进入箱式梁中的,故与图13中的系统相比,就使得落入沟槽中的飞溅水更少。
此外,还应该指出的是,上板404有两个平面部分,一个斜度较小的上部494与一个较陡斜度的下部496。这样可有两种作用。较小倾度使上板更加靠近填料的底部表面,于是就把其离开填料的距离减少约4英寸左右。这就降低了飞溅水量,因为飞溅程度是直接与水掉落在收集板之前的降落距离相关的。上板404较小斜度部分494的另外的功能是它加宽了供气体流动的相邻两板404之间的空间,从而降低了为使空气向上流过排水收集系统所需的压力差。
与图13的系统对照,图18的系统的另外的优点是排水收集系统418可以制成比按照图13设计的相当系统中的高度短2英寸左右。这余出的2英寸可供冷却塔的其它部分之用,例如,可使在图2中的水分配系统的集水管用的水平管306的直径增加2英寸。
应该指出,在寒冷的冬季条件下风扇冻结问题对于在本说明书中所公开的直流强制通风的逆流式水冷却塔是远比风扇位于填料上方的通常的水冷却塔更为严重的问题。在这些通常的塔中,风扇是处于热的湿气流中,通常不会有结冰问题。然而,在这里所公开的系统中,风扇是处在干、冷气流中,故若有任何潮气到达风扇上就会有结冰问题。
由此可见,用本发明的装置可以很容易地达到上述各种目的与各种优点,以及它们的固有特性。虽然为了公开本发明而描述与说明了几个本发明的最佳实施例,本领域的熟练技术人员还可以做出许多改变,而这些改变是包容在由后附诸权利要求所确定的本发明的范围与精神之中的。
权利要求
1.一种冷却塔装置,其特征在于,它包括充填材料体;液体分配系统,位于上述填料体上面并把液体分配于上述填料体的顶部,从而使上述液体靠重力下降并通过上述填料体;位于上述填料体下面的风扇,用于将冷空气向上送入上述填料体,接触并冷却上述液体;以及双层排水收集系统,它位于上述填料体与上述风扇之间,用于收集从上述填料体落下的液体并阻止上述液体到达上述风扇,上述排水收集系统包括具有第1长度的相互平行的长许多收集板的上层,上述收集板在横截上述收集板的第1长度的方向上倾斜并重叠,上述重叠的收集板覆盖住上述风扇;以及有许多相互平行的长收集板的下层,它位于上述上层与上述风扇之间,用于上述上层的飞溅液,并阻止其飞溅到上述风扇上。
2.如权利要求1中所述的装置,其中上述下层收集板,它有其方向大体与上述上层收集板的第1长度平行的第2长度。
3.如权利要求2中所述的装置,其中上述下层收集板是与上述上层收集板在相对的方向上倾斜的。
4.如权利要求3中所述的装置,其中每个上述上层收集板的下缘与各上述较低高度收集板的上缘重合,使上述上层与下层形成一种人字形的构形。
5.如权利要求1中所述的装置,其中还包括横向围绕上述风扇的水槽,上述水槽包括在风扇的相对两侧相互平行的第1与第2沟槽装置,用于收集来自上述排水收集系统的液体并将上述液体导入上述水槽中;以及上述收集板的长度大体垂直于上述水槽的第1与第2沟槽装置,上述收集板的两端部是开放的,用来向上述第1与第2沟槽装置进行排放。
6.如权利要求5中所述的装置,其中各上述第1与第2沟槽装置包括上沟槽及下沟槽,上述上沟槽比上述下沟槽处于更加向外的位置上;上述上层收集板的上述第1长度大于上述下层收集板的长度;而且上述收集板的上层与下层分别横跨在上述上沟槽与下沟槽之间。
7.如权利要求1中所述的装置,其中上述下层各收集板是有内腔的中空双壁板,其上端开口与上述内腔连通,并位于接收来自上述上层的一个板排下的液体使之进入上述内腔的位置上。
8.如权利要求7中所述的装置,其中上述下层的各双壁收集板包括上壁和下壁;而且,上述下层各收集板的上述上端开口是由沿着上述收集板长度方向的上下壁之间的间距所确定的长形开口,上述间距是离开向上述开口排水的上述上层的一个板而横向延伸的。
9.如权利要求7中所述的装置,其中上述下层的各收集板有用于排放上述内腔的排出口,上述排出口的尺寸使之能在通过上述装置的液体的设计流量与上述下层各收集板的上述内腔中液面高度下提供一种能对上述下层收集板进行加温,并能防止在上述下层收集板顶部所收集的液体结冰的装置。
10.如权利要求7中所述的装置,其中上述下层的各收集板有加大的下部,以确定出上述内腔的下面部分。
11.如权利要求7中所述的装置,其中还包括横向围绕上述风扇的水槽,该水槽包括第1与第2相互平行的沟槽装置,位于上述风扇的相对两侧上,用于接收来自上述排水收集系统的液体并将其导入上述水槽中;上述收集板的上述长度在基本垂直于上述水槽的第1与第2沟槽装置方向上,上述收集板有开放的端部,以向上述第1、第2沟槽装置排放液体;以及连接在上述下层的各收集板上的第1与第2端盖,在盖上分别有第1、第2排出口,并分别连通上述下层各收集板的内腔与第1、第2平行沟槽装置。
12.如权利要求7中所述的装置,其中上述上层收集板为波纹折皱板,用以使落在上述上层收集板上的大部分液体沿上述板横向流动而进入上述下层收集板的内腔中。
13.如权利要求12中所述的装置,其中上述下层的收集板包括在其上形成许多渠槽的顶部表面,使得落在较低高度的上述收集板顶部的全部液体沿着上述下层的收集板的纵长方向进行排放。
14.如权利要求1中所述的装置,其中还包括许多挡板装置,它们位于相邻的上述下层收集板之间,在上述风扇不工作时,它们自动地将在上述各相邻板之间形成的气道封闭,而当上述风扇工作时,自动地打开上述气道。
15.如权利要求1中所述的装置,其中还包括至少一个附加风扇;和分隔装置,位于上述各风扇之间及在上述各风扇上面的上述排水收集系统的对应部分之间,以防止当某一风扇不工作时空气回流而通过上述风扇。
16.一种可运输的冷却塔组件,其特征在于,它包括一水槽;从上述水槽垂直向上延伸的四壁;供气管,它有在其底部形成的吸入口和在其顶部形成的排出口,上述供气管被上述水槽横向包围;位于上述供气管中的垂直轴线的风扇;排水收集系统,位于上述水槽和上述供气管的上面,上述排水收集系统包括排水收集板的第1层与第2层;填料体,位于上述排水收集系统的正上方,上述填料体至少要有约5英尺的垂直厚度;液体分配系统,至少包括一个在上述填料体的上方一段距离的喷嘴,以使其具有从上述喷嘴到上述填料的喷洒自由落下高度不少于1英尺;位于上述液体分配系统上面的漂移消除器;以及上述可运输的冷却塔组件从上述水槽的底部到上述各壁顶部的总高度不大于11英尺。
17.如权利要求16中所述的可运输的冷却塔组件,其中上述水槽包括四根梁,至少其中两根梁有向上述水槽排水的上沟槽与下沟槽;上述排水收集板的第1层至少部分地由上述上沟槽支持并向其中排水;上述排水收集板的第2层至少部分地由上述下沟槽支持并向其中排水;以及上述填料体是支承在排水收集板的上述第1层之上的。
18.一种冷却塔装置,其特征在于,它包括填料体;液体分配装置,它位于上述填料体的上方并使液体分配在上述填料体的顶部之上,于是上述液体就受重力作用向下通过上述填料体;位于上述填料体之下的多个风扇,用于把冷空气吹向上方使之通过上述填料体并与上述液体接触使其冷却;排水收集系统,位于上述填料体与上述风扇之间,用于收集从上述填料体上落下的液体并阻止上述液体落到上述风扇上;以及分隔装置,位于上述各风扇之间及在上述各风扇上方的上述排水收集系统的相应部分之间,当上述的一个风扇不工作时,防止空气回流而向下流过上述风扇。
全文摘要
提供一种带双层排水收集系统(400)的直流强制通风逆流式冷却塔装置(10)。最好是由带内腔(414)的中空板(408)形成收集板的下层(406),内腔中接收从板(404)上层(402)收集来的热水。这样可将下部板(408)加热或加温,从而可以防止在寒冷冬季的工作条件下排水收集系统(400)的下板(408)结冰。
文档编号F28F25/02GK1141599SQ94194834
公开日1997年1月29日 申请日期1994年11月29日 优先权日1993年12月3日
发明者H·D·柯蒂斯 申请人:托尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1