压出器的流量控制的制作方法

文档序号:4770415阅读:169来源:国知局
专利名称:压出器的流量控制的制作方法
技术领域
本发明涉及一种封闭式制冷系统的压出器。
背景技术
所有的封闭式制冷系统依次地包括压缩机、冷凝器、膨胀装置、和蒸发器。膨胀装置包括固定的孔口、毛细管、热力膨胀阀、电子膨胀阀、透平、和膨胀器-压缩器或压出器。在每一种膨胀装置中,随着高压液体制冷剂经受压力降低,该高压液体制冷剂发生闪发,其中该液体制冷剂中的至少一部分变成蒸气,从而导致比容增大。在压出器中,容积的增大用于向配装的压缩器提供动力,该压缩器将高压制冷剂蒸气输送到系统压缩机的排出口,由此增加系统能力。因为发生在该压出器中的压缩过程不由电动机来提供动力,而是由闪发的液体制冷剂来提供动力,所以制冷的总效率提高的量与系统能力提高的量相同。
对于制冷机的通常应用的压力比来说,该压力比Pr代表排出压力与吸入压力的比率,该压力比用于控制该系统。容积比Vi在压缩情况下是吸入容积比排出容积,而在膨胀情况下是排出容积比吸入容积。对于液体膨胀,Vi的数量级为10或更高。对于相同的压力比,对于蒸气膨胀Vi仅为大约3或4。液体膨胀与蒸气膨胀之间的不同的原因在于蒸气的容积是在相同的温度和压力条件下相应量的液体的容积的大约80倍。此外,相变需要能量以便将液体转化成蒸气。如果膨胀器具有非常高的Vi,例如10或更高,则在吸入过程的结束时液体将填充限定膨胀器的受限容积的腔。当不发生闪发时,即没有过冷液体时,或者如果由于液体不可膨胀性使得闪发率与容积变化不匹配,该膨胀器不能适当的工作。现有技术的装置使用预先节流来显著降低对于膨胀器的Vi或Pr。因此,在吸入过程结束时,在腔容积中存在有两个相。预先节流浪费了动力,这是因为没有利用该能量。

发明内容
一种旋转叶片式或双螺旋式膨胀器-压缩器(或压出器)单元用作膨胀装置,以用于实现在空调系统和制冷系统中的相变。该旋转叶片式或双螺旋式的压出器是有效的具有两个阶段的装置,其中膨胀器作为第一阶段并提供用于驱动压缩器的动力,而压缩器作为第二阶段并将压缩后的高压制冷剂输送到从系统压缩机延伸到冷凝器的排出管路中。依据本发明的教示,液体制冷剂供给到膨胀器的入口。在吸入过程结束时,来自压出器压缩器排出口的高压蒸气供给到受限容积中。这使得膨胀器适当地工作,同时使得可完全地获得液体到蒸气的膨胀的机械动力。在启动时,热的高压气体的一部分从排出管路直接供给到压出器的膨胀器,由此启动旋转。
本发明的一目的是提供饱和或过冷的液体膨胀成蒸气的高效膨胀,以便获得机械动力。
本发明的另一目的是控制压出器的旋转速度或流量。
本发明的又一目的是在启动时将排出气体直接供给到压出器的膨胀器。
本发明的再一目的是省去了对供给到压出器的膨胀器的液体进行预先节流的需要。结合以下的对本发明的描述,本发明的这些和其它的目的是明显的。
本质上,饱和的或过冷的液体供给到压出器的膨胀器。正好在吸入过程结束之前或正好在吸入过程完成之后启动,来自压出器压缩器排出口的高压蒸气供给到在进行的膨胀作用下限定受限容积的腔中。


参照以下的详细描述并结合以下附图,将更好地理解本发明,在附图中图1是使用本发明的制冷系统或空调系统的示意图;图2是图1所示的系统的压出器的简化示意图,其中压出器是旋转叶片式装置;图3是图1所示的系统的压出器的简化示意图,其中压出器是双螺旋式装置;和图4是压出器的膨胀和压缩过程中容积变化的示意图表。
具体实施例方式
在图1中,附图标记10总体上表示制冷系统或空调系统。该系统10从压缩机12开始依次地包括排出管路14、冷凝器16、管路18、形式为压出器20的膨胀装置、管路22、蒸发器24和吸入管路26,以使完成该回路。参照图2,所示的压出器20是旋转叶片式装置,该装置名义上将每一圈旋转的一半作为膨胀器,而名义上将每一圈旋转的一半作为压缩器,因此压出器20是一种有效的在载荷等方面平衡的两个阶段的装置。如图所示,压出器20具有围绕旋转轴线A的转子21和八个对称地沿外周间隔开的叶片,该叶片分别命名为V-1到V-8。由于离心力,叶片V-1到V-8与由气缸20-1限定的气缸壁一起起密封作用,或者如果必要或需要,该叶片被弹簧偏压以与该气缸壁接触。凹槽形成在每一叶片的排出侧上,以便防止在叶片槽口中的该腔收集流体并形成流体弹性部分。压出器20的气缸20-1相对于轴线B具有均匀的半径。管路22及其端口22-1相对于腔C-4和C-5是不对称的,以便降低压出器20的压缩器的吸入容积,该吸入容积由相对于压出器20的膨胀器排出容积为密封的腔C-5来限定,排出容积由腔C-4的最大容积来限定,这是因为膨胀器除了压出器20的压缩器之外还向蒸发器24供给制冷剂。或者,气缸20-1的半径可以是改变,以使得在腔C-5中的最大容积小于在腔C-4中的最大容积。
叶片V-1如图所示地完全收回到其在转子21中的槽口中,但仍与气缸20-1的壁接触密封。叶片V-2稍微从其在转子21中的槽口中延伸出,并与气缸20-1的壁接触密封。由叶片V-1和V-2腔之间和转子21以及气缸20-1的壁限定的腔C-1经由管路18被供以来自冷凝器16的底部的高压液体(饱和的或过冷的)制冷剂。因为在腔C-1中的流体压力作用在叶片V-2上的区域比作用在叶片V-1上的区域大,所以存在一由在腔C-1中的流体施加的力以便趋向于使转子21沿顺时针方向移动,如图所示。腔C-2处于在膨胀过程中的相对于腔C-1的下一阶段,并具有更大的容积。腔C-1被供以液体制冷剂,但是如果腔C-1在移动出与管路18连通的状态之前与管路154连通,则该腔C-1可被供以蒸气态制冷剂。腔C-2与管路154流体连通,随着腔C-2从开始与管路154接触从而容积增大,直到移动出与管路154连通的状态,该管路154将高压蒸气供给到腔C-2。这样,尽管腔C-2大于腔C-1,但增大的容积被供以蒸气态制冷剂,而不是由于供给到腔C-2的液体制冷剂在腔C-1的位置处闪发而容积增大。因为在腔C-2中的流体压力作用在叶片V-3上的区域比作用在叶片V-2上的区域大,所以存在一由在腔C-2中的流体施加的力以便趋向于使转子21沿顺时针方向移动。
腔C-3处于在膨胀过程中的相对于腔C-2的下一阶段,并具有更大的容积。因为当腔C-3处于腔C-2的位置时被供以蒸气态制冷剂,所以膨胀过程在不需要预先节流并在没有产生现有技术装置的功率/效率损失的情况下进行。因为在腔C-3中的流体压力作用在叶片V-4上的区域比作用在叶片V-3上的区域大,所以存在一由在腔C-3中的流体施加的力以便趋向于使转子21沿顺时针方向移动。腔C-4位于膨胀过程的结束位置。一旦叶片V-5暴露于管路22,来自腔C-4的低压液体制冷剂输送到管路22中,同时低压制冷剂气体的一部分经过叶片V-5进入腔C-5。通常,在腔C-4中的制冷剂在数量级70-86%的程度上为液相,而其余为蒸气相。进入腔C-5的制冷剂的蒸气相部分由特定制冷剂、循环和系统结构来规定。例如,对于制冷剂134a,对于水冷式制冷机,重新压缩的蒸气质量流率是进入压出器20的总液体质量流率的6%。通常,对于风冷式制冷机,重新压缩的蒸气质量流率是进入压出器20的总液体质量流率的10%。通常,重新压缩的蒸气质量流率至少是进入压出器20的总液体质量流率的5%。端口22-1的位置规定了腔C-5的封闭及其初始容积。假设在制冷剂为134a以及水冷式制冷机的情况下,供给到腔C-5的蒸气态制冷剂在数量级上是来自腔C-4的总制冷剂的6%。或者,气缸20-1的半径可以是改变,以使得在腔C-5中的最大容积小于在腔C-4中的最大容积。
腔C-5位于压缩过程的第一阶段,并且在腔C-4和腔C-5处于其最大容积的位置处腔C-5具有比腔C-4更小的容积,这是因为端口22-1的位置或气缸20-1的壁的半径在腔C-5的区域中减小而造成的。在腔C-4和腔C-5中的低压与其它腔相比对于使转子21旋转或阻止其旋转具有最小的作用力,但净力将沿顺时针方向。腔C-6代表在压缩的较早阶段中被压缩的气态制冷剂的受限容积。因为在腔C-6中的流体压力作用在叶片V-6上的区域比作用在叶片V-7上的区域大,所以存在一由在腔C-6中的流体施加的力以便趋向于使转子21沿逆时针方向移动。气缸20-1的壁的半径减小,如果存在,将降低叶片V-6和V-7暴露的流体力。被压缩的容积的减小防止了在膨胀器中的相应力的抵消,以使转子沿顺时针方向移动。
腔C-7位于压缩过程的最终阶段。因为在腔C-7中的流体压力作用在叶片V-7上的区域比作用在叶片V-8上的区域大,所以存在一由在腔C-7中的被压缩流体施加的力以便趋向于使转子21沿逆时针方向移动。在腔C-2中的高压抵消了该力,使得转子21沿顺时针旋转。腔C-8处于压缩过程的排出阶段,并与管路150连通并且在名义上处于压缩机12的排出压力下。腔C-8与管路150流体连通,该管路150向管路14供给高压制冷剂。此外,管路150向管路151供给处于压缩机排出压力的蒸气态制冷剂,该管路151经由限流管路152处于与管路154和腔C-2连续的连通状态。该管路151经由包含阀160的管路153处于与管路154和腔C-2选择性地连通的状态。阀160可以是任何形式的阀,例如使用脉冲控制流经其的流率的电磁阀。电磁阀160根据由液面传感器162感测的在冷凝器16中的液面由微处理器170来控制。
在操作中,来自压缩机12的热的高压制冷剂经由排出管路14供给到冷凝器16,在冷凝器中该制冷剂蒸气冷凝成液体。来自冷凝器底部的液体制冷剂经由管路18供给到压出器20,在压出器中该液体制冷剂流经由腔C-1至C-4所示的膨胀过程。来自腔C-4的低压液体/蒸气制冷剂混合物经由管路22供给到蒸发器24,在蒸发器中该液体制冷剂蒸发,以冷却所需的空间,并且所形成的气态制冷剂经由吸入管路26供给到压缩机12,以完成该循环。来自腔C-4的制冷剂蒸气的一部分供给到压出器20的压缩器的腔C-5。在顺序地由腔C-5至C-8所示的压缩过程中,低压的制冷剂蒸气被压缩到等于在排出管路14中的压缩机12排出压力的压力。腔C-8向管路150排气,该管路150把来自腔C-8的高压气态制冷剂的一部分输送到管路14,在管路14中,该气态制冷剂的一部分有效地增加了输送到冷凝器16的热的高压制冷剂的量。排出到管路150中的来自腔C-8的高压气态制冷剂的一部分进入管路151并经由限流管路152进入管路154和腔C-2,腔C-2刚好与高压液体制冷剂管路18断开或仍与高压液体制冷剂管路18相连但即将断开。限流管路152使得高压蒸气态制冷剂以相应于转子21的最小旋转速度的一流率进入腔C-2。管路153与限流管路152平行,并包含电磁阀160,电磁阀160根据由冷凝器16中的液面传感器162感测的冷凝器16中的液面由微处理器170来控制。转子21的旋转速度通过阀160的开启度来增大。除了压出器排气之外,供给到腔C-2的该高压制冷剂蒸气可经由管路14和150由压缩机12的排出口供给以便在启动过程中驱动压出器20。通过使用存在于膨胀过程的腔C-2部分的制冷剂蒸气,该膨胀器可适当工作,并且液体到蒸气的膨胀的机械动力可完全地获得。
从管路18引入腔C-1的高压液体入口18-1适合于液体到蒸气的膨胀Vi,并且蒸气供给口154-1适合于相同压力比的蒸气膨胀Vi。该高压蒸气经阀160控制的流量可控制压出器20的旋转速度。转子21的最小速度和最小膨胀流量(系统10的制冷量)在阀160关闭时出现。阀160用于控制转子21的速度,该速度对应于压出器20的流量。当阀160完全开启寸,转子21的速度或压出器20的流量处于最大值。
通常在运行过程中经管路150的流动是从压出器20的压缩器部分的排出口流到排出管路14。然而在启动时,假设系统10中的压力至少名义上是平衡的,供给到排出管路14中的压缩机12的排气的一部分经由管路150供给到压出器20。如图2清晰所示,管路150与腔C-8流体连通,在腔C-8处该管路150几乎不起作用。然而,管路150经由管路151、152、154与腔C-2流体连通,如上所述,使得在腔C-2中增压的流体使转子21沿顺时针方向旋转,由此有助于压出器20的启动。
参照图3,压出器20’是等效于压出器20的成对的螺旋转子。压出器20’的所有结构以与压出器20的等效结构相同的附图标记来表示。尽管仅示出了一个转子21’,但清晰的是,腔C-1至C-4逐渐地增加容积以确定压出器的膨胀器部分,而腔C-5至C-8逐渐地减小容积,以确定压出器的压缩器部分。端口22-1的位置使得腔C-5的关闭延迟了,并由此减小了相对于腔C-4的最大封闭容积的腔C-5的最大封闭容积。如果必要或需要,端口22-1可使在压缩过程中的第一受限容积的关闭延迟,使得其出现在腔C-6中。
图4是腔从如上所述的腔C-1到腔C-8的过程中压出器20和压出器20’的膨胀过程和压缩过程的图表。由低压液体/蒸气排出表示的中央区域对应于在图2中所示的在其位置处的腔C-4和C-5。
虽然示出并描述了本发明的优选实施例,但对于本领域的普通技术人员来说可进行其它变型。因此,本发明的范围仅由后附的权利要求的范围来限定。
权利要求
1.一种封闭式制冷系统,其依次地包括主压缩机、排出管路、冷凝器、压出器、蒸发器、和吸入管路,其中所述压出器具有在每一循环的一半过程中作为膨胀器的部分以及在每一循环的另一半过程中作为压缩器的部分;每一循环的所述一半的所述膨胀器部分包括多个容积增大的受限容积,该受限容积顺序地连接到用于供给来自所述冷凝器的液体制冷剂的装置;用于供给来自所述压出器的所述压缩器的排出压力的装置;和用于向所述蒸发器和所述压出器的所述压缩器排气的装置;以及每一循环的所述另一半的所述压缩器部分包括多个受限容积,该受限容积在每一循环的所述另一半过程中容积顺序地减小。
2.如权利要求1所述的封闭式制冷系统,其特征在于,所述膨胀器部分中的最大受限容积大于所述压缩器部分中的最大受限容积。
3.如权利要求1所述的封闭式制冷系统,其特征在于,所述压出器是旋转叶片式装置。
4.如权利要求1所述的封闭式制冷系统,其特征在于,其还包括用于调节从所述压出器的所述压缩器部分到所述膨胀器部分的受限容积的所述供给的装置。
5.如权利要求1所述的封闭式制冷系统,其特征在于,所述压出器是螺旋式装置。
6.如权利要求1所述的封闭式制冷系统,其特征在于,其还包括用于在启动过程中将所述排出管路连接到所述膨胀器部分的装置,由此所述主压缩机将增压制冷剂蒸气供给到所述膨胀器部分,以用于在启动状况下驱动所述压出器。
全文摘要
饱和的或过冷的液体供给到压出器的膨胀器。正好在吸入过程结束之前或正好在吸入过程完成之后启动,来自压出器压缩器排出口的高压蒸气供给到在进行的膨胀作用下限定受限容积的腔中。
文档编号F25B11/02GK1469093SQ03148770
公开日2004年1月21日 申请日期2003年6月25日 优先权日2002年6月25日
发明者汤炎, J·J·布拉斯兹, 布拉斯兹, 炎 汤 申请人:开利公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1